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EEM normalization 24 

 25 

The intensity of all raw EEMs of solid state samples shown in this paper has been normalized 26 

as described in Section 2.2. Figure S1 shows tails of transmitted light on the left and right side 27 

of the Rayleigh scattering bands (1
st
 and 2

nd
 order) due to imperfect monochromators. In 28 

particular, this effect was magnified by the settings of the instrument utilized in this study, 29 

because the excitation and emission slit widths were fixed at relatively large values of 10 nm, 30 

each. This setting allows a higher quantity of light to pass the slits, which provides the 31 

advantage of increased sensitivity. However, it also decreases spectral resolution and 32 

increases the spurious background light as discussed. Superposition of these spurious light 33 

effects leads to the elevated background signal (‘plateau’) that can be observed between the 34 

1
st
 and 2

nd
 order Rayleigh lines.  35 

    36 

Fluorescence spectra of solid state, powder samples in this study were corrected for spurious 37 

background light, which was been observed to be significantly stronger for white materials 38 

than for materials of other colors. A normalization factor (NF) has been calculated as a 39 

function of the emitted light intensity to the left of 1
st
 order Rayleigh scattering within an 40 

EEM.  This light, by definition, cannot be considered fluorescent , because the wavelength of 41 

emission would be shorter than the wavelength of excitation. The NF is represented as the 42 

mean of a line parallel to the 1
st
 order Rayleigh signal, but separated by 40 nm vertically (thus 43 

in excitation). In Figure S1 the lines for NF-calculation are shown for kaolin, chitin and humic 44 

acid (Fig. S1a-c). In Figure S1d the profiles of these lines are shown highlighting that the 45 

intensity background light strongly varies with λem. The highest intensities (e.g. for kaolin) 46 

were observed between 375 and 500 nm. Moreover NF shows the highest values for white 47 

and highly reflecting materials (i.e. NFkaolin = 189, white powder) and significantly lower 48 

values for darker and less reflecting materials (i.e. NFhumic acid = 29, dark brown powder).  49 

 50 

Due to the wavelength dependence of the spurious light intensity along the normalization line 51 

attempts to normalize the EEM matrix based on individual excitation (horizontally) or 52 

emission (vertically) wavelengths, respectively, were performed. Two major problems 53 

produced by this procedure, however. (I) Significant qualitative changes are reflected into the 54 

EEM by the peaking intensity of the normalization line. It has been found that these changes 55 

thus influence the characteristic fluorescence pattern in the EEMs (‘shadowing effect’). (II). 56 

Moreover a certain area of the EEM cannot be normalized because the normalization line is 57 
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accessible in vertical and horizontal direction only for a certain wavelength range. 58 

Accordingly for horizontal normalization the lower excitation wavelengths and for vertical 59 

normalization the upper emission wavelengths are chopped off. 60 

 61 

For comparison with normalized EEMs a collection of non-normalized raw EEMs can be 62 

found in Figure S4 and S5.  63 

 64 

 65 

Figure S1. Conceptual illustration of normalization for (a) kaolin, (b) chitin and (c) humic 66 

acid. Colored normalization lines for calculation of NF are shown in (d) for comparison.  67 

 68 

Figure S2. Additional EEM contour profiles for selected pure biological fluorophores in 69 

solid, suspended or solvated state. Color intensity scale has been adjusted to intensity of 70 

individual components. All EEMs are normalized as discussed in text (Section 2.2). 71 

Normalization factor (NF) is reported for each solid-state sample. Lower NF indicates higher 72 

fluorescence intensity. 73 

 74 

Figure S3. Additional EEM contour profiles for selected potential interferences in solid or 75 

solved state. Intensity color scale has been adjusted to intensity of individual components. All 76 

EEMs are normalized as discussed in text (Section 2.2). Normalization factor (NF) is reported 77 

for each solid-state sample. 78 

 79 

Normalized EEM contour profiles for selected interferences in solid state and/or solution. 80 

Intensity color scale has been adjusted to intensity of individual components. EEMs for 81 

samples in solid state are normalized.     82 

 83 

Figure S4. Raw EEM contour profiles for selected pure biological fluorophores in solid, 84 

suspended or solved state. Intensity color scale has been adjusted to intensity of individual 85 

components. 86 

 87 

Figure S5. Raw EEM contour profiles for selected potential interferences fluorophores in 88 

solid, suspended or solved state. Intensity color scale has been adjusted to intensity of 89 

individual components. 90 

 91 
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Figure S6. Raw fluorescence emission spectra of biofluorophores and potential interferences 92 

for selected excitation wavelanghts λex; (a) Emission spectra of biological fluorophores at 93 

λex = 280 nm; (b) Emission spectra of biological fluorophores at λex = 355 nm; (c) Emission 94 

spectra of potential interferences at λex = 280 nm; (d) Emission spectra of potential 95 

interferences at λex = 355 nm. Dashed lines indicate samples in dry state, solid lines indicate 96 

samples in solution.  97 
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