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4TÜBITAK, Marmara Research Center, Materials Institute, Turkey
5Institute of Physics, Baku, Azerbaijan

Received: 25 November 2011 – Accepted: 30 November 2011
– Published: 16 December 2011

Correspondence to: I. Veselovskii (igorv@pic.troitsk.ru)

Published by Copernicus Publications on behalf of the European Geosciences Union.

7499

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 7499–7528, 2011

Linear estimation of
particle parameters

I. Veselovskii et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

An algorithm for linear estimation of aerosol bulk properties such as particle volume, ef-
fective radius and complex refractive index from multiwavelength lidar measurements
is presented. The approach uses the fact that the total aerosol concentration can
well be approximated as a linear combination of aerosol characteristics measured by5

multi-wavelength lidar. Therefore, the aerosol concentration can be estimated from li-
dar measurements without the need to derive the size distribution, which entails more
sophisticated procedures. The definition of the coefficients required for the linear esti-
mates is based on an expansion of the particle size distribution in terms of the measure-
ment kernels. Once the coefficients are established, the approach permits fast retrieval10

of aerosol bulk properties when compared with the full regularization technique. In ad-
dition, the straightforward estimation of bulk properties stabilizes the inversion making
it more resistant to noise in the optical data.

Numerical tests demonstrate that for data sets containing three aerosol backscatter-
ing and two extinction coefficients (so called 3β+2α) the uncertainties in the retrieval15

of particle volume and surface area are below 45 % when input data random uncer-
tainties are below 20 %. Moreover, using linear estimates allows reliable retrievals
even when the number of input data is reduced. To validate the approach, the results
obtained using this new technique are compared with those based on the previously
developed full inversion scheme that relies on the regularization procedure. Both tech-20

niques were applied to the data measured by multiwavelength lidar at NASA/GSFC.
The results obtained with both techniques using the same observations are in good
agreement. At the same time, the high speed of the retrieval using linear estimates
makes the method preferable for generating aerosol information from extended lidar
observations. To demonstrate the efficiency of the method, an extended time series25

of observations acquired in Turkey in May 2010 was processed using the new tech-
nique permitting, for what we believe to be the first time, temporal-height distributions
of particle parameters.
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1 Introduction

Theoretical and experimental studies of the last decade have demonstrated that mul-
tiwavelength (MW) Raman lidars based on a tripled Nd : YAG laser are able to provide
the height distribution of particle physical parameters, such as radius, concentration
and complex refractive index (Ansmann and Muller, 2005). Moreover, up to a certain5

limit such systems can reproduce the main features of the particle size distribution in
the 0.075–10 µm radii range. To invert the aerosol extinction α and backscattering β co-
efficients measured at multiple wavelengths to particle parameters, numerous possible
approaches have been considered but for routine processing of lidar measurements the
inversion with regularization is now the most commonly used (see Muller et al., 1999;10

Veselovskii et al., 2002, 2004, 2009; Kolgotin et al., 2008 and references therein). In
order to adequately address the fundamental non-uniqueness of the lidar data interpre-
tation, a family of solutions is generated in the framework of this approach. Specifically,
a series of solutions is generated using different initial guesses, different aerosol as-
sumptions and different settings of a priori constraints. Each single solution is obtained15

using the regularization technique. Then the individual solutions corresponding to the
smallest residuals are averaged and the result of the averaging is taken as the best
estimate of the aerosol properties.

This approach has demonstrated possibility to provide rather adequate retrieval of
aerosol properties. However it is quite time-consuming, a fact that becomes an is-20

sue when large volumes of data need to be analyzed, as for example from an air- or
space-borne lidar system. Installation of MW lidars on air or space-borne platforms
poses another problem: the retrieval algorithm should be more tolerant to noise in
the input data since reasonable averaging times are likely to be smaller for moving
lidar systems. And finally, in the regularization approach described in (Muller et al.,25

