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Abstract. Collocations between two satellite sensors are
occasions where both sensors observe the same place at
roughly the same time. We study collocations between
the Microwave Humidity Sounder (MHS) onboard

::::::::
on-board

NOAA-18 and the Cloud Profiling Radar (CPR) onboard the
CloudSatCPR

::::::::
on-board

:::::::::
CloudSat. First, a simple method is

presented to obtain those collocations and this method is
compared with a more complicated approach found in lit-
erature. We present the statistical properties of the collo-
cations, with particular attention to the effects of the dif-
ferences in footprint size. For 2007, we find approximately
two and a half million MHS measurements with CPR pixels
close to their centrepoints. Most of those collocations con-
tain at least ten CloudSat pixels and image relatively homo-
geneous scenes. In the second part, we present three possible
applications for the collocations. Firstly, we use the colloca-
tions to validate an operational Ice Water Path (IWP) product
from MHS measurements, produced by the National Envi-
ronment Satellite, Data and Information System (NESDIS)
in the Microwave Surface and Precipitation Products System
(MSPPS). IWP values from the CloudSat CPR are found to
be significantly larger than those from the MSPPS. Secondly,
we compare the relation between IWP and MHS channel 5
(190.311 GHz) brightness temperature for two datasets: the
collocated dataset, and an artificial dataset. We find a larger
variability in the collocated dataset. Finally, we use the col-
locations to train an Artificial Neural Network and describe
how we can use it to develop a new MHS-based IWP product.
We also study the effect of adding measurements from the
High Resolution Infrared Radiation Sounder (HIRS), chan-
nels 8 (11.11 µm) and 11 (8.33 µm). This shows a small im-
provement in the retrieval quality. The collocations described
in the article are available for public use.

Correspondence to: G. Holl (gerrit.holl@ltu.se)

1 Introduction

Atmospheric remote sensing from satellites is a major source
of data for the atmospheric sciences and for operational
weather forecasting (Kidd et al., 2009). Measurements from
Earth observation satellites have a global or near-global cov-
erage. However, the accuracy of products derived from
such measurements is often poor (Wielicki et al., 1995;
Wu et al., 2009). A combination of observations from dif-
ferent instruments enables applications that are impossible
with single-instrument measurements. One way to com-
bine measurements is through collocations. A collocation
is an event where different (satellite) sensors observe the
same location at roughly the same time. The collocations
considered here are

::::::
mainly

:
between active measurements

from the Cloud Profiling Radar on-board CloudSat, and pas-
sive measurements from microwave and infrared sensors
on-board NOAA-18.

:::::::
National

::::::::
Oceanic

:::::
and

::::::::::::
Atmospheric

:::::::::::::
Administration

::::::::::::
(NOAA)-18.

:

One product obtained by remote sensing measurements is
the Ice Water Path (IWP), the vertically integrated Ice Water
Content (IWC) or the column mass density of ice in the at-
mosphere. Ice clouds are important for the climate,

::::::::
because

::::
they

::::::
absorb

::::
and

:::::::
scatter

::::::::
thermal

::::::::
radiation

::::
and

:::::::
reflect

:::::
solar

::::::::
radiation,

::::
and

::::
thus

:::::::::
influence

:::
the

::::::::
radiation

::::::
budget

::
of

::::
the

:::::
Earth

(Stephens, 2005). As shown by John and Soden (2006), the
different General Circulation Models (GCMs) disagree by an
order of magnitude about the climatology of IWP. Also IWP
values from remote sensing measurements differ consider-
ably (Wu et al., 2009). Therefore, it is important to improve
the quality of ice cloud retrievals. A good understanding of
the cloud signal in microwave radiometer measurements is
an important step in the development of retrieval algorithms
for possible future missions, such as the Cloud Ice Water
Submillimetre Imaging Radiometer (CIWSIR), proposed by
Buehler et al. (2007).

Collocations between sensors on the same platform are
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commonly used (for example, see Frey et al., 1996; Bennartz,
2000). The idea to collocate data from different satellite plat-
forms is not new either. Wielicki and Parker (1992) compare
the cloud cover obtained with sensors of different spatial res-
olution. The A-Train constellation was motivated by the ad-
vantages of using a combination of measurements (Stephens
et al., 2002). Already before CloudSats launch, Miller et al.
(2000) described how to use active sensor data as a priori in-
formation for passive sensor retrievals, anticipating “a con-
siderable overlap of CloudSat with the Earth Observing Sys-
tem (EOS) PM and Geostationary Operational Environmen-
tal (GOES) satellites”. Several recent studies use the new
possibilities from the A-Train (for example, Holz et al., 2008;
Kahn et al., 2008). However, not much work has been pub-
lished on actual collocation methods. The first publication on
the subject appears to be a technical note written in Japanese
(Aoki, 1980). Judging from the abstract, Aoki (1980) de-
scribes how to match AVHRR and HIRS/2 if the instruments
are on the same satellite. Other conference papers on the sub-
ject are Nagle (1998) and Sun et al. (2006). The first peer-
reviewed publication on the subject appears to be Nagle and
Holz (2009), discussed in more detail in Sect. 3.1.1.

No literature exists that focusses on collocations between
an active instrument such as

::
the

::::::
Cloud

::::::::
Profiling

::::::
Radar

::::::
(CPR)

::::::::
on-board

:
CloudSat and passive, operational instruments on

Polar Orbiting Environmental Satellites (POES) such as the
MHS on the NOAA-18. However, such collocations have
relevant applications. Although a satellite like CloudSat has
high quality products, the coverage is small compared to op-
erational satellites, and it will have a limited lifetime. If we
can use collocations between the CloudSat

::::::::
CloudSat

:::::
CPR

and NOAA-18 MHS to improve the operational microwave
IWP retrieval, the advantages will last much beyond the life-
time of the A-Train satellites and have a much higher spa-
tial coverage. Even passive microwave data from before
CloudSat could be reprocessed with an improved algorithm.
Whereas Miller et al. (2000) describe a retrieval that requires
collocated data for each individual retrieval, we show that
collocations can be used to develop new retrievals, that can
then be used for non-collocated passive radiometer measure-
ments.

The main purpose here is to study collocations between
CloudSat

::::
CPR and NOAA-18 MHS. Collocations with MHS

and AMSU-B on other POES were also located, but due
to the large distances between the satellites, few useful
collocations were found. Hence, the study focuses on
NOAA-18 MHS. The collocation procedure is described in
Sect. 3. The secondary purpose of the study is to look at
possible uses of the collocations. Three applications are
described in Sect. 4. Firstly, the National Oceanic and
Atmospheric Administration (NOAA )

::::::
NOAA

:
National En-

vironmental Satellite, Data and Information Service (NES-
DIS) Microwave Surface and Precipitation Products System
(MSPPS) IWP product is compared with the IWP product
from the Cloud Profiling Radar (CPR ) onboard the

::::
CPR

::::::::
on-board

:
CloudSat (Sect. 4.1). Simulated radiances from

generated clouds are used to study the relation between
brightness temperature and IWP, and compare this with the
statistics of the collocated dataset (Sect. 4.2). Finally, in
Sect. 4.3, we use microwave radiances, with and without in-
frared measurements, to train an Artificial Neural Network
with the CloudSat IWP as a target. Such a network can then
be used to develop a new IWP product from microwave (and
IR) measurements. Such applications were not found in peer-
reviewed literature.

2 Instruments

The Cloud Profiling Radar (CPR) is a radar instrument
on-board the sun-synchronous CloudSat satellite (Stephens
et al., 2002), launched 28 April 2006. It has an operating
frequency of 94 GHz and measures profiles of backscattering
ratio at a 0.16◦ off-nadir angle. CloudSat generates a pro-
file every 1.1 km along-track. A profile footprint is 1.3 km
across-track and 1.7 km along-track. A profile is taken every
0.16 s. CloudSat is part of the A-train

:::::::
A-Train constellation.

It has an inclination of 98.26◦ and a Local Time Ascending
Node (LTAN) varying between 13:30 and 13:45 local solar
time. We use the ROIWP (Radar-Only Ice Water Path) field
from the 2B-CWC-RO (level 2b, Cloud Water Content, Radar
Only) product, version 008. Austin et al. (2009) describe
the algorithm to calculate IWC from radar reflectivity pro-
files. They report an upper limit of the uncertainty of 40%.
However, throughout this article, we assume CloudSat to be
true

:::::
CPR

::
to

::::::::
represent

:::
the

:::::
truth

:::::
since

::
it

::
is

::::::::
supposed

:::
to

:::::::
provide

:::
the

:::::
most

:::::::
accurate

::::::::::::::
measurements

::
of

:::::
IWP. The data originate

from the CloudSat Data Processing Centerand are stored in
High-Definition Format (HDF). All measurements are geolo-
cated and time-associated.

The Advanced Microwave Sounding Unit-B (AMSU-
B) and its successor the Microwave Humidity Sounder
(MHS) are microwave radiometers (Saunders et al., 1995;
Kleespies and Watts, 2007). MHS channels 3–5 corre-
spond to AMSU-B channels 18–20. We use the MHS
channel numbers. Channel 3 has a centre frequency of
183.31±1.00 GHz with a bandwidth of 500 MHz, channel 4
has a centre frequency of 183.31±3.00 GHz with a band-
width of 1000 MHz, and channel 5 has a centre frequency
of 183.31±7.00 GHz (AMSU-B) or 190.31 GHz (MHS)
with a bandwidth of 2000 MHz (AMSU-B) or 2200 MHz
(MHS). We use channels 3–5 because of the prominent
water vapour spectral line at 183.31 GHz. In this article,
we neglect the differences between AMSU-B and MHS.

