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Abstract

Calculation of mean trace gas contributions from profiles obtained by retrievals of the
logarithm of the abundance rather than retrievals of the abundance itself are prone to
biases. By means of a system simulator, biases of linear versus logarithmic averaging
were evaluated for both maximum likelihood and maximum a priori retrievals, for vari-5

ous signal to noise ratios and atmospheric variabilities. These biases can easily reach
several ten percent. As a rule of thumb we found for maximum likelihood retrievals that
linear averaging better represents the true mean value in cases of large local natural
variability and high signal to noise ratios, while for small local natural variability loga-
rithmic averaging often is superior. In the case of maximum a posteriori retrievals, the10

mean is dominated by the a priori information used in the retrievals and the method of
averaging is of minor concern. For larger natural variabilities, the appropriateness of
the one or the other method of averaging depends on the particular case because the
various biasing mechanisms partly compensate in a hardly predictable manner. This
complication arises mainly because of the fact that in logarithmic retrievals the weight15

of the prior information depends on abundance of the gas itself. No simple rule was
found on which kind of averaging is superior, and instead of suggesting simple recipes
we cannot do much more than to create awareness of the traps related with averaging
of mixing ratios obtained from logarithmic retrievals.

1 Introduction20

Retrieval of mixing ratios or concentrations of atmospheric trace species from remote
radiance or transmission measurements involves inverse modelling of radiative trans-
fer. In order to avoid to retrieve negative thus unphysical mixing ratios of trace species,
to better cope with the large dynamical range of possible values, or to better reflect
the assumed natural distribution of the species under assessment, often the logarithm25

of the concentration is retrieved instead of the concentration itself (e.g., von Clarmann
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et al., 2009; Funke et al., 2009; Papandrea et al., 2005; Bowman et al., 2006; Schneider
et al., 2006; Urban et al., 2005). While negative concentrations certainly are unphys-
ical, their removal by the logarithmic retrieval may bias averages of retrieved concen-
trations high due to the asymmetric error propagation. In this paper we assess if it is
appropriate to average results in the logarithmic domain in order to reduce these bi-5

ases. This analysis is done by means of a system simulator which propagates signal
and noise through an idealized retrieval and which is described in Sect. 2. In Sect. 3 we
analyze related case studies, and in Sect. 4 we give recommendations which kind of
averaging is advisable in which context and critically discuss to which degree the con-
clusions of this study can be generalized towards a wider range of applications beyond10

the idealized cases analyzed in this paper.

2 The system simulator

The averaging procedures involving concentrations or their logarithms are assessed
by a methodical numerical Monte Carlo-type experiment based on a system simulator
by which measurement signal and noise are propagated through an idealized retrieval15

system and finally averaged. The system simulator is idealized in a sense that (a) we
assume locally linear radiative transfer, and (b) we restrict the problem to one dimen-
sion, i.e. to a scalar signal y which depends on a scalar concentration x. In order to
avoid any dispute by which probability density function (normal, lognormal, inversely
normal etc) the true atmospheric state is best represented, we use a modeled distri-20

bution of atmospheric concentrations as reference ensemble x of concentrations xn,
n=1,...N, expressed as volume mixing ratios (vmrs).

For each concentration xn, the related measurement signal yn is simulated as

yn = y0+kxn+εn, (1)

where y0 is a constant background signal, k is the sensitivity dy/dx of the measure-25

ment system and εn is the measurement error associated with the nth measurement.
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The latter is obtained from a pseudo-random number generator providing normally
distributed random numbers of zero expectation and variance s2. Without loss of gen-
erality, we set y0 = 0 and k = 1. The measurement variance is then set to s2 = x̄2/r2,
where x̄ is the mean value of the concentrations xn and r is a tunable average signal
to noise ratio (SNR).5

The simulated measurements yn are then propagated through an iterative retrieval
simulator operating in the ln(vmr) domain. With

dyn
dlnxn

=k
dxn

dlnxn
=xn (2)

we have for iterative unconstrained maximum likelihood retrievals

lnxn,i+1 = lnxn,i +x−1
n,i (yn−xn,i ), (3)10

where xi ,n is the concentration retrieved in the i th iteration from the nth simulated
measurement. For positive signals yn, Eq. (3) converges towards xn,I =xn+εn, where
I denotes the final iteration of sample n and εn is the measurement error propagated
into the x-space, as in the case of linear maximum likelihood retrievals.

For maximum a posteriori (optimal estimation) retrievals (Rodgers, 2000), we have15

lnxn,i+1 = lnxn,i +

xn,i
s2 (yn−xn,i )−σ−2

a (lnxn,i − lnxa)

σ−2
a +x2

n,i s
−2

(4)

where xa is the prior information on x with variance σ2
a in the logarithmic domain. Since

biases caused by inappropriate prior information and variance are beyond the scope
of this study, we make two further idealizing assumptions:

xa =exp

[∑N
n=1 lnxn
N

]
(5)20
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and

σ2
a =

∑N
n=1(lnxn− lnxa)2

N
(6)

As a variation of this scheme, we have also performed simulations with a constant a pri-
ori variance σ2

a = ln2, corresponding to a 100 % variance in the linear space. This is
motivated by the lack of reliable information on climatological variances in real applica-5

tions. A 100 % variance is thus often assumed in optimal estimation schemes applied
to remote sensing data. The rationale for choosing this value is to reduce the a pri-
ori content of the results while guaranteeing reasonable and stable retrievals. In the
following, we refer to this ad hoc variant of optimal estimation as “modified” maximum
a posteriori approach.10

Convergence of the iterative retrieval scheme is reached when the absolute differ-
ence of lnxn,i+1 and lnxn,i is smaller than 0.001σx, i.e., a fraction of the estimated
retrieval noise error in the logarithmic retrieval space, which can be expressed using
k =1 by

σx =
sxn,i

x2
n,i +s2σ−2

a

, (7)15

with σ−2
a = 0 for maximum likelihood retrievals, σ−2

a = 1/(ln2) for modified maximum
a posteriori retrievals, and σ−2

a inferred from the actual variability of the true state in the
logarithmic domain for Bayesian maximum a posteriori retrievals.