1999; Veselovskii et al., 2002) at least five input optical data (three backscatterings and
two extinctions, so called 3β+2α) are needed to retrieve the particle size distribution
(PSD), but in many applications it would be highly desirable to decrease the number of
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optical channels. So if some approach would permit the retrieval of particle bulk prop-
erties such as volume, surface density, effective radius, complex refractive index from
a reduced number of optical channels, it would be an important improvement. One of
the ways to assess this possibility was proposed by Donovan and Carswell (1997). In
their approach (which they called principal component analysis (PCA)) the expansion5

of the PSD in terms of the measurement kernels permits the particle bulk properties
to be represented as linear combinations of the input optical data (particle extinction
α and backscattering β). The corresponding weight coefficients can be stored in look
up tables, which makes the retrieval very fast. This technique was further explored in
a recent publication (De Graaf et al., 2009, 2010) where different aerosol models were10

used to invert optical data without prior information about the particle refractive index.
The algorithm based on kernels expansion proposed in (Donovan and Carswell,

1997; Graaf et al., 2009, 2010) looks promising and in this study we present the de-
scription of our modification of this technique, which here and below we refer to as
“linear estimation” (LE). To validate LE, we apply it and the full inversion algorithm15

(Veselovskii et al., 2009) to the same data and compare the results. Finally, we apply
LE to an extended series of lidar measurements to evaluate height-temporal variations
of the particle bulk parameters.

2 Algorithm description

The aerosol extinction (α) and backscattering coefficients (β) are related to the particle20

volume size distribution v(r) via integral equations as follows:

gp =

rmax∫
rmin

Kp(m,r)v(r)dr p= (i ,λk)=1,...,N0 (1)

Index p labels the type of optical data (i =α,β) and wavelengths λk ; Kp(m,r) are the
volume kernels (VK) depending on the complex refractive index m=mR − i ·mI and
particle radius r ∈ [rmin,rmax].25
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In vector-matrix form Eq. (1) can be rewritten as:

g=K v (2)

Here v is the column vector with elements vk corresponding to the particle volume
inside radii interval [rk ,rk+1] and K is the matrix containing the discretized kernels as
rows. The volume distribution v(r) can be expanded in terms of the kernels of Eq. (1),5

as prescribed by Twomey (1977). Such an expansion assumes that vector v corre-
sponding to v(r) can be presented as a combinations of the matrix K rows, i.e.

v = v g+v ⊥ =KTx+v ⊥, (3)

where v g is the projection of the volume distribution on the measurement kernels,
while v ⊥ is the residual – the part of volume distribution orthogonal to these kernels10

(K v ⊥ = 0) and xj are the weight coefficients of expansion. Using Eq. (3), Eq. (2) can
be rewritten as:

g=KKT x+K v ⊥ =KKT x (4)

Then, the vector x of the expansion coefficients can be found as:

x=
(

KKT
)−1

g (5)15

and the volume distribution projected on the kernels is

v g =KTx=KT
(

KKT
)−1

g (6)

The residual then can be written as:

v ⊥ = v −v g =
(

I −KT
(

KKT
)−1

K
)
v (7)

Equations (6)–(7) can now be used to evaluate the linear estimations of the unmea-20

sured aerosol characteristics. If there is one or several aerosol characteristics pi
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(i = 1,...,Np) that are not measured but are needed to be estimated using measure-
ments , the dependence of pi on the size distribution can be described as:

p=P v . (8)

Here the elements pi of vector p are the unmeasured aerosol characteristics, and P is
the matrix of the corresponding coefficients. Taking into account Eq. (3) the vector p5

can be expressed as:

p=P(v g+v ⊥)=pg+p⊥ =Fg+D⊥v (9)

Here pg represents the vector of projections of characteristics pi on the measured set
g and p⊥ represents the vector of characteristics pi on the zero-space v ⊥. In other
words, pg can be estimated from g, while the measurements provide no information10

about p⊥. Using Eq. (7) the matrices of coefficients F and D⊥ can be expressed as

F=P KT
(

KKT
)−1

and D⊥ =P
(

I−KT
(

KKT
)−1

K
)

(10)