::::::::
Although

:::::
they

::::
are

::::
not

::::
the

::::::
same,

::::
the

:::::::::
standard

:::::::::
deviation

::
of

:::
the

::::::::::
difference

::
is

::::::
much

::::::
larger

:::::
than

:::
the

::::::
mean

::::::::::
difference,

::
so

::::
that

::
a

:::::::
simple

:::::::::
correction

:::
is

::::
not

::::::::
possible

:
(Kleespies and

Watts, 2007).
::

Because of its proximity to CloudSat, we
focus on NOAA-18 and MHS for the collocations. How-
ever, we have also looked for collocations with MetOp-A
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::
(a

:::::::
satellite

:::::::::
operated

:::
by

:::
the

::::::::::
European

::::::::::::
Organisation

:::
for

::::
the

:::::::::::
Exploitation

:::
of

::::::::::::::
Meteorological

:::::::::
Satellites

:::::::::::::::
(EUMETSAT)),

NOAA-15, NOAA-16 and NOAA-17, so with a total of five
satellites. The MHS field of view is around 1.1◦, and the
footprint size at nadir is around 15 km in diameter. It scans

:::::::::::
across-track in angles from −49.44◦ to 49.44◦ with 90 mea-
surements per scan line. A scan takes 8/3 s. MHS is currently
present on NOAA-18, NOAA-19 and MetOp-A, whereas
AMSU-B is present on NOAA-15 through NOAA-17. All
those satellites are sun-synchronous satellites. NOAA-18 has
an inclination of 98.74◦ and a LTAN of 13:391. This is close
to CloudSat, which leads to a large number of collocations,
as described later in the article.

MHS measures the antenna temperature, which can be cal-
ibrated to obtain a brightness temperature in units of Kelvin.
We use the AAPP

:::::::
ATOVS

::::
and

:::::::::
AVHRR

::::::::::::::
Pre-processing

:::::::
Package

::::::::
(AAPP)

:
software package to apply this calibration,

described by Labrot et al. (2006) . We obtain the radiances
from the NOAA CLASS archive, stored in the ATOVS data
format (ATOVS stands for Advanced TIROS Operational
Vertical Sounder, where TIROS stands for Television In-
fraRed Observation Satellite).

:::
We

::::::
obtain

:::
the

:::::::::
radiances

:::::
from

:::
the

::::::
NOAA

::::::::
CLASS

:::::::
archive.

:

All those satellites also carry the infrared radiometer
High Resolution Infrared Radiation Sounder (HIRS), either
HIRS/3 or HIRS/4. HIRS measures in 20 channels, one vis-
ible and nineteen infrared. We use channels

:
8 (λ= 11.1 µm,

a window channel) and 11 (λ= 7.33 µm, a humidity chan-
nel) because

:::
ice

:
clouds are clearly visible at those wave-

lengths. HIRS/3 is present on NOAA-15 through NOAA-17
and HIRS/4 is present on NOAA-18, NOAA-19 and MetOp-
A. HIRS scans the atmosphere in 56 angles between −49.5◦

and 49.5◦. Those measurements are not on the same grid as
the MHS measurements . A

::::
(see

::::
Fig.

::
1).

:::
A

:::::
HIRS

:
scan takes

6.4 s.

3 Finding collocations

The footprint size of the considered sensors is in the order of
kilometres, whereas the measurement duration is in the order
of milliseconds. The spatial extent is in

::
of

::
a

::::::::::::
measurement

::
is

::
of the same order as the physical extent of a cloud

::
or

::::::
larger

(kilometers), but the time order of a measurement (fraction
of a second) is much smaller than a typical cloud lifetime
(minutes to hours) (Rogers and Yau, 1979).

Thus, to have a meaningful collocation, the footprints need
to have a physical overlap. However, the time in between

:::::::
between

::::
the

:::::::::::::
measurements can be much larger than the du-

ration of a measurement. Hence, a collocation occurs when
the sensors observe exactly the same place at approximately
the same time.

1As of 5 February 2009 00:00:00 from the Polar Orbiting Envi-
ronmental Satellites (POES) Spacecraft Status website.

As shown in Fig. 1, an MHS footprint is an order of mag-
nitude larger than a CPR footprint and HIRS measurements
are not on the same grid as MHS measurements.

We create two collocated datasets. In the first dataset, there
is an entry for each CloudSat measurement collocating with
an MHS measurement, so that there can be many collocations
for the same MHS pixel. In the second dataset, each collo-
cation has a unique MHS measurement and CPR pixels are
averaged. For each MHS measurement, we note the number
of CPR pixels inside the MHS pixel, the average

::::
CPR

:
IWP

value, the standard deviation
::
of

:::
the

:::::
CPR

::::
IWP and the fraction

of cloudy CPR pixels. However, the
:::
For

::::
the

::::::::::
averaging,

:::
we

:::::::
consider

::::
the

::::
CPR

::::::
pixels

::
as

:::::
point

:::::::::::::
measurements

:::
and

::::
the

:::::
MHS

:::::
pixels

::
as

::::::::
circular

:::::::::::::
measurements

::::
with

:
a
::::::
radius

::
of

::::
7.5

:::
km

:::
and

::
a

:::::::
constant

::::::
sensor

:::::::
spatial

::::::::
response

::::::::
function

::::::
inside

:::
this

:::::
area.

:::
In

::::::
reality,

:::
the

::::::
sensor

:::::::
spatial

::::::::
response

::::::::
function

::
of

:::::
MHS

::
is

::::::
better

::::::::::::
approximated

:::
by

::
a
:::::::::
Gaussian

::::::
shape.

:::::::::::
Although

::::
this

::::::
might

::::::
reduce

:::
the

:::::::::::::::::
representativeness,

::::
this

::::::
effect

::
is

:::::
small

::::::::::
compared

::
to

:::::
other

::::
error

::::::::
sources.

::::
The total area covered by the CPR pix-

els is still much smaller than the MHS footprint area. This
leads to a sampling error, as discussed in Sect. 3.3 below.

Both datasets are available for public use.

3.1 Collocation finding procedure

The
::::::::::
collocation

::::::
finding

:::::::::
procedure

::::::::
consists

::
of

::::
four

::::::
steps.

::::
The

::::
steps

::::
are

::::::::
described

:::
in

:::::
detail

::
in

::::
the

:::::::::
following

::::
text.

:

1.
:::::
Orbits

::::::::::
(granules)

::::
with

:::::
time

:::::::
overlap

:::
are

::::::::
selected.

:

2.
:::::
Orbit

::::::::
sections

::::
are

:::::::::
selected

::::::::::
according

:::
to

:::
a

::::::
rough

::::::::
temporal

::::::::
criterion.

:

3.
:::::::::::::
Measurements

::::::::
possibly

:::::::::
fulfilling

:::
the

:::::::
spatial

::::::::
criterion

:::
are

::::::::
selected.

4.
:::
The

::::::::::
temporal

:::::::::
criterion

:::
is

:::::::
applied

::::
to

::::
the

::::::::
selected

:::::::::::::
measurements.

:

::::
The measurement data as obtained from the data providers

is stored as one file for each orbit. Those files, known
as granules, contain geolocated, time-referenced measure-
ments. The geolocation refers to the actual measurement;
the position of the satellite is not available and not required
for the procedure

:::
(in

:::::::
contrast

:::
to

:
Nagle and Holz (2009)

::::::::
discussed

:::::::
further

::::::
down). The filenames contain information

about the starting and ending time of the data contained by
the granule.

For each CPR granule, we locate all NOAA and MetOp
granules that have a time overlap with the CPR granule.
Those are two granules for each POES for each CPR gran-
ule, or a total of ten files for each CPR granule to search for
collocations (MetOp-A and NOAA-15 through NOAA-18).

We read the CPR file along with each of the associated
POES files. The start and end times of the files are dif-
ferent. The segment with time overlap is selected, plus the
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segment where the time difference is less than the maxi-
mum time interval for a collocation to be considered. For
example, if the CPR granule covers 10:00–11:30 UT, and a
POES granule covers 11:00–12:30 UT, and our maximum
time interval

:::::::::
difference

:
is 15 min, we consider the data in

the interval 10:45–11:45, or
::::
more

:::::::::
precisely 10:45–11:30 in

the CPR granule and 11:00–11:45 in the POES granule.
As defined above, a collocation has a spatial and a tem-

poral criterion. In our approach, we
:::
We

:
use a two-step ap-

proach: first we look for any collocations that might meet the
spatial criterion, and then whether those also meet the time
criterion.

First
:::::::
Starting

:::::
from

:::
the

:::::
orbit

::::
data

::::::::
screened

:::::::::
according

:::
to

:::
the

:::
first

:::::::::
temporal

::::::::
criterion

::
as

:::::::::
explained

::::::
above, we find the mea-

surements that meet the spatial criterion. In the first step,
we do not consider the true

::::
pixel

:
size or the sensor

::::::
spatial

response function of either sensor. Instead, we treat the mea-
surements as points and define a maximum distance to se-
lect the measurement pair for further consideration. The sen-
sor

::::::
spatial

:
response function and the effective field of view

can be used later to select a subset of those collocations
::
or

:
a

:::::::::
weighting

:::
of

:::::
them

:::
to

::::::::
consider

:::
the

::::::
MHS

::::::
spatial

:::::::::
response

:::::::
function.

We consider the ground track of each scan angle of the
MHS (track A) and compare it to the single scan in the CPR
(track B), but the following procedure works as well if both
instruments are scanning.

If two ground tracks are plotted, a human observer can
see immediately whether there is any spatial overlap or not.
Computers can not, so the following algorithm is used to
identify points where the spatial overlap condition is met.

