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EEM normalization

The intensity of all raw EEMs of solid state samples shown in this paper has been normalized
as described in Section 2.2. Figure S1 shows tails of transmitted light on the left and right side
of the Rayleigh scattering bands (1% and 2" order) due to imperfect monochromators. In
particular, this effect was magnified by the settings of the instrument utilized in this study,
because the excitation and emission slit widths were fixed at relatively large values of 10 nm,
each. This setting allows a higher quantity of light to pass the slits, which provides the
advantage of increased sensitivity. However, it also decreases spectral resolution and
increases the spurious background light as discussed. Superposition of these spurious light
effects leads to the elevated background signal (‘plateau’) that can be observed between the

1% and 2" order Rayleigh lines.

Fluorescence spectra of solid state, powder samples in this study were corrected for spurious
background light, which was been observed to be significantly stronger for white materials
than for materials of other colors. A normalization factor (NF) has been calculated as a
function of the emitted light intensity to the left of 1 order Rayleigh scattering within an
EEM. This light, by definition, cannot be considered fluorescent , because the wavelength of
emission would be shorter than the wavelength of excitation. The NF is represented as the
mean of a line parallel to the 1% order Rayleigh signal, but separated by 40 nm vertically (thus
in excitation). In Figure S1 the lines for NF-calculation are shown for kaolin, chitin and humic
acid (Fig. Sla-c). In Figure S1d the profiles of these lines are shown highlighting that the
intensity background light strongly varies with Aem. The highest intensities (e.g. for kaolin)
were observed between 375 and 500 nm. Moreover NF shows the highest values for white
and highly reflecting materials (i.e. NFya0iin = 189, white powder) and significantly lower
values for darker and less reflecting materials (i.e. NFpumic acia = 29, dark brown powder).

Due to the wavelength dependence of the spurious light intensity along the normalization line
attempts to normalize the EEM matrix based on individual excitation (horizontally) or
emission (vertically) wavelengths, respectively, were performed. Two major problems
produced by this procedure, however. (I) Significant qualitative changes are reflected into the
EEM by the peaking intensity of the normalization line. It has been found that these changes
thus influence the characteristic fluorescence pattern in the EEMs (‘shadowing effect”). (IT).

Moreover a certain area of the EEM cannot be normalized because the normalization line is
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accessible in vertical and horizontal direction only for a certain wavelength range.
Accordingly for horizontal normalization the lower excitation wavelengths and for vertical

normalization the upper emission wavelengths are chopped off.

For comparison with normalized EEMs a collection of non-normalized raw EEMs can be
found in Figure S4 and S5.

Figure S1. Conceptual illustration of normalization for (a) kaolin, (b) chitin and (c) humic

acid. Colored normalization lines for calculation of NF are shown in (d) for comparison.

Figure S2. Additional EEM contour profiles for selected pure biological fluorophores in
solid, suspended or solvated state. Color intensity scale has been adjusted to intensity of
individual components. All EEMs are normalized as discussed in text (Section 2.2).
Normalization factor (NF) is reported for each solid-state sample. Lower NF indicates higher

fluorescence intensity.

Figure S3. Additional EEM contour profiles for selected potential interferences in solid or
solved state. Intensity color scale has been adjusted to intensity of individual components. All
EEMs are normalized as discussed in text (Section 2.2). Normalization factor (NF) is reported

for each solid-state sample.

Normalized EEM contour profiles for selected interferences in solid state and/or solution.
Intensity color scale has been adjusted to intensity of individual components. EEMs for

samples in solid state are normalized.

Figure S4. Raw EEM contour profiles for selected pure biological fluorophores in solid,
suspended or solved state. Intensity color scale has been adjusted to intensity of individual

components.

Figure S5. Raw EEM contour profiles for selected potential interferences fluorophores in
solid, suspended or solved state. Intensity color scale has been adjusted to intensity of

individual components.
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Figure S6. Raw fluorescence emission spectra of biofluorophores and potential interferences
for selected excitation wavelanghts Aey; (a) Emission spectra of biological fluorophores at
Lex = 280 nm; (b) Emission spectra of biological fluorophores at Aex = 355 nm; (c) Emission
spectra of potential interferences at Aex = 280 nm; (d) Emission spectra of potential
interferences at Aex = 355 nm. Dashed lines indicate samples in dry state, solid lines indicate

samples in solution.
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