The elements of matrix F can be computed and stored in the look-up tables making
computations of pg very fast. The residual term p⊥ can’t be measured with the avail-
able set of observations g, but can be estimated from numerical modeling for typical15

situations. The situation is particularly favorable when particle bulk property p (for
example, volume, surface, number density) needs to be estimated (Donovan and Car-
swell, 1997). In this case the matrix P contains the weight coefficients for different
integral properties as rows. For example, for volume (i = 1) P1k = 1, for surface (i = 2)
P2k =

3
rk

and for number density (i = 3) P3k =
3

4πr3
k

. In such case, the existence of the20

zero space v ⊥ does not have much importance and the residual p⊥ is generally ex-
pected to be small, because the observations g are known to be strongly sensitive
to aerosol total concentrations, while being less sensitive to the details of the size
distribution.
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Thus, the projection pg can be estimated quickly from the observations g without
calculating the full size distribution v , i.e. without performing a full inversion of Eq. (2).
This is a significant advantage of the using the linear estimates pg as compared to the
more conventional approach which yields PSD (e.g., Muller et al., 1999; Veselovskii
et al., 2002, 2004, 2009; Kolgotin et al., 2008). Indeed, the calculation of pg is fast5

and defining the coefficients F is straightforward. Following Eq. (10) the calculation of
F involves the inversion of matrix KKT. In principle this operation can be ambiguous
if KKT is ill-conditioned. However, in particular cases when only a very few measured
characteristics gi are used (for example, in our case we use maximum 5 different ob-
servations), the matrix KKT has small dimension (maximum 5×5) and in the case such10

as here that each of the five measured characteristics gi is quite different, is well-posed
and can be inverted exactly. By contrast, the conventional approaches that provide the
size distribution v and must solve Eq. (2) may face significant difficulties. For example,
the least square solution of Eq. (2) is:

v =
(

KTK
)−1

KTg. (11)15

Here the matrix KTK has to be inverted. This matrix has dimension Nv ×Nv , where Nv

is the dimension of size distribution v . Therefore, matrix KTK has significantly larger
dimension than matrix KKT. For example, the aerosol retrievals from sun-photometer
observations discussed by Dubovik and King (2000) use Nv = 22. In such situations
KTK is known to be ill-conditioned and the inversion of this matrix becomes ambiguous.20

Therefore in many practical applications different types of constraints can be used to
achieve unique and stable solution of Eq. (2). For example, it can be constrained based
on smoothness of the solution as suggested by Phillips (1962) and Twomey (1977).
However, the use of smoothness or other a priori constraints may require rather so-
phisticated developments (see discussion by Dubovik, 2004). We should mention also25

that in most of algorithms for lidar data inversion (e.g., Muller et al., 1999; Veselovskii
et al., 2002, 2004, 2009; Kolgotin et al., 2008), the size distribution is described by
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a much smaller number of parameters than 22 (typically Nv = 5–7). This reduces the
difficulties associated with the inversion of matrix KTK, however this also may lead to
the introduction of additional errors in the algorithm, since some features of the size
distribution are neglected. In this respect the coefficients F can be calculated using
the detailed size distribution with very large Nv , since matrix KKT has the same di-5

mension as number of rows of K. Correspondingly, coefficients F can be always found
accurately.

The measured optical data g
∗ contain the error ∆g

g∗ =g+∆g (12)

Thus the uncertainty of particle parameters estimation is:10

∆p=Fg∗−p=F(g+∆g)− (Fg+D⊥v )=F∆g−D⊥v (13)

Then, if the measurement errors ∆g are random, unbiased (i.e.
〈
∆g

〉
= 0) and have

covariance matrix
〈
∆g∆

T
g

〉
=Cg, the corresponding covariance matrix of retrieval un-

certainties can be written as

Cp =
〈(

F∆g−D⊥v
)(

F∆g−D⊥v
)T
〉
=Crandom

p +Csystematic
p (14)15

Here, term Crandom
p represents the contribution of the random measurement errors ∆g

to Cp and Csystematic
p represents the non-random part of the errors appearing due to

existence of v ⊥ which is orthogonal to the kernels K. These terms can be expressed
as:

Crandom
p =F

〈
∆g∆

T
g

〉
FT =FCgFT =P KT

(
KKT

)−1
Cg

(
KKT

)−1
KPT, (15)20

Csystematic
p = p⊥p

T
⊥ =D⊥

(
vvT

)
DT
⊥

= P
(

I−KT
(

KKT
)−1

K
)(

v v T
)(

I−KT
(

KKT
)−1

K
)

PT (16)
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The first term can be calculated using the covariance matrix of the measurements Cg
and the second term can be estimated using a priori estimates of v . For example,
our modeling experiments in the next section show that p⊥ have generally rather small
values and, therefore, the accuracy of the retrieval of p performed using the “projection”
pg (see Eq. 9) is acceptable in the majority of cases.5

All equations given above are written with the assumption that the matrix K in Eq. (2)
and, therefore, matrix F in Eq. (10) are known accurately. However, this is not really the
case since K depends on the complex refractive index. Therefore, if the actual value of
the complex refractive index m(λ) is not known and we use an estimate m̃(λ), instead
of Eq. (10) we have:10

p̃= P̃(v g+v ⊥)= P̃ K̃T
(

K̃K̃
T
)−1

g+ P̃ ṽ⊥ (17)

or it can be written in the same manner as Eq. (9)

p̃= p̃g+ p̃⊥ = F̃g+ D̃⊥v (18)

Correspondingly, if we use an estimate of the complex refractive index, the estimate
p
∗
g = Fg∗, should be replaced by p̃

∗
g = F̃g

∗
. The corresponding uncertainties of the15

retrieval can be estimated as:

∆p = p̃
∗
g−p= F̃g

∗− (pg+p⊥)= F̃(g+∆g)− (Fg+D⊥v )
= F̃∆g−∆Fg−D⊥v = F̃∆g−∆FKv −D⊥v = F̃∆g− (∆FK+D⊥)v

, (19)

where ∆F=F− F̃. The covariance matrix of uncertainties is:

Cp =
〈(

F̃∆g− (∆FK+D⊥)v
)(

F̃∆g− (∆FK+D⊥)v
)T

〉
=Crandom

p +Csystematic
p , (20)

where20

Crandom
p = F̃

〈
∆g∆

T
g

〉
F̃T = F̃CgF̃T = P̃ K̃T

(
K̃K̃

T
)−1

Cg

(
K̃K̃

T
)−1

K̃P̃
T
, (21)
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Csystematic
p = (∆FK+D⊥)

(
v v

T
)

(∆FK+D⊥)T

=∆FK
(
v v

T
)

KT (∆F)T+∆FK
(
v v

T
)

DT
⊥

+D⊥

(
v v

T
)

KT (∆F)T+D⊥

(
v v

T
)

DT
⊥

(22)

Thus, if we compare Eqs. (15) and (20), the only difference is that Eq. (20) uses matrix
of coefficients F̃ instead of F. It is reasonable to expect that the magnitudes of elements
of F̃ are close to those of F since the optical characteristics generally do not exhibit very
high sensitivity to variations of m(λ). Therefore one can expect that the components of5

Crandom
p given by Eq. (21) will have magnitudes close to those given by Eq. (15).

By contrast Csystematic
p in Eq. (22) comparing to Csystematic

p of Eq. (16) has three extra
terms containing ∆F. If ∆F=0 Eq. (22) coincides with Eq. (16). Another observation is
that if we have a rather complete set of observations g

∗, so that we do not have a zero-
space, i.e. D⊥ = 0, then Eq. (14) retains only one first term Crandom

p , while Eq. (20) still10

retains the second term that represents the systematic bias:

Cp =Crandom
p +Csystematic

p = F̃CgF̃T+∆FK
(
v v T

)
KT (∆F)T , (23)

Thus, the use of estimate m̃(λ) that is different from the actual value of complex refrac-
tive index m(λ) always leads to the appearance of a systematic error term . Moreover,
it is rather clear that Csystematic

p may easily dominate over Crandom
p in Eq. (23). This15

becomes rather obvious when using g=Kv in Eq. (23):