1. The maximum speed
:::::::
distance

::
in

:::
km

::::::::
between

:::::::::
successive

:::::
points

:
of the ground tracks in km/point is determined

by calculating the derivative
::::
track

:::
is

::::::::::
computed

:::
for

::::
both

:::::::
ground

:::::::
tracks,

::::::::::::
considering

:::::
only

::::
the

:::::::::
segments

::::::::
screened

:::::::::
according

::
to

::::
the

::::::::
temporal

::::::::
criterion

:::::::::
discussed

::::::
above.

::::
The

::::::::::
maximum

:::::
speed

:
of the ground track

:::::
tracks

:
is

:::::::::
assumed

::
to

::
be

::::
the

:::::::::
maximum

::::::::
distance.

2. Start with n= 1, find
:
.

3.
::::
Find

:
close points to An in Bby the following method.

Here, An is the n-th measurement in track A.
::::::
Figure

:
2

:::::
shows

::::
the

::::::::
distance

:::::
from

::
a

:::::::::
CloudSat

:::::
CPR

:::::
pixel

::
to

:::
all

:::::
pixels

:::
in

::
a

:::::
MHS

::::::
track

:::
for

::
a

:::::
fixed

::::::::
viewing

::::::
angle.

:::
If

:::
any

:::::::::::
collocations

::::::
exist,

::::
they

::::
will

:::
be

:::::
close

:::
to

:::
the

::::::
global

:::::::::
minimum.

:::::
Find

::::::
points

:::::::
meeting

:::
the

::::::::
distance

::::::::
criterion

::
by

:::
the

:::::::::
following

:::::::
method.

:

(a) Choose N samples spread over B dividing

::::::::::
equidistant

::::::
points

::::::::::
(henceforth

:::::::::
samples)

:::::
from B in

::
as

::::::
shown

:::
in

::::
Fig.

:::
2.

::::::::::
Combined

:::::
with

:::
the

:::::
first

::::
and

:::
the

::::
last

:::::
point

::
of

::::
the

::::::
track,

:::
the

::::::::
samples

::::::
define

::::
the

:::::
edges

:::
for

:
N +1 intervals. Profiling with different

values has shown that N = 200 works well
:::
All

:::::::
intervals

::::::::
contain

:::
the

:::::
same

::::::::
number

::
of

:::::::
points,

:::::
with

:::
the

:::::::::
exception

::
of

::::
the

:::
last

::::::::
interval,

::::
that

:::::
may

:::::::
contain

:::
less

::::::
points

::::
than

::::
the

::::::
others.

(b) Find which sample is closest to An.
:::
Call

:::::
this

::::::
sample

:::::
Bm.

(c) Consider the interval between the neighbouring
samples. If

:::::::::::::::::::::
Bm+1,Bm+2,···,Bm+r::::::

where
:::::::
Bm+r

:
is

::::
the

::::
first

:::::::
sample

:::::
that

:::::
does

:::
not

:::::
meet

:
the spatial

condition is met for the edges of any interval (e.g.
neighbouring sample), include the next interval as
well, until either

:
or

::::
the

::::
last

:::::::::::::
measurement

::::::
point

::
of

:::
the

::::::::
granule.

::::::::::
Consider

::::::::::::::::::::::
Bm−1,Bm−2,···,Bm−l

:::::
where

::::::
Bm−l::

is
::::
the

::::
first

:::::::
sample

::::
that

::::
does

::::
not

:::::
meet

the spatial condition is no longer met or the start
or end of the ground track is reached

::
or

:::
the

:::::
first

::::
point

:::
of

::::
the

::::::::
granule.

::::
If

:::
N

::
is

:::::
large

::::::::
enough,

::::
all

:::::
points

::::
that

:::::
meet

::::
the

::::::
spatial

::::::::
criterion

:::
are

::::::::::
contained

::
by

::::
the

:::::::::::::
super-interval

::::::::::::::
(Bm−l,Bm+r),::::::::

because
::::
the

::::::::
minimum

:::
of

::::
the

::::::::
distance

:::::
from

::::
An:::

to
::
B

:::::
will

:::
be

::::::::
contained

:::
by

::
it

:::
(if

::
N

::
is

::::
too

:::::
small,

::::
this

:::::::
interval

:::::
may

::::::
contain

:::::
only

::
a
:::::

local
:::::::::::

minimum).
:::::

An
::::::::
example

:::
of

::::
such

::
a

::::::::::::
super-interval

:::
is

::::::
shown

:::
by

:::
the

:::::
thick

::::
line

:::
in

:::
Fig.

:::
2.

::::::::
Consider

::::
this

::::::::::::
super-interval.

(d) Calculate the distance for all points in this
interval

:::::::
between

:::::
An :::::

and
::::::

every
:::::::

point
:::

in
:::::

the

::::::::::::
super-interval.

(e) Note all points for which the spatial condition is
met. If there are no such points, remember the dis-
tance of the closest point.

::
As

:::::::
shown

::
in

::::
Fig.

::
2,

:::::::
N = 20

::
is

:::::::
already

:::::::::::
sufficiently

::::
large

::
to

:::::::::
guarantee

::::
that

::::
any

::::::
points

:::
in

::
B

::::::::
meeting

::::
the

::::::
spatial

:::::::
criterion

::::
are

:::::::::
contained

::
in

::::
the

:::::::::::::
super-interval.

:::::::::
However,

::::
with

:::::::
N = 20

:::
the

::::::::
number

::
of

::::::
points

::
in

::::
the

::::::::::::
super-interval

:::
for

::::::
which

:::
the

::::::::
distance

::
to

::::
An ::::

will
:::
be

:::::::::
calculated

::
is

::::
still

::::
quite

::::::
large.

:::
A

::::::
larger

:::
N

::::::
means

:::
the

:::::::::::::
super-interval

::::
will

::
be

::::::::
smaller,

::::
but

:::
the

::::::::
number

::
of

::::::::
samples

::::
for

::::::
which

:::
the

:::::::
distance

::::
will

:::
be

:::::::::
calculated

::::
will

:::
be

::::::
larger.

::::
The

::::::
choice

::
of

::
N

::
is

::::
thus

:::
an

:::::::::::
optimisation

::::::::
problem

::
to

::::::
reduce

:::
the

:::::::
number

::
of

::::::::
distance

:::::::::::
calculations.

::::
We

::::
have

:::::::
chosen

:::::::::
N = 200.

4. If there were any points for with the spatial condition
was met, increase n by 1 and repeat.

::::
start

:::::
again

:::::
from

::
3.

5. If there were no points for which the spatial condition
was met, calculate the least number of points remaining
before it could be met: increase n by

smallest distance−spatial condition
max speed

:::
and

::::
start

::::::
again

:::::
from

::
3.

:
For example, if the shortest dis-

tance is 120 km, the spatial condition distance 20 km,
and the max speed 10 km/point, n will be increased by
120−20

10 = 10.
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This algorithm worksbecause
::::::
works,

:::::::
because

::
if

:::
the

:::::::::
minimum

:::::::
distance

:::::
from

::::
An ::

to
::
B

:::
is

::::
120

:::
km

::::
and

:::
the

::::::::
distance

::::::::
between

:::
An ::::

and
:::::::
An+10 ::

is
::::
100

::::
km,

:::
the

::::::::::
maximum

::::::::
distance

::::::::
between

::::::
An+10::::

and
::
B

::::::
cannot

:::
be

::::
less

::::
than

:::
20

:::
km.

:

::::
The

:::::::::
procedure

:::::::::
described

::::::
above

::
is

:::
not

::::
the

::::::
fastest

::::::::
possible

:::
(for

:::::::::
example,

:::::
point

:::
(d)

::::::
could

::
be

::::::::::
optimised

:::::::
further)

:::
but

:::::
with

:::
this

::::::::::
algorithm,

::::
the

:::::
bulk

:::
of

:
the points on a ground track

are on a continuous line. On the other hand, the distance
of a ground track to a point has local minima that are not
absolute minima, so a faster algorithmto find the minimum
of a function that has only one minimum might not work
(it might find the wrong minimum)

:::
time

::::::::
running

::::
the

:::::
code

::::::::
searching

::::
for

:::::::::::
collocations

::::
was

::::::
spent

:::
on

::::::::::::
downloading

:::::
files

::::
from

::
a

:::::
local

:::::
server

::::
and

::::::::::::::
decompressing

:::::
them.

Next, measurements where
::::
From

:::
all

::::::
points

::::::::
obtained

:::::
with

:::
the

:::::::::
procedure

:::::::::
described

::::::
above,

:::::
those

:::
for

::::::
which

:
the time dif-

ference is less than 15 min are selected. Even though many
of those CloudSat

::::
CPR measurements are outside the MHS

pixel, all are stored in the collocated dataset, because the
MHS pixel size is a function of the scan angle, and some ap-
plications may allow for the CloudSat

::::
CPR pixel to be (just)

outside the MHS measurement. Also, it is cheap to select a
subset of collocations, but to find pixels slightly further away
than the initial criterion, the algorithm would need to be re-
run.

For each collocation , we store information for
:::
and

::::
for

::::
each

::::::
sensor

::
(CPR, MHS, HIRS and AMSU-A(for possible

future usage). For each sensor
:
), we store the location

(lat/lon), the measurement time, the time for
::
of the first mea-

surement in the file (to help find
::::::
finding

:
the file containing

the measurement) and the location of the point inside the
datafile (row/column). We also store the distance of each
centerpoint to the CPR centerpoint, and the time interval

:::::::::
difference (MHS time minus CPR time). With this informa-
tion, one can find exactly which of the CPR pixels fall inside
the MHS pixels, possibly considering the sensor

::::::
spatial re-

sponse function.
For the second dataset, we collect the CPR pixels in an

MHS pixel and calculate the number of CPR measurements,
the average, the standard deviation and the coefficient of
variation

:::::::::
(standard

::::::::
deviation

::::::::
divided

:::
by

::::::
mean)

:::
of

:::
the

:::::
IWP

:::::::
product. Here, we choose a circular MHS pixel area with a
radius of 7.5 km, so we are certain that the CPR pixels are
contained by the MHS pixel independent

::::::::::::
independently

:
of

the scan angle. We also note the cloud fraction, defined as
the number of CPR pixels with at least 1 g m−2

::
of

:::
ice divided

by the total number of CPR pixels inside the MHS measure-
ment.