Logarithmic retrievals do not allow zero-residual retrievals in the case when the linear
retrieval would give a negative concentration, although the inverse problem is by no20

means algebraically overconstrained. As a consequence, convergence is not reached
in unconstrained retrievals (i.e. maximum likelihood) if the signal is negative. Here, we
reject unconverged maximum likelihood retrievals (i.e., if convergence is not reached
after 20 iterations) from the retrieved ensemble before averaging the results, as done
in many remote sensing applications. It should be noted that also other treatments25
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of unconverged retrievals (i.e., consideration of these data after a maximum number
of iterations) are occasionally applied in practice, and averaging results for maximum
likelihood retrievals depend strongly on its choice (see discussion in Sect. 3.1). Non-
convergence, however, should not occur in the case of maximum a posteriori retrieval
since the constraint introduces a well defined minimum in the cost function even in the5

case of negative signals.
The assessment of averaging procedures is then based on the comparison of

N−1∑N
n=1xn,I to N−1∑N

n=1xn and N−1∑N
n=1 lnxn,I to N−1∑N

n=1 lnxn, respectively. Com-
parison of like with like certainly is idealistic, because in practice climatological data
are often compared among each other without questioning how the climatologies have10

been generated. Nevertheless, we think that comparison of logarithmic averages of
logarithmic retrievals with linear averages of the true state would not be fair.

It is evident that averages of maximum a posteriori retrievals depend on the a priori
information. A more rigorous approach is thus to compare to averages of

x̃n =exp[An ln(xn)+ (1−An) ln(xa)] , (8)15

with the averaging kernel

An =
x2
n,I

x2
n,I +s2σ−2

a

. (9)

x̃n is the retrieval response to the “true” state xn (i.e., the retrieval result for ε = 0,
i.e. no measurement noise considered). Note that 1−An describes also the a priori
contribution to the solution xn,I which, contrary to the case of linear retrievals, depends20

on the solution itself. This approach is commonly used in point-to-point comparisons of
remotely sensed data with model results or independent measurements. However, in
many averaging applications (i.e. comparisons of trace gas climatologies), averaging
kernels of individual ensemble members are not available. For this reason, we compare
to averages of both x̃n and xn in the case of maximum a posteriori retrievals.25
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While averaging of maximum a posteriori retrievals without re-adjustment of the con-
tent of a constant priori information is questionable because the optimal mean is not
identical to the mean of optimal estimates (c.f. Chapt. 10.4.1 in Rodgers, 2000), and
because prior knowledge of a single atmospheric state is less reliable than priori knowl-
edge on the mean atmospheric state, we ignore the re-adjustment of the a priori con-5

tent to produce an optimal average, because this is rarely done in practice and beyond
the scope of this paper.

3 Case studies

The case studies are organized in a way that first unconstrained maximum likelihood re-
trievals and then standard and modified maximum a posteriori retrievals are discussed.10

For each of these retrieval schemes we perform simulations for different SNRs covering
values from 0.5 to 10.

In order to provide realistic examples, the ensembles xn represent zonal distributions
of CO and H2O taken from WACCM model simulations described in Jackman et al.
(2008) for the period of November 2003 in a vertical range from 1000–0.001 hPa with15

global latitudinal coverage. Concentrations of CO and H2O are retrieved in the ln(vmr)
space in many atmospheric remote sensing applications (e.g., von Clarmann et al.,
2009; Funke et al., 2009; Schneider et al., 2006; Deeter et al., 2007). Each ensemble
includes about 10 000 members. The global distribution of the corresponding averages
(i.e., zonal means) is shown in Fig. 1 (top).20

Highest standard deviations σm of the modeled distributions are found where spatial
gradients are strongest, i.e. in regions of transport barriers, vertical transport, etc. In
the case of CO, this occurs in the polar regions in the mid-stratosphere and is related
to vertical transport by the meridional circulation. H2O variability is highest in the UTLS
(see Fig. 1, middle). These standard deviations represent the local natural variability of25

the atmospheric state, as opposed to any scatter being caused by measurement noise.
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The magnitudes of differences of linear and logarithmically averaged zonal means
correlate spatially with the standard deviation of the distributions for both CO and H2O
(Fig. 1, bottom). This correlation is quite compact (see Fig. 2). The differences between
linear and logarithmic averaging are somewhat more pronounced for H2O than for CO.
For a local natural variability of 100 % in terms of standard deviation, the differences5

reach 40 % for H2O but only 30 % for CO.

