Atmos. Meas. Tech. Discuss., 3, C64–C65, 2010 www.atmos-meas-tech-discuss.net/3/C64/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribute 3.0 License.

AMTD

3, C64–C65, 2010

Interactive Comment

Interactive comment on "A remote sensing technique for global monitoring of power plant CO₂ emissions from space and related applications" by H. Bovensmann et al.

S. Kulawik

Susan.S.Kulawik@jpl.nasa.gov

Received and published: 12 March 2010

Congratulations on this very interesting and topical paper.

I wanted you to be aware that there is a recent paper on a new CO2 product from TES that would be good to cite on page 60. The citation is:

Kulawik, S. S., Jones, D. B. A., Nassar, R., Irion, F. W., Worden, J. R., Bowman, K. W., Machida, T., Matsueda, H., Sawa, Y., Biraud, S. C., Fischer, M., and Jacobson, A. R.: Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science, Atmos. Chem. Phys. Discuss., 9, 27401-27464, 2009.

Printer-friendly Version

Interactive Discussion

Discussion Paper

One other comment I had is that Table 5 gives the impression that plume concentration uncertainties of \sim 2 ppm are required to estimate emissions to about 10%. However, at a 2 km footprint, the enhancement from the plume is 3%, or 12 ppm. An uncertainty of 2 ppm in XCO2 would be about a 17% uncertainty in the plume amount if the rest of the profile is known. Could the authors comment on this, and/or discuss the uncertainties required for the plume concentration itself rather than the XCO2 value which includes a lot of non-plume atmosphere? Hopefully you can follow the above– thanks!

Interactive comment on Atmos. Meas. Tech. Discuss., 3, 55, 2010.

AMTD

3, C64–C65, 2010

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