3.1.1 Comparison with Nagle and Holz (2009)

The method described above is quite different from the
method described by Nagle and Holz (2009), henceforth re-
ferred to as “NH”.

NH divide the two instruments to be collocated in
:::
into

:
a

master and a slave, where the small slave observations are
projected on the large master footprint. They find the loca-
tion of the satellites as a function of time (forward naviga-
tion) and “estimate the time at which a slave satellite passes
abeam of a master FOV on the surface” (inverse navigation).
They then calculate simultaneous nadir observations (SNO),
when two satellites pass over any point on the ground within
a certain time window. For this calculation, NH use an orbital
prediction model. They search the rows

::::
scan

::::
lines

:
around the

SNO for overlap with the master FOV. NH assign weights to
each of the slave observations based on the sensor

::::::
spatial re-

sponse function of the master.
NH claim that their method works for any combination of

satellite, aircraft and ground observations. However, a scan-
ning instrument might very well collocate with a ground ob-
servation without any SNO if the measurement is strongly
off-nadir. For (near)-parallel orbits, this can be the case be-
tween different satellites as well. In fact, at one point NH
“presuppose that the two orbital planes are not nearly coinci-
dent”.

NH use the satellite position to calculate the projected sen-
sor

::::::
spatial response function on the Earth surface. We use an

expression from Bennartz (2000) to calculate the size of the
pixel, and we do not presently consider the sensor

::::::
spatial re-

sponse function.
NH was designed to be computationally efficient and may

very well be faster than our method. However, our method is
conceptually simpler than NH. Our method does not require
any forward or inverse navigation. It finds collocations re-
gardless of the presence of simultanuous nadir observations.

:::
For

:::::
some

::::::::::::
applications,

::::
only

::::::::::::
simultanuous

:::::
nadir

::::::::::::
observations

:::
are

::
of

::::::::
interest;

::
in

::::
this

:::::
case,

::::
NH

:::
and

::::
our

:::::::
method

:::::::
should

::::
give

:::
the

:::::
same

::::::
result.

The processing of slightly more than two years of data
from CloudSat and five AMSU/MHS sensors with our meth-
ods took around two weeks of computer time on a power-
ful workstation

:::::
(Intel

:::::
Xeon

:::::
Dual

::::::::::
Quadcore

::::
3.20

:::::::::
Gigahertz,

::
16

::::::::
Gigabyte

::::::::
Random

::::::
Access

::::::::
Memory

::::::::
(RAM)). Most of this

time was due to transferring files over the network and de-
compressing them. We did not carry out a comparison of
speed and results using a common set of source data.

3.2 Collocation statistics

We have located collocations for the period between 15
June 2006 13:12 and 4 October 2008 10:34. For the
year 2007, we have found 124 822 977 collocations be-
tween the NOAA-18 MHS and the CloudSat CPR, where the
distance was permitted to be up

:::::::::
maximum

::::::::
distance

::::::::
between

:::::
MHS

::::
and

::::
CPR

:::::::
centre

::::::
points

:::
did

::::
not

::::::
exceed

:::
15

:::
km

:::
and

::::
the

::::
time

:::::::::
difference

::::::::
between

::::::
MHS

::::
and

:::::
CPR

:::::::::::::
measurements

::::
was

::::::
limited

:
to 15 km

:::::::
minutes. With a maximum distance of

7.5 km and counting the MHS pixels, the number of collo-
cations reduces to 2 669 135. If only tropical nadir points are
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selected (within 30 degrees of the equator, within 1 degree of
nadir), around 1% or 26 410 MHS pixels remain.

Figure 3 shows the latitudes at which collocations occur
between the CloudSat CPR and the MHS/AMSU-B on dif-
ferent satellites. It shows that only the NOAA-18 MHS has
collocations with the CPR globally. This is due to the fact
that the Local Time Ascending Node (LTAN )

:::::
LTAN

:
of the

NOAA-18 (13:39) is always similar to the CloudSat LTAN
(13:30–13:45). NOAA-18 is near the A-Train constellation
and near CloudSat

:::
thus

:::::
near

:::::::::
CloudSat,

::::::::
because

:::::::::
CloudSat

::
is

:::
part

:::
of

:::
the

::::::::
A-Train. All other POES

::::::::::
considered

::
in

::::
this

:::::
study

have collocations with CloudSat CPR only near the poles.
Figure 4 shows at which angles and latitudes the colloca-

tions occur. At the equator, no nadir collocations with a time
interval

:::::::::
difference

:
of less than one minute occur. Rather,

the viewing angle is sligthly off-nadir. If two satellites pass
through the same place in space2 with one minute in between,
the Earth rotates so their subsattelite points are roughtly

::::::::::
subsatellite

::::::
points

:::
are

::::::::
roughly 1 m/24 h·40 075 km≈27.8 km

apart. For a NOAA-18 altitude of 850 km, the viewing an-
gle then needs to be tan−1(27.8/850) = 1.9◦. In reality,
the satellites do not pass through the exact same point, and
the viewing angles for collocations within one minute are
slightly larger. The CloudSat has a slightly lower inclina-
tion than NOAA-18, so for a collocation to occur, NOAA-18
has to look to the left when it reaches its northernmost point
and to the right when it reaches its southernmost point.

CloudSat and NOAA-18 are in some sort of “orbital res-
onance”, as shown in Fig. 5, showing the collocations in
January 2007. Figure 5 shows a time series of the number
of collocations per hour, where the upper left is 1 January,
00:00–00:59 and the lower right is 31 January, 23:00–23:59
(inclusive). The figure shows a collocation pattern with a
56-h period: 16 h with collocations, 40 h without.

3.3 Sampling effects

As shown in Fig. 1, an MHS footprint is an order of mag-
nitude larger than a CPR footprint. The smallest MHS pixel
is the nadir-viewing pixel, which has a diameter of 16 km.
The CPR pixel can be approximated by an ellipse of 1.3 by
1.7 km2. It covers at most 0.65% of the area an MHS pixel:

ACPR

AMHS
=
π 1.3

2
1.7
2

π
(

16
2

)2 = 0.0065 =0.65%

Many CPR measurements fit in one MHS measurement.
Since the CPR is not a scanning instrument, CPR pixels
never fill an MHS pixel completely. In the best case, a
nadir MHS pixel contains around 15 CPR pixels

:::
(or

:::::
only

::
13

::::::
when

::::
we

:::::
limit

:::
the

::::::::::::
collocations

:::
to

:::::
CPR

::::::
pixels

:::::::
within

:::
7.5

:::
km

::
of

::::
the

:::::
MHS

:::::::::::
centrepoint). The total area is less than

2The same place in space in an Earth-centered inertial reference
system.

15 ·0.65% = 9.75% because of the overlap between subse-
quent CPR pixels. Usually.

:
, the CloudSat ground track does

not pass through the centre of the MHS pixel, and the situa-
tion is worse. Hence, sampling effects need to be taken into
consideration.

A collocation is considered representative, or good, if the
CPR

::::
IWP

::::::::
statistics

:::
for

:::
the

::::
area

:::::::
covered

:::
by

:::::
CPR

:::
are

:::
the

:::::
same

::
as

:::
the

::::::::
statistics

:::
of

:
a
:::::::::::
hypothetical

:::::
CPR

:::::
IWP

::::::::
covering

:::
the

::::
full

:::::
MHS

:::::
pixel.

:

::::
CPR

:
pixels inside the MHS pixel have the same statis-

tics as they would if they would fill the entire MHS pixel.
In other words, the sample mean and the sample standard
deviation should be the same as the population mean and
the population standard deviation. Whether the collocation
is representative cannot be known exactly, because high-
resolution information on the part of the MHS pixel not cov-
ered by CPR pixels is not available in this approach. How-
ever, we can look at some indicators to make an educated
guess as to how well the CPR pixels represent the MHS pixel.

Figure 6 shows three graphs that give some insight in the
sampling error. The MHS pixel is assumed to be circular
with a radius of 7.5 km.

In Fig. 6a we can see that most collocations contain a rel-
atively large number of CPR pixels, but many do not. When
the number of CPR pixels inside the collocation is small, the
CPR pixels are close to the MHS footprint edge and poorly
represent the MHS pixel. The highest number of CPR pixels
inside a MHS pixel occurs when the CPR groundtrack passes
through

:::::
close

::
to

:
the centre of the MHS footprint. This is the

optimal case.
Figure 6b shows a histogram of the coefficient of variation

::
of

:::
the

:::::
CPR

::::
IWP

:::::::
product

:::
for

::::
the

::::
CPR

::::::
pixels

::::::
within

:::
7.5

::
km

:::
of

:::
the

:::::
MHS

:::::::::::
centrepoint. A small coefficient of variation cor-

responds to a homogeneous cloud. The more homogeneous
the cloud, the more representative the CPR pixels are for the
complete MHS footprint area. We use the coefficient of vari-
ation rather than the standard deviation because the standard
deviation is likely to be much larger for clouds with a high
IWP than for clouds with a low IWP. Selecting collocations
based on the standard deviation would throw away many of
the measurements with high IWP. The coefficient of varia-
tion is largest when some CPR pixels measure a strong cloud
and others do not measure any cloud at all. This indicates
the presence of a strong, localised cloud, which significantly
reduces our trust in the representativeness of the CPR pixels.