3.1 Maximum likelihood retrievals

In this section we assume that direct inversion of the radiative transfer equation (Eq. 1)
is used in the logarithmic domain, without application of any constraint beyond that
implied by the use of the logarithm of the concentration. For positive signals, the loga-10

rithmic maximum likelihood retrieval yields the same result as the retrieval in the linear
domain. However, the rejection of unconverged logarithmic retrievals with a negative
signal from the averages leads to positive bias compared to averaged results retrieved
in the linear domain.

As a consequence, linear averages of logarithmic retrievals are biased high com-15

pared to the corresponding averages of the “true” distribution. For a constant SNR, this
bias is correlated with the dispersion of the “true” ensemble. Assuming a SNR of 2,
the bias between the retrieved and the true zonal mean distributions of CO and H2O
varies from 2 % to 25 %, being highest in regions with most pronounced atmospheric
variability (see Fig. 3, upper panels).20

In the case of logarithmic averaging, this behavior is partly compensated by the
asymmetric mapping of the normal-distributed noise into the ln(vmr) parameter space,
introducing a negative bias compared to the corresponding averages of the “true” dis-
tributions. This negative bias dominates for low atmospheric variability. Figure 3 (lower
panels) shows this behavior for a SNR of 2. Here, the overall bias between retrieved25

and true zonal mean distributions of CO and H2O varies from −15 % to 30 % in depen-
dence of the “true” distributions’ dispersion.
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Interestingly, logarithmically averaged retrievals of some particular latitude/altitude
boxes become virtually zero. This random-like behavior is introduced by single re-
trievals of signals being infinitesimally close to zero, leading to high negative values
in the ln(vmr) space. The occurrence of such artifacts is ruled by the probability den-
sity of such small signals which, in turn, is linked to the variance of the measurement5

noise. For high SNR, this probability density is small, because the relevant interval of
signals is located on the tail of the Gaussian distribution. It is also small for low SNR,
because due to the broader probability distribution function most negative signal val-
ues are so negative that the retrieval does not reach convergence and related results
are discarded, and only very few measurements hit the small interval where the mea-10

surements are negative to cause problems but their absolute values are small enough
to still allow convergence. Most frequent occurrences of this peculiarity are found for
intermediate SNRs of around 2.

Figure 4 shows the relative differences between retrieved and “true” averages as
function of the relative standard deviation of “true” distribution σm for a SNR of 2, sum-15

marizing the behavior discussed above. The correlation of differences and the local
natural variability is quite compact. Therefore, in the following we restrict our analysis
to its average dependence (indicated by solid lines in Fig. 4).

It is interesting to notice that, in the case of H2O distributions, the dependence on
σm is more pronounced for logarithmic than for linear averages, while this is not the20

case for CO. This is most likely related to differences in the shapes of the PDFs of both
species in regions with high local natural variability.

Figure 5 summarizes the results for maximum likelihood retrievals for a variety of
SNRs. In general, linear averaging is superior in the case of high SNR and large local
natural variability, while logarithmic averaging is superior in the case of small SNR and25

small natural variability, although exceptions exist.
It should be noted that this evaluation is only valid in the case of rejection of un-

converged retrievals. If the results of final unconverged iterations would have been in-
cluded or those results would have been set to an arbitrary small number, the positive
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bias found in linear averages was reduced by the fraction of converged retrievals with
positive signal, while a pronounced low bias of logarithmic averages was introduced
due to the increased contribution of very small values of xn,I . The latter depends then
strongly on the choice of the maximum number of iterations or on the choice of the fake
value, respectively. In our case (maximum number of iterations of 20), the inclusion of5

these retrieval results would introduce a low bias of logarithmic averages of up to 70 %
for low SNR, completely disabling its meaningful interpretation.

3.2 Maximum a posteriori retrievals

The same kind of analysis also has been performed for maximum a posteriori retrievals.
Comparisons of the linear and logarithmic averages with the “true” averages as a func-10

tion of natural variability are shown in Fig. 6 for various signal to noise ratios. In the
case of low local natural variability – and thus also low a priori variance – the differ-
ences are small because the content of a priori information in the retrieval is large.
As already mentioned in Sect. 2, averaging of retrievals containing a constant prior
information does not produce an optimal average, since the prior information is sys-15

tematically overrepresented in the mean. On the other hand, the prior information
characterizes the mean state of the atmosphere better than an actual state. The prob-
lem of the need of re-adjustment of the weight of the priori information in the mean,
however, is beyond the scope of this study.

For intermediate local natural variability and a priori variance, linear averages of20

logarithmically retrieved mixing ratios are biased low. This is, because the a priori
state of the atmosphere is calculated by logarithmic averaging of the true distribution.
This low bias is not more than the bias between the logarithmic and linear averages
of the “true” distribution, which is, via the content of priori information in the retrieval,
propagated to the averages of the retrievals. Results for less ideal a priori information25

may be different. In the case of large local natural variability along with large a priori
variance, the bias of the linear average turns high, similar to the case of maximum
likelihood retrievals but with a considerably smaller amplitude (less than 5 % even for
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low SNRs). The positive bias of maximum a posteriori retrieval averages, however, is
not related to the rejection of unconverged retrievals of negative signals (convergence
is in our simplified one-dimensional retrieval always achieved due to the constraint), but
to the dependence of the a priori contribution to the retrieval solution on the solution
itself (see Sect. 2). As a consequence, retrievals of low signals (either due to low5