Cp = F̃CgF̃T+∆F
(
ggT

)
(∆F)T (24)

Here the first term contains Cg =
〈
∆g∆

T
g

〉
– the covariance matrix of errors ∆g of g

and the second term contains the matrix gg
T. Since the magnitude of errors ∆g are

generally much smaller than the magnitudes of measurements g, the elements of Cg20
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are much smaller than gg
T . Therefore, even if ∆F = F− F̃ is not very significant the

magnitude of the second term of Eq. (23) is likely to remain considerable.
Thus, if the sensitivity of g∗ to m(λ) is high, the errors due to wrongly chosen m(λ) can

be much higher than errors due to measurement uncertainties and existence of zero-
space. At the same time if the sensitivity of g∗ to m(λ) is high, and set of observations5 (
g
∗)T =

(
g∗

1;g∗
2;...;g∗

N

)
is quite representative we can attempt to estimate m(λ) from

available observations. Specifically, we can choose one optical data g∗
j and estimate

it from the rest of N −1 data using Eq. (10), as suggested in (De Graaf et al., 2009,
2010). By doing so for each optical data, we get N estimates of g̃j that we compare
with the observations g∗

j . It should be mentioned that we can’t make these estimates10

using all N optical data, because in that case g̃j and g∗
j coincide. If the sensitivity of

g
∗ to m(λ) is high the magnitudes of errors ∆gj = g̃−

j g
∗
j should strongly depend on the

assumed value of m(λ). Correspondingly, if we obtained the set of estimates g̃j (m)
using different assumed values of m(λ) we can attempt to estimate m(λ) by searching
for the smallest errors ∆gj = g̃j −g∗

j , for example by searching for the minimum of the15

following quadratic form:

Ψ(m)=
(
g̃(m)−g∗)TC−1

g
(
g̃(m)−g∗) (25)

If the sensitivity of to m(λ) is high this form should have a well-defined minimum and
m(λ) can be estimated using the available measurements g

∗. In our study we assume
that the errors of the measurements are the same for all channels, and refractive in-20

dex is spectrally independent inside the spectral range that is considered. Then the
refractive index is found from the minimum of discrepancy:

ρ=

N∑
p

(
g∗
p− g̃p(m)

)2

N
(26)

Since there is no a priori knowledge about the particle size distribution and refractive
index we find the discrepancy ρ for all predefined values of rmin, rmax, lying in the25
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interval [0.075 µm, 10 µm], and for the set of values mR and mI from respective intervals
[1.35, 1.65] and [0.00, 0.03] just as we did previously in our regularization algorithm
(Veselovskii et al., 2002). Normally the total number of predefined combinations does
not exceed NT = 3000. Based on our previous experience (Veselovskii et al., 2002)
we prefer to average the solutions near the minimum of discrepancy rather than take5

a single solution. Such an averaging procedure stabilizes the inversion. To choose the
averaging interval the solutions are ranged in accordance with their discrepancy from
minimum ρmin to maximum ρmax. Normally 1 % of solutions are averaged.

The estimation of the refractive index from the minimization of ρ in Eq. (20) is illus-
trated by Fig. 1. The discrepancy ρ and the uncertainty of the volume retrieval εV are10

given for different assumptions of the value of mR . Synthetic input data were generated
assuming a log-normal aerosol distribution dV (r)

d lnr with modal radius r0 = 1 µm and vari-
ance 0.4; the model refractive index is m= 1.5− i0.005. Both ρ and εV have minima
at mR = 1.5 corresponding to the “true” value of mR , thus the minimization of the dis-
crepancy minimizes the uncertainty of the particle volume estimation. Similar plots can15

be provided also for the imaginary part of the refractive index. The presence of noise
in the input data naturally increases the minimum value of discrepancy ρ that can be
achieved and thus the uncertainty of the refractive index retrieval. The actual increase
of the retrieval uncertainly also depends on the particle size distribution and specific
realization of errors ∆g in the optical data. To evaluate the corresponding uncertainties20

of the estimation of particle parameters numerical simulations using different types of
PSD and different input errors can be performed as we will illustrate in the next section.