In Fig. 6c, the distribution of CPR inside MHS is shown
for three cases. The red bars

:::
dots

:
show a case with an ex-

tremely high coefficient of variation (2.106; note in panel (b)
that a coefficient of variation larger than 2 is so rare that it
is not visible in the histogram). Since a strong

::::
thick

:
cloud

that is only 1 km in diameter is unlikely, this happens usually
when the cloud is just on the edge of the MHS pixel. In either
case, the CPR pixels do probably not share the same statistics
as the MHS footprint and the collocation is not useful. The
green bars

::::
dots show a case with a very low coefficient of
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variation (0.017; cases where all CPR pixels have the same
nonzero measurement and the coefficient of variation is 0 oc-
cur as well, but the IWP value tends to be 1 g m−2 so it would
not be visible in this graph). The portion of the cloud imaged
by CPR has a roughly constant IWP of around 70 g m−2. It
is quite likely that the rest of the MHS pixel looks similar.
The example in blue shows a collocation with a coefficient
of variation of 0.354.

:::::
When

::::
the

:::::::
criteria

:::::::::
discussed

::::::
above

:::
are

::::::::
applied,

:::::::::
sampling

::::::
effects

::::
are

::::::::
reduced

::::
and

::
a
::::::

large
::::::::

number
:::

of
::::::::::::

collocations

:::::::
remain.

4 Applications

Collocations can be used in many different ways. This sec-
tion presents some possible applications of collocations be-
tween CloudSat CPR and NOAA-18 MHS. Three examples
are explored in the following subsections. This section is
meant to show what can be done with such a collocated data
set and does not provide a comprehensive study of the differ-
ent applications.

4.1 Comparison with NESDIS IWP

Various algorithms exist to determine IWP from microwave
radiometer measurements (Liu and Curry, 2000; Zhao and
Weng, 2002; Weng et al., 2003). The National Environ-
ment Satellite, Data and Information Service (NESDIS) pub-
lishes an operational IWP product from MHS measurements
in the Microwave Surface and Precipitation Products System
(MSPPS). Zhao and Weng (2002) assume spherical ice par-
ticles and calculate the effective particle diameter from the
ratio between the scattering at 89 GHz and 150 GHz. They
assume a constant bulk volume density and calculate the IWP
from this. They also discuss how errors propagate in the re-
trieval algorithm, but no discussion of systematic error and
no validation for the NESDIS MSPPS IWP was found in this
paper, nor elsewhere in the literature. Waliser et al. (2009)
find a dry bias in the NESDIS IWP product. They explain
this from the Zhao and Weng (2002) screening criteria and
the MHS insensitivity for ice particles smaller than 0.4 mm.

CloudSat IWP has a systematic uncertainty of up to 40%
(Austin et al., 2009). Judging from the available data, the
treshold

::::::::
detection

::::
limit

:
for CloudSat IWP is 1 g m−2.

Figure 7 shows a comparison of the NESDIS MSPPS IWP
with the CloudSat IWP. It shows that the NESDIS IWP is
systematically smaller than the CPR IWP. For many nonzero
CloudSat measurements, the NESDIS IWP is zero. This is
because thin clouds are (almost) transparent for microwave
radiation in the freqencies

::::::::::
frequencies

:
at which MHS oper-

ates (Greenwald and Christopher, 2002). For some NESDIS
IWP measurements, the CloudSat IWP is zero. This happens
due to the different footprint sizes. The MHS footprint is
much larger than the CPR footprint. A cloud that does not

cover a complete MHS pixel may be missed by the CPR
::::
(see

::::
Sect.

::::
3.3).

MSPPS IWP is systematically lower than CPR IWP by ap-
proximately 70–90%. Austin et al. (2009) estimate the CPR
accuracy to 40%, based on a retrieval blind comparison study
by Heymsfield et al. (2008), which was based on simulated
radar observations for aircraft ice particle data

::::
from

:::::::
aircraft

::::::
in-situ

:::::::::::::
measurements. While the profiles considered in that

study may not be representative for all atmospheric cases, we
can still consider the CPR data to be considerably better val-
idated than the MSPPS data. It is therefore likely that the
difference reflects a real low bias in the MSPPS data. This
is partly a fundamental problem, because of the transparency
of thin clouds to radiation at MHS frequencies. However,
MSPPS underestimates the IWP for thick clouds as well. A
more accurate IWP product based on microwave measure-
ments is probably possible. One way to obtain such a product
is by using a neural network, described later in the article.

4.2 Comparison of BT-IWP relations

As a second application example, we investigate the rela-
tion between the MHS channel 5 brightness temperature and
the associated Ice Water Path for two different datasets. The
first dataset consists of the collocations,

:::::::::
providing

::
a

::::::::
mapping

:::::::
between

::::::::::
brightness

::::::::::::
temperatures

:::
and

::::::::::::
independent

::::
IWP. The

second dataset consists of a mapping generated from
::::::
30,000

synthetic atmospheres as described below. Note that this
mapping is not from

:::::::
predates

:
the collocated measurements.

Rydberg et al. (2009) use this method to derive IWC from
the Sub-Millimetre Radiometer (SMR) on the Odin satellite.
It can potentially be used to derive IWP from MHS.

Atmospheric states, including clouds, are generated fol-
lowing the procedure described by Rydberg et al. (2009),
and a brief overview is given here. Cloud states are gener-
ated in a series of steps, where two-dimensional (2-D) radar
reflectivity fields from the Cloud Profiling Radar onboard

::::::::
on-board

:
CloudSat serve as the basis for obtaining realistic

cloud structures. Orbit sections of CloudSat data (with a res-
olution of ∼ 250 m in vertical by 2 km along the scan line) are
transformed to 3-D by inputting those into a stochastic iter-
ative amplitude adjusted Fourier transform algorithm (Ven-
ema et al., 2006). This algorithm generates surrogate 3-D
radar measurement fields with the same spatial resolution as
the original fields.

Cloud microphysical fields are generated in such a way
that the surrogate 3-D radar reflectivity fields are conserved.
This is done by assuming that spherical ice particles can
be used to represent the single scattering properties of nat-
ural occuring ice particle populations.

:::
We

::::
lack

:::::::::::
information

:::::
about

:::
the

::::
true

::::::
shape

:::
of

:::
the

:::
ice

:::::::::
particles,

::::::
which

:::
is

::::::::
different

:::
for

::::::::
different

:::::
cloud

::::::
types,

::::
and

::::
the

:::::
most

:::::::
generic

:::::::::::
assumption

:
is

:::
to

:::::::
assume

::::::::
spheres.

:::::
This

::
is

::::
also

::::
the

::::::::::
assumption

::::::
made

:::
by

Austin et al. (2009)
:::
for

:::
the

:::::::::
CloudSat

::::
CPR

:::::
IWP

::::::::
retrieval.

::::
The

::::::::
accuracy

::
of

::::
this

:::::::::::::
approximation

::
is

::::::::
difficult

::
to

::::::
assess,

::::::::
because
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:::
the

::::
true

:::::::::::::
microphysical

:::::::::::
parameters

:::
are

::::::::::
unknown.

::
Further-

more, the cloud ice particle size distribution (PSD) param-
eterisation derived by McFarquhar and Heymsfield (1997)
(hereafter MH97) is assumed to be the best representation
of the tropical mean PSD. MH97 depends on temperature
and ice water content (IWC), and is used to map radar reflec-
tivity fields to IWC and PSD fields. However, it should be
clear that local PSD may deviate significantly from MH97.
For temperatures above 273 K, clouds are assumed to consist
entirely of spherical water particles and the PSD of stratus
cloud derived by Deirmendjian (1963) is used.

Weather data (temperature, humidity, and pressure) and
ozone information, originating from ECMWF

:::
the

:::::::::
European

::::::
Centre

:::
for

:::::::::::::::
Medium-Range

::::::::
Weather

::::::::::
Forecasts

::::::::::
(ECMWF),

are obtained from the CloudSat auxiliary data archive

:::::::::::::::
(ECMWF-AUX).

:::::::::::::::
ECMWF-AUX

::::::::
contains

::::::::::
ECMWF

:::::
state

:::::::
variable

:::::
data

:::::::::::
interpolated

:::
to

:::::
each

:::::
CPR

:::
bin. These fields

are handled as described by Rydberg et al. (2009) in order
to have a realistic variability that accounts for variations on
scales not resolved by ECMWF.

Radiative transfer simulations of nadir viewing AMSU-B
channel 20

:::::::::::::
(corresponding

::
to

::::::
MHS

:::::::
channel

::
5)

:
are performed

using version 1.1 of the Atmospheric Radiative Transfer Sim-
ulator (ARTS). This is a development of the first version,
ARTS-1 (Buehler et al., 2005), where two scattering mod-
ules, a discrete ordinate iterative method (Emde et al., 2004)
and a reverse Monte Carlo algorithm (Davis et al., 2005)
have been implemented to solve the polarised radiative trans-
fer equation. The Monte Carlo module is used and the 3-
D variability of the atmosphere is fully considered in the
radiance simulations. The lower and upper sidebands of
AMSU-B channel 20 are represented by single frequencies
of 176.01 and 189.91 GHz, respectively.

:::
For

::
a

:::::::
diverse

:::
set

::
of

:::::::::::
atmospheric

::::::::
profiles,

:::
the

::::
root

::::::
mean

::::::
square

:::::
error

::::::::
between

:::
this

::::::::::::::
approximation

::::
and

:
a
::::::

setup
::::
with

::
a
:::::
finer

:::::::::
frequency

:::::
grid

:
is

::::::
0.020

::
K.