values of xn or negative values of εn) have a higher a priori contribution than those of
high signals, resulting in a high bias. The turning point, i.e., where the high bias due
to asymmetric a priori mapping starts to overcompensate the low bias introduced by
xa itself, depends strongly on the SNR. For SNRs greater than 5, differences start to
increase already at standard deviations below 20 %, while for SNRs lower than 1 the10

turning point is located at standard deviations greater than 50 %.
Logarithmic averages of logarithmic maximum a posteriori retrievals are generally

higher than the logarithmic averages of the “true” distribution for intermediate to high
values of σm (i.e., when there is a substantial contribution of the measurement to the
retrieval solution). Contrarily to the linear averaging case, no negative bias due to15

the a priori contribution is introduced since, in or idealized case, the prior information is
identical the the “true” logarithmic average. Logarithmic averaging performs apparently
worse compared to linear averaging for high values of σm. This, however, is related to
the compensation effect of the a priori in the linear averaging (see discussion above)
and hence depends strongly on the choice of the a priori.20

In addition, we have also compared the linear and logarithmic averages to the aver-
aged linear retrieval response to the “true” distribution xn, the latter obtained by apply-
ing the averaging kernels An (Rodgers, 2000) to xn according to Eq. (8) (see Fig. 7).
In first order, these comparisons show the isolated effect of the asymmetric mapping
of noise in the constrained retrieval, that is, the influence of the a priori information on25

the difference between the retrieved and the “true” mean, is removed. Now, the bias
between linear averages of the retrieval results and the linear retrieval response to the
“true” distribution is generally positive. This high bias is increased compared to Fig. 6
since the compensation effect of the a priori contribution is removed. For logarithmic
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averages, these differences are smaller. The generally better performance of logarith-
mic averages is related to the compensation of the positive bias due to the dependence
of the a priori contribution on xn,I by the negative bias caused by asymmetric mapping
of normal-distributed noise in the ln(vmr) space. The latter dominates for high SNRs,
giving raise to a negative overall bias of logarithmic averages for SNRs greater than 55

in Fig. 7.
In summary, except for high SNRs (> 5), logarithmic averaging of logarithmic max-

imum a posteriori retrievals is recommended in validation exercises or point-to-point
model-data comparisons whenever averaging kernels related to individual measure-
ments are applied to the corresponding data to be compared.10

3.3 Modified a posteriori retrievals

Since in practical applications of the optimal estimation retrieval scheme often ad hoc
choices of a priori variances are made, we also have studied averaging of logarithmic
retrievals where the a priori standard deviation was set to 100 % (see Fig. 8). For high
value of σm, the behavior is similar to the classical maximum a posteriori retrievals15

(Fig. 7). For lower values of σm, however, the measurement contribution to the retrieval
solution is much higher than in the classical maximum a posteriori case and differences
of retrieved and “true” averages are increased.

The comparison of the linear and logarithmic averages to the averaged linear re-
trieval response to the “true” distribution xn (see Fig. 9) shows that the use of a con-20

stant a priori variance removes the dependence of the biases on σm and they remain
approximately constant. Again, better performance is achieved with logarithmic aver-
aging for SNR<5 due to the compensation of the positive bias due to the dependence
of the a priori contribution on xn,I by the negative bias caused by asymmetric map-
ping of normal-distributed noise in the ln(vmr) space. For higher SNRs, however, linear25

averaging yields smaller biases.

7170

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/7159/2011/amtd-4-7159-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/7159/2011/amtd-4-7159-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 7159–7183, 2011

How to average
logarithmic retrievals

B. Funke and
T. von Clarmann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4 Conclusions

Ideally, the average of concentration shall be mass-conservative in a sense that the
average concentration times the airmass equals the total amount of the target gas
in the airmass. This can only be achieved with linear averaging. Both linear and
logarithmic averaging of logarithmic retrievals can lead to biases of several ten percent,5

which are typically larger for larger local atmospheric variability. Biases caused by the
impossibility of logarithmic retrievals of mapping negative measured signals into the
atmospheric state space can be remedied by neither of the averaging schemes.

Usually, for maximum likelihood retrievals linear averaging better represents the true
mean value in cases of large local natural variability and high signal to noise ratios,10

while for small local natural variability logarithmic averaging often is superior. For max-
imum a posteriori retrievals, the dependence of the weight of the priori information on
the state value itself causes some hardly predictable interaction between the effect of
the constraint on the retrieval and the characteristics of the averaging procedure. Since
in logarithmic retrievals the priori information is ideally chosen as the expectation value15

of the logarithm of the atmospheric state variable, logarithmic averaging of results bet-
ter reproduces the logarithmic average of the true atmospheric state in cases when the
retrieval is dominated by the prior information. For higher atmospheric variability, which
in a truly Bayesian maximum a posteriori retrieval goes along with a lesser weight of
prior information, the bias of the average is composed of the superposition of the ef-20

fects of multiple biasing processes of positive and negative sign. The assumption that
the prior information is identical with the true local mean of the atmospheric state is
certainly an ideal case and more realistic cases where the a priori information differs
from the true mean state of the atmosphere may lead to even different results but could
not be assessed here.25

Further, these investigations refer to an ideal world where logarithmic averages of
logarithmic retrievals are compared to logarithmic averages of the true atmospheric
state values. In the real world, however, the user of climatologies may not ask about
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the procedure how a climatology has been generated and may unintentionally com-
pare a climatology based on logarithmic averages of logarithmic retrievals from one
instrument with linear averages of linear retrievals of another instrument, which adds
an additional bias of up to 40 % (see Fig. 2).

In summary, averaging of logarithmically retrieved abundances of atmospheric5

species contains a lot of traps which cannot be avoided by application of a simple
recipe. Particularly, biasing can never be systematically avoided by using a superior
averaging scheme. At best, limitation of damage can be aimed at. While logarithmic
averaging in some cases indeed performs better than linear averaging, particularly in
some cases of Bayesian or modified maximum a priori retrievals, related biases are by10

no means fully compensated.
Although our simulations have been carried out for an one-dimensional retrieval

problem under the idealized assumption of locally linear radiative transport, the conclu-
sions of this study can be generalized in a qualitative manner to more realistic retrieval
problems. For example, multi-dimensional profile retrievals, typically performed in re-15

mote sensing applications, would suffer the same problems as described here with the
added complexity of correlations between different profile points. These correlations
are typically introduced by instrumental and/or geometrical limitations in vertically re-
solving the profiles, i.e., the line of sight of a remote sounder travels through multiple
atmospheric layers. Thus a single measurement error cannot be assigned to a single20

profile point but to positively or negatively correlated errors at various altitudes. Inclu-
sion of constraints (e.g. maximum a posteriori retrievals) further contributes to these
correlations.

The inclusion of non-linear radiative transport would not alter the presented results
for unconstrained maximum likelihood retrievals, however, results for maximum a pos-25

teriori retrieval averages might differ due to an amplification (or reduction) of the positive
bias related to the dependence of the a priori contribution to the retrieval solution on
the solution itself. The latter effect, as described in Sect. 3.2, is already caused by the
“artificial” non-linearity introduced by the retrieval of ln(vmr). Additional non-linearity
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related to radiative transfer leads only to its modification. In consequence, we also
expect biases related to the dependence of the a priori contribution to the retrieval
solution on the solution itself in the case of averaging linear maximum a posteriori re-
trievals whenever non-linear radiative transfer occurs or, if the observed signal depends
on additional quantities (e.g. temperature in the case of emission measurements) being5

correlated to the retrieval quantity.
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B. Funke: How to average logarithmic retrievals 3

Fig. 1. Model zonal mean distributions of zonal mean vmrs (top), standard deviations (middle), and differences between linearand logarith-
mically averaged means (bottom) for CO (left) andH2O (right).Fig. 1. Model zonal mean distributions of zonal mean vmrs (top), standard deviations (middle),

and differences between linear and logarithmically averaged means (bottom) for CO (left) and
H2O (right).
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4 B. Funke: How to average logarithmic retrievals

Fig. 2. Differences of linearly and logarithmically averaged zonal
means (relative to linearly averaged zonal means) versus standard
deviation of the distributions for CO (red) andH2O (blue). Data
points represent single latitude/altitude boxes.

ered). Note that1−An describes also the a priori contri-
bution to the solutionxn,I which, contrary to the case of
linear retrievals, depends on the solution itself. This ap-
proach is commonly used in point-to-point comparisons of
remotely sensed data with model results or independent mea-
surements. However, in many averaging applications (i.e.
comparisons of trace gas climatologies), averaging kernels
of individual ensemble members are not available. For this
reason, we compare to averages of bothx̃n andxn in the case
of maximum a posteriori retrievals.

While averaging of maximum a posteriori retrievals with-
out re-adjustment of the content of a constant priori informa-
tion is questionable because the optimal mean is not identi-
cal to the mean of optimal estimates (c.f. chapter 10.4.1. in
Rodgers, 2000), and because prior knowledge of a single at-
mospheric state is less reliable than priori knowledge on the
mean atmospheric state, we ignore the re-adjustment of the a
priori content to produce an optimal average, because this is
rarely done in practice and beyond the scope of this paper.

3 Case studies

The case studies are organized in a way that first uncon-
strained maximum likelihood retrievals and then standard
and modified maximum a posteriori retrievals are discussed.
For each of these retrieval schemes we perform simulations
for different SNRs covering values from 0.5 to 10.

In order to provide realistic examples, the ensemblesxn

represent zonal distributions of CO andH2O taken from
WACCM model simulations described in Jackman et al.
(2008) for the period of November 2003 in a vertical range
from 1000-0.001 hPa with global latitudinal coverage. Con-
centrations of CO andH2O are retrieved in the ln(vmr) space

in many atmospheric remote sensing applications (e.g., von
Clarmann et al., 2009; Funke et al., 2009; Schneider et al.,
2006; Deeter et al., 2007). Each ensemble includes about
10000 members. The global distribution of the correspond-
ing averages (i. e., zonal means) is shown in Figure 1 (top).

Highest standard deviationsσm of the modeled distribu-
tions are found where spatial gradients are strongest, i.e.
in regions of transport barriers, vertical transport, etc.In
the case of CO, this occurs in the polar regions in the mid-
stratosphere and is related to vertical transport by the merid-
ional circulation.H2O variability is highest in the UTLS (see
Figure 1, middle). These standard deviations represent the
local natural variability of the atmospheric state, as opposed
to any scatter being caused by measurement noise.