:
The instrument antenna

::::::
spatial

:
response func-

tion is assumed to be a 2-D Gaussian with a full-width half-
power beamwidth of 1◦ in both dimensions. Pencil beam
simulations with a grid spacing matching the atmospheric
states horizontal resolution are performed. After the an-
tenna weighting the precision of the simulations is better
than 0.5 K. The IWP is extracted along each pencil beam
where radiative transfer simulations are performedand

:
.

::::
The

:::::::::::
atmospheric

::::::::
scenario

::::
has

::
a

:::::::
higher

::::::
spatial

::::::::::
resolution

:::::
than

:::::::::
AMSU-B,

:::
so

:::
the

:::::::::
simulated

:::::
IWP

:::
are

:
weighted according to

the antenna pattern
::
to

::::::
obtain

:::
the

:::::::::
AMSU-B

:::::
IWP.

Figure 8 shows a comparison between the two relations.
We average the CPR IWP over the MHS pixel, and select a
subset of collocations. For the collocations, only measure-
ments that are within 20 degrees of the equator are used, in
order to prevent a signal from the surface (Buehler and John,
2005). Only collocations where the MHS measurement is
within 5 degrees of nadir are used, so that no significant
limb effect occurs. Finally, collocations are selected where
all CPR pixels are cloudy and the coefficient of variation is

smaller than one, for reasons discussed in Sect. 3.3 above.
The figure shows AMSU-B channel 20 or MHS channel 5

brightness temperature as a function of the IWP (logarithmic)
for the two different datasets. In blue are the collocated mea-
surements (MHS channel 5 and CPR IWP). The red boxes
show simulated radiances for generated atmospheric states
(AMSU-B channel 20 and generated IWP).

The figure shows that both datasets have largely the same
statistical features. For IWP up to around 100 g m−2, the ef-
fect on the brightness temperature is minimal, because thin
clouds are not resolved at MHS channels 3–5 frequencies
(Greenwald and Christopher, 2002). For higher values of
IWP, the brightness temperature decreases logarithmically
as a function of IWP. For IWP >100 g m−2, the simulated
brightness temperatures are slightly higher than the observed
ones.

The microphysical assumptions for the generated atmo-
spheric states are based on MH97, which differ from the as-
sumptions in the CloudSat retrieval.

::::
This

:::::
might

::::::::::
contribute

::
to

:::
the

::::::::
observed

:::::::::::
differences.

Overall, the variability in the simulated brightness temper-
atures is smaller than the variability in the observed bright-
ness temperature

:::::::::::
temperatures. This effect is stronger for

higher values of the IWP. Several factors may contribute to
this discrepancy. The CPR pixels are much smaller than the
MHS pixels, so the measured value is averaged over a smaller
area. If a small, concentrated cloud exists inside a MHS
pixel, the CPR might either see it, in which case it measures
a higher IWP than the MHS, or it might miss it, so it mea-
sures a lower IWP. This adds to the variability. Additionally,
the generated atmospheric states might not fully resolve the
natural variabily of cloud microphysical parameters and of
atmospheric temperature and humidity.

4.3 Developing a retrieval using neural nets

An artificial neural network (ANN) is an interconnected
assembly of processing units called neurons (e.g. Jimenez
et al., 2003). Neural nets are widely used to statistically char-
acterise the mapping between radiometric measurements and
related geophysical variables (e.g. Krasnopolsky, 2007). We
use an ANN to characterise the mapping between MHS ra-
diances and the CPR IWP, and then use the trained ANN to
retrieve IWP from the MHS measurements. We call this re-
trieval MHS-CPR IWP.

MHS-CPR IWP has both advantages and disadvantages
compared to other retrieval approaches. One can use a neu-
ral network with simulated rather than measured radiances,
or one can use a more classical retrieval method. As we
use the collocated measurements, an advantage is the rela-
tive simplicity; there is no need for a potentially complicated
radiative transfer model with many possible sources of error.
On the other hand, the collocations approach may introduce
a number of errors, as discussed in Sect. 4.3.1. However, an
MHS-CPR IWP can complement the other existing retrieval
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methods. The retrieval quality can never become as good as
CloudSat, but the spatial and temporal coverage will be much
larger.

The neural network approach described below is in the ex-
ploration phase and will be developed further.

We select a subset of collocations that provide a relatively
homogeneous dataset. The subset is restricted to the

:::::
pixels

::::
over ocean within 20 degrees of the equator, because a warm
(and humid) atmosphere prevents the MHS from getting a
signal from the surface (Buehler and John, 2005). Due to
these restrictions, the neural network is only applicable to
the tropics.

A strongly off-nadir measurement is colder due to the limb
effect (Buehler et al., 2004). For the training, we restrict
ourselves to measurements within 5 degrees of nadir. This
avoids the need to compensate for this effect (described be-
low). The neural network works for nadir measurements or
measurements where the limb effect is compensated.

As discussed in Sect. 3.3, the MHS measurement is
averaged over

::::::::::::
compromises a larger area than the CloudSat

measurement, even when we average the CPR pixels inside
an MHS pixel. If a small, strong event is present inside an
MHS pixel, the CloudSat might miss it completely or mea-
sure exactly this event. In both cases, the observed

:::::
MHS ra-

diance is the same, but the CPR IWP can vary considerably.
For that reason, we select only homogeneous measurements:
the collocation shall contain at least ten CPR pixels, all mea-
suring at least 1 g m−2, and the standard deviation shall not
exceed the mean value. The selection of only “cloudy pix-
els” for the training leads to a wet bias, because the neural
network tends to the mean state if it has insufficient informa-
tion from the input.

We want to explore the effect of adding HIRS channels on
the neural network retrieval. Hence, we choose collocations
where at least five CPR pixels are inside a

:::::
within

:::
10

:::
km

:::
of

:::
the

::::::
nearest

:
HIRS pixel.

Finally, only collocations where the time interval is at most
ten minutes are selected.

For the year 2007, we find 2627 collocations that meet the
criteria described above.

For the neural network calculations, we use the MATLAB
Neural Network toolbox V6.0.1 (R2008b). The collocations
are divided in 60% training, 15% testing and 25% validation.
MHS channels 3, 4 and 5 are the inputs. As a target, we
choose the log IWP which was found to work better than the
ordinary IWP. The transformation is reversed after the appli-
cation of the neural network. Throughout the process, CPR
IWP is assumed to be the truth. The training is considered to
be finished if the error with the testing data increases for fif-
teen consecutive iterations. After training, we store a neural
network that we can then use for our retrieval.

To compensate for the limb effect, we correct the bright-
ness temperatures before we input them to the network.
For each viewing angle and channel, the mean brightness
temperature is calculated. We use only tropical measure-

ments (within 30 degrees of the equator) to prevent an angle-
dependent signal from Antarctica, which is mainly seen by
one side of the scan. The limb effect is minimal for the two
viewing angles closest to nadir, corresponding to columns 45
and 46 in the MHS data. The average brightness temperature
for those columns

:::::
angles

:
is the reference. The limb effect can

be quantified by the difference between the reference bright-
ness temperature and the mean brightness temperature for a
certain viewing angle. We compensate for the limb effect by
adding this difference to all measurements for this viewing
angle.

In Fig. 9 we show an example of how a NN IWP product
might look like. The data is for 1 January 2008. The left pan-
els show the MHS brightness temperatures between 08:56
and 19:02 UTC, the right panel shows the IWP retrieved by
the neural network.

4.3.1 Error analysis

Four sources of error can be identified: (a) The CPR IWP un-
certainty is up to 40% (Austin et al., 2009). This propagates
directly into the MHS-CPR IWP. (b) Collocation mismatches
add noise to the training data, as discussed in Sect. 3.3. This
may or may not result in an error in the MHS-CPR IWP
(noise in the input data need not change the best fit). (c) The
inversion from MHS data inherently has a limited accuracy,
leading to a significant uncertainty in the MHS-CPR IWP.
(d) The MHS has a radiometric noise of up to 0.55 K and
might suffer from calibration errors.

Figure 10 shows a scatter plot between CPR IWP and col-
located MHS-CPR IWP. Both axes are logarithmic. (a) and
(d) do not contribute to the variability seen here.

::::::::::
MHS-CPR

::::
IWP

::::::
could

::::
still

:::::::::
perfectly

:::::::::
reproduce

:::::::::::
MHS-CPR

:::::
IWP

:::::
even

::::::::::
considering

::::
the

:::::
MHS

:::::::::::
radiometric

::::::
noise,

::::::::
because

:::
this

::::::
noise

:
is

::::
part

:::
of

:::
the

:::::::
training

:::::
data.

::
If

::
it

:::::
would

:::
do

:::
so,

:::::
CPR

::::
IWP

::::::
might

:::
still

:::
be

:::
off

:::
by

::
40%

::::::::
compared

:::::
with

:::
the

::::
true

:::::::::::
atmospheric

:::::
IWP,

:::
but

::::
Fig.

::
10

::::::
would

::::
not

:::::
show

::::::::::
variability.

The variability is consistent with simulations similar to the
ones described in (Jiménez et al., 2007). Since those simu-
lations did not use collocations, the dominant source of the
variability in Fig. 10 is likely to be the inversion error (c).

For low IWP, the network exhibits a wet bias. Thin
clouds are (almost) completely transparent at MHS frequen-
cies (Buehler et al., 2007), so with only those measurements,
there is no information for thin clouds. With no information,
the neural network tends towards the mean state. Since only
cloudy CPR pixels were used for the training, this explains
the wet bias.