The magnitudes of differences of linear and logarithmi-
cally averaged zonal means correlate spatially with the stan-
dard deviation of the distributions for both CO andH2O (Fig-
ure 1, bottom). This correlation is quite compact (see Fig-
ure 2). The differences between linear and logarithmic aver-
aging are somewhat more pronounced forH2O than for CO.
For a local natural variability of 100% in terms of standard
deviation, the differences reach 40% forH2O but only 30%
for CO.

3.1 Maximum likelihood retrievals

In this section we assume that direct inversion of the radiative
transfer equation (Eq. 1) is used in the logarithmic domain,
without application of any constraint beyond that implied
by the use of the logarithm of the concentration. For pos-
itive signals, the logarithmic maximum likelihood retrieval
yields the same result as the retrieval in the linear domain.
However, the rejection of unconverged logarithmic retrievals
with a negative signal from the averages leads to positive bias
compared to averaged results retrieved in the linear domain.

As a consequence, linear averages of logarithmic retrievals
are biased high compared to the corresponding averages of
the “true” distribution. For a constant SNR, this bias is cor-
related with the dispersion of the “true” ensemble. Assuming
a SNR of 2, the bias between the retrieved and the true zonal
mean distributions of CO andH2O varies from 2% to 25%,
being highest in regions with most pronounced atmospheric
variability (see Fig. 3, upper panels).

In the case of logarithmic averaging, this behavior is partly
compensated by the asymmetric mapping of the normal-
distributed noise into the ln(vmr) parameter space, introduc-
ing a negative bias compared to the corresponding averages
of the “true” distributions. This negative bias dominates for
low atmospheric variability. Fig. 3 (lower panels) shows this
behavior for a SNR of 2. Here, the overall bias between re-
trieved and true zonal mean distributions of CO andH2O
varies from -15% to 30% in dependence of the “true” distri-
butions’ dispersion.

Interestingly, logarithmically averaged retrievals of some
particular latitude/altitude boxes become virtually zero. This

Fig. 2. Differences of linearly and logarithmically averaged zonal means (relative to linearly
averaged zonal means) versus standard deviation of the distributions for CO (red) and H2O
(blue). Data points represent single latitude/altitude boxes.
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B. Funke: How to average logarithmic retrievals 5

Fig. 3. Zonal mean differences of retrieved and “true” distributions (relative to the latter) for CO (left) andH2O (right). Top: linear averages,
bottom: logarithmic averages. Results are shown for maximum likelihood ln(vmr)-retrieval simulations with a signal to noise ratio of 2.
White regions in the lower panels reflect unreasonable results (“zero” averages, see text for further explanations).

Fig. 4. Differences of retrieved and “true” zonal means (relative to the latter) versus local natural variability in terms of standard deviation for
CO (left) andH2O (right). Red: linear averages, blue: logarithmic averages. Data points reflect individual latitude/altitude boxes. Results
are shown for maximum likelihood ln(vmr)-retrieval simulations with a signal to noise ratio of 2.

Fig. 3. Zonal mean differences of retrieved and “true” distributions (relative to the latter) for CO
(left) and H2O (right). Top: linear averages, bottom: logarithmic averages. Results are shown
for maximum likelihood ln(vmr)-retrieval simulations with a signal to noise ratio of 2. White
regions in the lower panels reflect unreasonable results (“zero” averages, see text for further
explanations).
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B. Funke: How to average logarithmic retrievals 5

Fig. 3. Zonal mean differences of retrieved and “true” distributions (relative to the latter) for CO (left) andH2O (right). Top: linear averages,
bottom: logarithmic averages. Results are shown for maximum likelihood ln(vmr)-retrieval simulations with a signal to noise ratio of 2.
White regions in the lower panels reflect unreasonable results (“zero” averages, see text for further explanations).

Fig. 4. Differences of retrieved and “true” zonal means (relative to the latter) versus local natural variability in terms of standard deviation for
CO (left) andH2O (right). Red: linear averages, blue: logarithmic averages. Data points reflect individual latitude/altitude boxes. Results
are shown for maximum likelihood ln(vmr)-retrieval simulations with a signal to noise ratio of 2.

Fig. 4. Differences of retrieved and “true” zonal means (relative to the latter) versus local
natural variability in terms of standard deviation for CO (left) and H2O (right). Red: linear
averages, blue: logarithmic averages. Data points reflect individual latitude/altitude boxes.
Results are shown for maximum likelihood ln(vmr)-retrieval simulations with a signal to noise
ratio of 2.
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6 B. Funke: How to average logarithmic retrievals

Fig. 5. Differences of retrieved and “true” zonal means (relative to the latter) versus local natural variaility in terms of standard deviation for
the CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages. Results are shown for maximum likelihood ln(vmr)-
retrieval simulations with signal to noise ratios of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5
(red).

random-like behavior is introduced by single retrievals of
signals being infinitesimally close to zero, leading to high
negative values in the ln(vmr) space. The occurrence of such
artifacts is ruled by the probability density of such small sig-
nals which, in turn, is linked to the variance of the measure-
ment noise. For high SNR, this probability density is small,
because the relevant interval of signals is located on the tail
of the Gaussian distribution. It is also small for low SNR,
because due to the broader probability distribution function
most negative signal values are so negative that the retrieval
does not reach convergence and related results are discarded,
and only very few measurements hit the small interval where
the measurements are negative to cause problems but their
absolute values are small enough to still allow convergence.
Most frequent occurrences of this peculiarity are found for
intermediate SNRs of around 2.

Figure 4 shows the relative differences between retrieved
and “true” averages as function of the relative standard devi-
ation of “true” distributionσm for a SNR of 2, summarizing
the behavior discussed above. The correlation of differences
and the local natural variability is quite compact. Therefore,
in the following we restrict our analysis to its average depen-
dence (indicated by solid lines in Fig. 4).

It is interesting to notice that, in the case ofH2O distribu-
tions, the dependence onσm is more pronounced for loga-
rithmic than for linear averages, while this is not the case for
CO. This is most likely related to differences in the shapes of
the PDFs of both species in regions with high local natural
variability.

Figure 5 summarizes the results for maximum likelihood
retrievals for a variety of SNRs. In general, linear averag-
ing is superior in the case of high SNR and large local natu-
ral variability, while logarithmic averaging is superior in the

case of small SNR and small natural variability, although ex-
ceptions exist.

It should be noted that this evaluation is only valid in the
case of rejection of unconverged retrievals. If the resultsof fi-
nal unconverged iterations would have been included or those
results would have been set to an arbitrary small number,
the positive bias found in linear averages was reduced by the
fraction of converged retrievals with positive signal, while a
pronounced low bias of logarithmic averages was introduced
due to the increased contribution of very small values ofxn,I .
The latter depends then strongly on the choice of the maxi-
mum number of iterations or on the choice of the fake value,
respectively. In our case (maximum number of iterations of
20), the inclusion of these retrieval results would introduce a
low bias of logarithmic averages of up to 70% for low SNR,
completely disabling its meaningful interpretation.

3.2 Maximum a posteriori retrievals

The same kind of analysis also has been performed for max-
imum a posteriori retrievals. Comparisons of the linear and
logarithmic averages with the “true” averages as a function
of natural variability are shown in Figure 6 for various sig-
nal to noise ratios. In the case of low local natural variability
– and thus also low a priori variance – the differences are
small because the content of a priori information in the re-
trieval is large. As already mentioned in Section 2, averag-
ing of retrievals containing a constant prior information does
not produce an optimal average, since the prior information
is systematically overrepresented in the mean. On the other
hand, the prior information characterizes the mean state of
the atmosphere better than an actual state. The problem of
the need of re-adjustment of the weight of the priori infor-

Fig. 5. Differences of retrieved and “true” zonal means (relative to the latter) versus local
natural variaility in terms of standard deviation for the CO (left) and H2O (right). Solid: linear
averages, dashed: logarithmic averages. Results are shown for maximum likelihood ln(vmr)-
retrieval simulations with signal to noise ratios of 10 (dark blue), 5 (light blue), 2 (dark green),
1.43 (light green), 1.0 (orange), and 0.5 (red).
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B. Funke: How to average logarithmic retrievals 7

Fig. 6. Differences of retrieved and “true” zonal means (relative to the latter) versus local natural variability in terms of standard deviation for
the CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages. Results are shown for maximum a posteriori ln(vmr)-
retrieval simulations with SNRs of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5 (red). Note that the
a priori contribution to the retrievals is greater than 50% for standard deviations below 10%, 20%, 50%, 70%, 100%, and 200%, respectively.

Fig. 7. Differences between the mean values and the mean “true” atmospheric state after application of the averaging kernel to the latter
for CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages. Results are shown for maximum a posteriori ln(vmr)-
retrieval simulations with SNRs of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5 (red).

mation in the mean, however, is beyond the scope of this
study.

For intermediate local natural variability and a priori vari-
ance, linear averages of logarithmically retrieved mixingra-
tios are biased low. This is, because the a priori state of the
atmosphere is calculated by logarithmic averaging of the true
distribution. This low bias is not more than the bias between
the logarithmic and linear averages of the “true” distribu-
tion, which is, via the content of priori information in the
retrieval, propagated to the averages of the retrievals. Re-
sults for less ideal a priori information may be different. In
the case of large local natural variability along with largea
priori variance, the bias of the linear average turns high, sim-
ilar to the case of maximum likelihood retrievals but with a

considerably smaller amplitude (less than 5% even for low
SNRs). The positive bias of maximum a posteriori retrieval
averages, however, is not related to the rejection of uncon-
verged retrievals of negative signals (convergence is in our
simplified one-dimensional retrieval always achieved due to
the constraint), but to the dependence of the a priori contribu-
tion to the retrieval solution on the solution itself (see Section
2). As a consequence, retrievals of low signals (either due
to low values ofxn or negative values ofǫn) have a higher
a priori contribution than those of high signals, resultingin
a high bias. The turning point, i. e., where the high bias
due to asymmetric a priori mapping starts to overcompensate
the low bias introduced byxa itself, depends strongly on the
SNR. For SNRs greater than 5, differences start to increase

Fig. 6. Differences of retrieved and “true” zonal means (relative to the latter) versus local
natural variability in terms of standard deviation for the CO (left) and H2O (right). Solid: linear
averages, dashed: logarithmic averages. Results are shown for maximum a posteriori ln(vmr)-
retrieval simulations with SNRs of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light
green), 1.0 (orange), and 0.5 (red). Note that the a priori contribution to the retrievals is greater
than 50 % for standard deviations below 10, 20, 50, 70, 100, and 200 %, respectively.
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B. Funke: How to average logarithmic retrievals 7

Fig. 6. Differences of retrieved and “true” zonal means (relative to the latter) versus local natural variability in terms of standard deviation for
the CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages. Results are shown for maximum a posteriori ln(vmr)-
retrieval simulations with SNRs of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5 (red). Note that the
a priori contribution to the retrievals is greater than 50% for standard deviations below 10%, 20%, 50%, 70%, 100%, and 200%, respectively.