Figure 11 shows the neural network sensitivity to MHS
radiometric noise. A subset of tropical nadir measurements
for 2007 are selected. For practical reasons, this subset con-
sists of the MHS measurements for all collocations

::::::
where

:::::::::::
collocations

:::::
could

:::
be

::::::
found; however, as the CloudSat val-

ues are not used for this figure, those measurements are ef-
fectively a sample of all MHS measurements for 2007. The
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figure shows the mean fractional IWP error as a function of
IWP and input noise. For this figure, the neural network
is applied twice. First, the unperturbed input data (MHS
brightness temperatures for channels 3, 4 and 5) are fed into
the network

::::
ANN. This gives an unperturbed IWP for each

measurement. Then, we add gaussian noise, starting with
σ=0.1 K, to the input data, and feed this perturbed data to
the neural network

:::::
ANN. This results in a perturbed IWP de-

noted by ĨWP. For each collocation, the fractional error is

calculated as
∣∣∣∣ gIWP
IWP−1

∣∣∣∣. Those fractional errors are divided

into bins according to the unperturbed IWP value. For each
bin, we calculate the mean fractional error. This process is
repeated for higher values of σ, up to σ=2.0 K

:
,
::::::
taking

:::::
steps

::
of

::::::
σ=0.1

::
K.

Unsurprisingly, Fig. 11 shows that a higher input noise
results in a higher error in the output. This effect is lin-
ear. The mean fractional error as function of IWP is less
straightforward. The error is largest for IWP values of around
100 g m−2 and smaller for values that are either larger or
smaller. This can be explained as follows. For small IWP,
a small perturbation in the brightness temperatures has little
influence on the IWP. The network

:::::
ANN does not interpret

the brightness temperature noise as IWP. This is in line with
the observation that thin clouds are transparent to the fre-
quencies at which MHS operates (Greenwald and Christo-
pher, 2002), and can also be seen in Fig. 8. For large IWP,
MHS channels 3–5 will observe large depressions in bright-
ness temperature, and a 2 K noise is much smaller than the
signal, so its effect on the output is also small. However, for
intermediate values of IWP, around 100 g m−2, the noise is of
a similar order of magnitude as the signal, and the network

:::::
ANN is quite sensitive to input noise. The actual radiometric
noise for MHS depends on the channel, but is always below
0.55 K (Kleespies and Watts, 2007). This means that radio-
metric noise is unlikely to be a dominant error source for this
kind of IWP retrieval method.

4.3.2 Adding HIRS

Thin clouds are not visible by MHS channels 3–5 because
the effect of ice clouds on microwave radiation at those fre-
quencies is relatively small. In the infrared, the situation
is different: even a small cloud has an observable effect,
but an infrared sensor does not see the difference between
a medium cloud and a thick cloud, because the sensor is sat-
urated quickly (Jiménez et al., 2007). Hence, we can expect
the retrieval quality to improve if we combine infrared and
microwave measurements.

Figure 12 shows a scatter plot similar to Fig. 10, but with
additional HIRS channels 8 and 11 (chosen for their clear
cloud signal).

::::
The

:::::::
number

::
of

:::::::::::
collocations

:::::
used

:::
for

:::
the

::::::
neural

:::
net

:::::::
remains

::::
the

::::::
same,

::::::::
because

:::
we

::::::::
already

::::::::::
preselected

::::
the

:::::::::::
collocations

::
so

:::::
that

::
at

:::::
least

::::
five

:::::
CPR

::::::
pixels

::::
are

::::
less

:::::
than

::
10

::
km

:::::
from

:::
the

:::::::
nearest

::::::
HIRS

::::
pixel

:::::::::::
centerpoint.

:

By eye, it is hard to see whether there is any improvement
gained by adding them.

Figure 13 shows the fractional median error as a function
of IWP for both cases. Here, the fractional median error
is defined relative to CloudSat, so CloudSat is assumed to
be true. The dashed line shows the error for the network

:::::
ANN

:
where the input consists only of MHS channels, the

dotted line shows the error for the network
:::::
ANN with an in-

put consisting of MHS channels 3–5 and HIRS channels 8
and 11. For small values of IWP there is an improvement
when adding the HIRS channels. However, the error is still
large, since a median relative error of 2 means that the re-
trieved IWP is on average a factor 2 off. For larger values of
IWP, the errors are roughly the same

:
,
:::

as
::::::::
expected.

Why the retrieval does not strongly improve when adding
HIRS is not yet fully understood. One factor may be the
difference in footprint location for HIRS and MHS, even if
only collocations with at least 5 CPR pixels in the HIRS pixel
are considered. Additionally, HIRS might suffer from the
beam-filling problem: the sensor may be saturated if only a
part of the pixel is cloud-covered, and be unable to tell the
difference between a partly cloudy and a fully cloudy pixel.
A further investigation is necessary and will be carried out.

5 Conclusions

The collocation-finding method described in this work finds
many collocations between the NOAA-18 MHS and the
CloudSat CPR. Those collocations are frequent and globally
distributed. Other POES collocations with CloudSat are lim-
ited to the polar areas. Sampling effects due to different foot-
print sizes need to be taken into consideration.

:::::
There

:::::
are

::::::::::
numerous

:::::::::
possible

::::::::::::::
improvements

:::
to

:::::
our

:::::::::
procedure.

::::::
The

::::::::::
procedure

:::
to

:::::
find

::::
the

::::::::::::
collocations

::::
can

::
be

:::::::
refined

::::
by

:::::::::::
considering

:::::
how

::::
the

::::::
MHS

:::::::::
footprint

:::::
size

:::::::
depends

:::
on

:::
the

:::::
scan

::::::
angle.

:::::
Even

::::::
better,

::::
one

::::
can

::::::
project

::::
the

:::::
MHS

::::::
sensor

::::::
spatial

:::::::::
response

::::::::
function

::::
onto

::::
the

:::::::
surface

::::
and

::::::::
calculate

:
a
:::::::::

weighted
::::::::
average

::
of

::::
the

:::::::::
collocated

:::::
CPR

:::::::
pixels,

::::::
similar

::
to

:::
the

::::::::::
procedure

::::::::
described

:::
by Nagle and Holz (2009)

:
.

::
In

:::::::::::
comparison

::::
with

:
Nagle and Holz (2009),

::::
our

:::::::::
algorithm

:
is

:::::::::
relatively

:::::::
simple.

:::::
For

::::::::
example,

::
it

:::::
does

:::
not

:::::
need

::::::::
satellite

:::::::
position

:::::
data.

:::
It

:::::
finds

:::::::::::
collocations

:::::
even

:::
in

:::
the

::::::::
absence

:::
of

::::::::::::
simultaneous

:::::
nadir

::::::::::::
observations.

::::
Our

::::::::
method

:::::
was

:::::::::
designed

::::
for

::::
the

:::::
case

:::::::
where

:::::
one

:::::::::
instrument

:::
is

:::::::::
scanning

::::
and

:::
the

::::::
other

::::
has

::
a

:::::
fixed

::::::::
viewing

:::::
angle.

:::
It

::::
also

::::::
works

::
if

::::
both

:::::::::::
instruments

:::
are

:::::::::
scanning,

:::
but

:::
in

:::
this

:::::
case,

::
it

::
is

::::
slow

::::
and

:
a
::::::::
different

:::::::
method

::
is

:::::
more

::::::::
suitable.

::
If

:::::
either

:::::::
satellite

::
is

::::::::::::
geostationary

:::
or

::::
both

:::::::::::
instruments

:::
are

:::
on

:::
the

::::
same

:::::::::
satellite,

:::::
more

:::::::::
optimised

::::::::
methods

:::::
may

::
be

:::::::::::
appropiate.

:::
The

::::::::
method

:::::
does

::::
not

:::::::
depend

:::
on

::::
the

::::::
nature

:::
of

:::
the

:::::::
sensor

::::::
(active,

::::::::
passive)

::
or

::::
the

::::::::
footprint

::::
size.

:

The collocations have various applications. They can be
used to compare different IWP products. As an example,
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we have compared the NOAA NESDIS MSPPS MHS IWP
product against the CloudSat CPR IWP product. IWP val-
ues from the CloudSat CPR were found to be significantly
larger than those from the MSPPS. This

::::
may

:
be partly at-

tributed because thin clouds are transparent to radiation at
MHS frequenices

::::::::::
frequencies, but since the MSPPS underes-

timates IWP even for high values, there should be room for
improvement.

As a second example, we have compared the IWP-BT rela-
tion for our collocations with the one for simulated radiances
from synthetic atmospheric cases. The variability in the mea-
sured relation was found to be larger than the variability for
the simulated relation.

::::
The

:::::::::
validation

::::
for

::::::::::
simulated

:::::::::
radiances

:::::
was

::::::::::
performed

::::::::::
statistically.

:::
A

::::::::
stronger

:::::::::
validation

::::::
would

:::
be

::
to

::::::::
simulate

::::
the

::::::::
radiances

:::
for

::::
the

:::::
exact

:::::
cases

::::::
where

:
a
::::::::::
collocation

::::::
exists.

:

As a final example, we have used the collocations to train
an Artificial Neural Network to develop a new IWP product.
We have shown that this method is promising. Finally, we
have investigated the effect of adding HIRS channels 8 and
11 to such a neural network

::
an

:::::
ANN. Unexpectedly, this leads

to only a small improvement in the retrieval quality.
There are numerous possible improvements to our

procedure. The procedure to find the collocations can be
refined by considering how the MHSfootprint size depends
on the scan angle. Even better, one can project the MHS
sensor response function onto the surface and calculate a
weighted average of

::::
The

::::
IWP

::::::::
retrieval

::::::
using

:::
an

:::::::::
Artificial

::::::
Neural

:::::::::
Network

:::::
looks

:::::::::::
promising,

::::
but

::::::::
requires

::::::::::
additional

:::::
work.

::::::
We

::::
can

:::::::::
improve

:::
the

:::::::::
retrieval

:::
in

::::::::
various

::::::
ways.