Fig. 7. Differences between the mean values and the mean “true” atmospheric state after application of the averaging kernel to the latter
for CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages. Results are shown for maximum a posteriori ln(vmr)-
retrieval simulations with SNRs of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5 (red).

mation in the mean, however, is beyond the scope of this
study.

For intermediate local natural variability and a priori vari-
ance, linear averages of logarithmically retrieved mixingra-
tios are biased low. This is, because the a priori state of the
atmosphere is calculated by logarithmic averaging of the true
distribution. This low bias is not more than the bias between
the logarithmic and linear averages of the “true” distribu-
tion, which is, via the content of priori information in the
retrieval, propagated to the averages of the retrievals. Re-
sults for less ideal a priori information may be different. In
the case of large local natural variability along with largea
priori variance, the bias of the linear average turns high, sim-
ilar to the case of maximum likelihood retrievals but with a

considerably smaller amplitude (less than 5% even for low
SNRs). The positive bias of maximum a posteriori retrieval
averages, however, is not related to the rejection of uncon-
verged retrievals of negative signals (convergence is in our
simplified one-dimensional retrieval always achieved due to
the constraint), but to the dependence of the a priori contribu-
tion to the retrieval solution on the solution itself (see Section
2). As a consequence, retrievals of low signals (either due
to low values ofxn or negative values ofǫn) have a higher
a priori contribution than those of high signals, resultingin
a high bias. The turning point, i. e., where the high bias
due to asymmetric a priori mapping starts to overcompensate
the low bias introduced byxa itself, depends strongly on the
SNR. For SNRs greater than 5, differences start to increase

Fig. 7. Differences between the mean values and the mean “true” atmospheric state after
application of the averaging kernel to the latter for CO (left) and H2O (right). Solid: linear
averages, dashed: logarithmic averages. Results are shown for maximum a posteriori ln(vmr)-
retrieval simulations with SNRs of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light
green), 1.0 (orange), and 0.5 (red).
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8 B. Funke: How to average logarithmic retrievals

Fig. 8. Differences of retrieved and “true” zonal means (relative to the latter) versus local natural variability in terms of standard deviation for
the CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages. Simulations are performed with a modified maximum
a posteriori ln(vmr)-retrieval simulations using a fixed constraint corresponding to climatological variance of 100%. Results for signal to
noise ratios of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5 (red) are shown. The resulting a priori
contributions are 1%, 3.8%, 20%, 33%, 50%, and 80%, respectively.

Fig. 9. Differences of retrieved and linear retrieval response (i.e. averaging kernels applied to the “true” profiles) zonal means (relative to
the latter) versus standard deviation of distributions forthe CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages.
Simulations are performed with a modified maximum a posteriori ln(vmr)-retrieval simulations using a fixed constraint corresponding to
climatological variance of 100%. Results for signal to noise ratios of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0
(orange), and 0.5 (red) are shown.

Fig. 8. Differences of retrieved and “true” zonal means (relative to the latter) versus local
natural variability in terms of standard deviation for the CO (left) and H2O (right). Solid: linear
averages, dashed: logarithmic averages. Simulations are performed with a modified maximum
a posteriori ln(vmr)-retrieval simulations using a fixed constraint corresponding to climatolog-
ical variance of 100 %. Results for signal to noise ratios of 10 (dark blue), 5 (light blue), 2
(dark green), 1.43 (light green), 1.0 (orange), and 0.5 (red) are shown. The resulting a priori
contributions are 1, 3.8, 20, 33, 50, and 80 %, respectively.
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8 B. Funke: How to average logarithmic retrievals

Fig. 8. Differences of retrieved and “true” zonal means (relative to the latter) versus local natural variability in terms of standard deviation for
the CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages. Simulations are performed with a modified maximum
a posteriori ln(vmr)-retrieval simulations using a fixed constraint corresponding to climatological variance of 100%. Results for signal to
noise ratios of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5 (red) are shown. The resulting a priori
contributions are 1%, 3.8%, 20%, 33%, 50%, and 80%, respectively.

Fig. 9. Differences of retrieved and linear retrieval response (i.e. averaging kernels applied to the “true” profiles) zonal means (relative to
the latter) versus standard deviation of distributions forthe CO (left) andH2O (right). Solid: linear averages, dashed: logarithmic averages.
Simulations are performed with a modified maximum a posteriori ln(vmr)-retrieval simulations using a fixed constraint corresponding to
climatological variance of 100%. Results for signal to noise ratios of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0
(orange), and 0.5 (red) are shown.

Fig. 9. Differences of retrieved and linear retrieval response (i.e. averaging kernels applied to
the “true” profiles) zonal means (relative to the latter) versus standard deviation of distributions
for the CO (left) and H2O (right). Solid: linear averages, dashed: logarithmic averages. Simu-
lations are performed with a modified maximum a posteriori ln(vmr)-retrieval simulations using
a fixed constraint corresponding to climatological variance of 100 %. Results for signal to noise
ratios of 10 (dark blue), 5 (light blue), 2 (dark green), 1.43 (light green), 1.0 (orange), and 0.5
(red) are shown.
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