::::
One

::::
can

::::::
make

:::
a

::::::::
stronger

::::::::::
restriction

::::
for

::::::::::::::
homogeneous

::::::
scenes

:::
by

:::::::
looking

:::
at

:::::::
MODIS

:::
or

::::::::
AVHRR

::::::
pixels

::::::
inside

::::
the

:::::
MHS,

:::::::::
although

::::
this

:::
is

:::::::
limited

:::
as

::::::::
infrared

::::::::::::::
measurements

::
do

::::
not

::::::
detect

::::
the

::::::::
vertical

::::::
extent

:::
of

::::
the

::::::
cloud.

::::::::::
Another

:::::::::
alternative

::
is

:::
to

:::::::::
combine

:::::
MHS

:::::
with

:::::
other

::::::
HIRS

:::::::::
channels

::::
than

:::::
those

::::::::
explored

:::
so

:::
far,

::
or

:::
to

:::::::
directly

:::::
input

:
a
::::::::::::
combination

::
of

::::::
MHS

::::
and

:::::::::
AVHRR

::::
for

::::
the

::::::::
training.

::::::
On

::::
the

::::::
other

:::::
hand,

:
the collocated CPR pixels, similar to the procedure

described by .
:::::
ANN

::::::
might

:::
be

::::::::
extended

:::
to

:::::
work

::::
for

:::::
more

:::::::::::::
measurements.

:::
By

:::::::
having

:::::
more

:::::
input

::::::::::
parameters

::
or

::::::::
multiple

:::::
neural

::::::::::
networks,

:::
the

:::::::
retrieval

::::::
could

:::::
work

::::::::
globally,

:

One can also improve the collocations by adding
::::::
extract

:::::::::
additional

:::::::::::
information

::::
from

:
other high-resolution data, such

as from the Moderate Resolution Imaging Spectroradiometer
(MODIS; King and Greenstone, 1999) or the Advanced Very
High-Resolution Radiometer (AVHRR; Cracknell, 1997).

::
to

:::::
better

:::::::::::
characterise

::::
the

::::::::::::
collocations.

:
Those can be used to

make a stronger estimate as to how homogeneous the scene
observed by MHS is.

All the applications can be expanded upon and many other
applications can be developed.

The validation for simulated radiances was performed
statistically. A stronger validation would be to simulate the
radiances for the exact cases where a collocation exists.

The IWP retrieval using an Artificial Neural Network
looks promising, but requires additional work. We can
improve the retrieval in various ways. One can make a
stronger restriction for homogeneous scenes by looking at
MODIS or AVHRR pixels inside the MHS. On the other
hand, the neural network might be extended to work for more
measurements. By having more input parameters or multiple
neural networks, the retrieval could work globally,

These and other issues will be adressed in further research.

::
In

:::::::::
particular,

::::::
future

:::::
work

::::
will

::::::
focus

:::
on

::::::::::
developing

::
a

::::::
global

::::
IWP

:::::::
product

:::::
from

::::::::
passive

::::::::::
microwave

::::
and

::::::::
infrared

:::::::
sensors

::::::::
available

:::
on

::::::::::
operational

:::::
polar

:::::::
orbiting

:::::::::
satellites.

:

The collocations are available for public use.
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Illustration of sensor footprints over the Kiruna region
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Fig. 1. Footprint of the MHS, HIRS/4 and CPR sensors. The
MHS footprint sizes are calculated using an expression by Ben-
nartz (2000). The HIRS footprints are approximate. Map data
©OpenStreetMap contributors, CC-BY-SA.
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::::::::
Illustration

:
of collocations between

:::::::::
collocation

::::::::
principle.

:::
For

::::
this

::::::::
example,

::::
we

::::::::
consider

::
the CloudSat CPR and the

AMSU-B or MHS sensors on various satellites in
::::::
granule

:::::::
starting

:
6 January2007. The maximum distance for a collocation is 15 km;

::::
2007

::
at

:::::
01:10

::::
UTC

::::
and the maximum time between

::::
MHS

:::::::
granule

::::::
starting

::
at

:
the collocated measurements is 15min (900

::::
same

::::
date

:
at

::::::
00:26 s)

::::
UTC. The

:::::
figure

:::::
shows

:::
the

:::::::
distance

:::::
from

::::
pixel

:
number

:::::
11166

::::
from

:::
the

::::::::
CloudSat

:::::::
granule

::
to

:::
all

:::::
MHS

:::::
pixels

::
at

::
a

:::::::
viewing

::::
angle

:
of

::::::
−0.56◦.

::::
The

::::::
crosses

:::::
show

::::::
twenty

::::::
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::::::
spaced

:::::::
samples

:::
and

:::
the

::::
thick

::::
line

:::::
shows

:::
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:::::::::::
super-interval

::
to

:::
be

:::::::
searched

:::
for collo-

cationsrefers .
:::::

Refer
:

to the number of CloudSat pixels collocating
with an AMSU-B or MHS pixel

:::
text

:::
for

::::::
further

:::::::::
explanation.
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Fig. 3.
:
A

:::::::::
histogram

:::
of

:::
the

:::::::
number

::
of

::::::::::
collocations

::::::::
between

:::
the

:::::::
CloudSat

:::::
CPR

::::
and

:::
the

:::::::::
AMSU-B

:::
or

:::::
MHS

:::::::
sensors

:::
on

:::::::
various

:::::::
satellites

::
in

::::::
January

:::::
2007.

::::
The

:::::::::
maximum

::::::
distance

:::
for

::
a

:::::::::
collocation

:
is

:::
15

:::
km;

:::
the

:::::::::
maximum

::::
time

:::::::
between

::
the

:::::::::
collocated

::::::::::::
measurements

:
is

:::
15

:::
min

::::
(900

::
s).

:::
The

:::::::
number

::
of

::::::::::
collocations

:::::
refers

::
to

:::
the

:::::::
number

::
of

::::
CPR

:::::
pixels

:::::::::
collocating

::::
with

:::
an

::::::::
AMSU-B

::
or

:::::
MHS

::::
pixel.

:
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Fig. 4. This two-dimensional histogram shows at which angles the
collocations between the NOAA-18 MHS and the CloudSat CPR
occured in January 2007. The figure shows collocations with a max-
imum time interval of 1 min.
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Fig. 6. Some collocation properties for 2007. (a) shows a histogram of the number of CPR pixels that fit inside a MHS pixel (circular with
a 7.5 km radius). (b) shows a histogram for the coefficient of variation of the all collocations that contain only cloudy pixels. (c) shows
examples of how CPR IWP may be distributed inside a MHS pixel. See text for a discussion.
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Fig. 7. Two-dimensional histogram of CloudSat
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CPR

:
Ice Water

Path (averaged over an AMSU pixel) and NOAA NESDIS MSPPS
IWP, for all collocations in the year 2007. The figure is similar
to a scatter plot, but it shows the density of points rather than the
actual points. Only measurements where either value is nonzero are
shown. The black line shows the ideal case. The colour axis

::::
scale

is logarithmic. See text for a discussion.
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Fig. 8. Modified boxplot of Ice Water Path and MHS channel 5
or AMSU-B channel 20 brightness temperature. The horizontal
bars show the median value of all the MHS channel 5 or AMSU-B
channel 20 brightness temperatures inside the

::::::::
Radiances

:::
are

::::::
binned

::
in 10log box for the CloudSat IWP

:::
bins

::::
with

::
a

:::::
width

::
of

::::
0.1

:::
log

::::
g/m2.

:::
In

::::
each

:::
bin,

:::
the

::::::
median

:::::::::
brightness

::::::::::
temperature

::
is

:::::
shown

::
as

::
a

::::::::
horizontal

:::
line. The upper and lower bars of the rectangle show the

1st and 3rd quartile (25th and 75th percentile). The lines connecting
from

:::::
From the boxes show

:::::::::
rectangles,

::::::
dashed

::::
lines

:::::::
connect

::
to the

1st and 99th percentile. All other points are plotted
::::::
defined as out-

liers
:::
and

::::::
plotted

::
as

:::::
pluses. Collocations are shown in blue and sim-

ulations are shown in red.
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Fig. 9. The neural network (see text) can be used to retrieve IWP from radiances. The figure shows observations by NOAA-18 in the
descending node on 1 January 2008 between 10:54 and 17:20 UTC (local time during the night). The left panels show the brightness
temperatures as observed by the MHS channels 3–5. The right panel shows the IWP as generated with the neural network as described in the
text. Cold areas in the left panel correspond with

:
to

:
wet areas in the right panel.
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Fig. 10. Scatter plot to show
::::::
showing

:
the performance of the neural

network,
:::::
ANN

::::
using

:
MHS 3–5

:::::::
channels

::
3

::
to

::
5.

:::
The

::::::::
retrieved

::::
IWP

:
is

::::::
plotted

::::::
against

:::
the

:::::
input

::::
IWP.
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Fig. 11. NN
:::::
ANN sensitivity to errors in the input brightness tem-

peratures.
::::
Here,

::::
only

::::
the

::::
MHS

::::::::
channels

:::
are

::::
used

:::
as

::::
input

:::
to

:::
the

:::::
ANN. See the text for an explanation and a discussion.
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Fig. 12. Scatter plot to show the performance of the neural network,
MHS 3–5, HIRS 8 and 11.
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Fig. 13. Comparison of the median fractional error with
:::::::
between

::::::::::
independent

:::
and

:::::::
retrieved

:::::
IWP,

:::::
when

::::
only

::::
MHS

::::::::
channels

:::
are

::::
used

::
or

::::
when

::::
both

:::::
MHS

:
and without adding the HIRS channels

:::
are

::::
used

::
as

::::
input

::
to

:::
the

:::::
ANN. The median fractional error is defined as the

median of all errors with a certain IWP, where the error is defined

as
˛̨̨̨
IWPNN−IWPCPR

IWPCPR

˛̨̨̨
.