3 Estimation of retrieval uncertainties

Numerical simulation is used here to test the algorithm and to estimate the retrieval
uncertainties. In these simulations we used synthetic input optical data assuming a log-25

normal aerosol distribution dV (r)
d lnr with r0 =0.2, and 2 µm, which are typical values for the

7510

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 7499–7528, 2011

Linear estimation of
particle parameters

I. Veselovskii et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

fine and the coarse mode particles (e.g. see Dubovik et al., 2002), and the variance in
all cases is 0.4. As discussed in the previous section, one of the principal questions in
the application of the LE technique is the estimation of the residual v ⊥ in Eq. (3). This
residual will depend on the PSD and the refractive index. The computations performed
demonstrate that for all values of m considered here, the residual v ⊥ is below 4 % and5

15 % for r0 = 0.2, and 2 µm, respectively. So the existence of a zero-space does not
present a serious limitation to the LE technique for typical atmospheric aerosols.

To evaluate the effect of input uncertainties, the random errors in the range of [0,±ε]
were added to the data and from these distorted optical data, the particle param-
eters were retrieved. We assume that the uncertainties in all measurement chan-10

nels are equivalent so that all the diagonal elements of the error covariance matrix

Cg =
〈
∆g∆

T
g

〉
are the same. The procedure was repeated 1000 times allowing robust

statistics to be gathered. The retrieval uncertainties are presented in the form of prob-
ability distributions such as shown in Fig. 2 where a typical cumulative probability of
volume density uncertainty εv is shown. For every value of εv the plot gives the prob-15

ability that the retrieval uncertainty is below this value. For example, from the plots in
Fig. 2 we can conclude that in 90 % of the cases the spread in the values of the volume
estimation is below εV ≈ 20, 35, 50 % for input errors ε= 10, 20, 30 %, respectively.
We take these values to represent the uncertainty in the retrieval. Thus the uncertainty
rises approximately linearly with ε and the method can provide reasonable estimations20

even for 30 % input errors.
The results shown in Fig. 2 were obtained using volume kernels (VK) of Eq. (1), but

Eq. (1) can be written also using other types of kernels corresponding to the number
dN
dr , surface dS

dr or volume density size distribution dV
d lnr in logarithmic space. All these

kernels (henceforth referred to as NK, SK and VLK) can also be used in retrievals.25

Donovan and Carswell (1997) reported that in their approach for the retrieval of sur-
face density the surface kernels were preferable, while for volume retrieval the volume
kernels were better suited. In our study, we also tested different types of kernels. We
didn’t notice a significant difference between these kernels for small particles, but for
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particles in the coarse mode the volume kernels provided slightly better estimations of
all parameters. The difference with the results of Donovan and Carswell (1997) may be
due to the optimization of inversion intervals in our algorithm. All retrievals presented
below were obtained with the volume kernels.

The simulation results are summarized in Table 1 showing the uncertainty of volume5

(εV), surface (εS), number (εN) density, effective radius (εReff
), and real part of refractive

index (εmR
) retrieval (taken at 90 % probability level) for input random uncertainties

of ε= 0, 10, 20 %. The effective radius was estimated from the ratio of volume and
surface density: reff = 3 V

S . The results are given for r0 = 0.2 and 2 µm to separately
characterize uncertainties for small and big particles. In the absence of input errors,10

the uncertainties of the retrieval are due to the zero-space and the unknown value of
the refractive index as follows from Eq. (22). Minimization of discrepancy (26) keeps the
uncertainty of the volume estimation below 5 % for small particle sizes characteristic of
the fine mode and below 15 % for particles with sizes more consistent with the coarse
mode particles.15

From the results shown in Table 1, several conclusions can be made. First of all,
the retrieval is stable for both small and big particles and an uncertainty of volume es-
timation below 45 % can be obtained even for 20 % input errors. For small particles
the uncertainties of surface, volume and effective radius estimation are close, while
for big particles the surface density is the most stable parameter in retrieval where20

the corresponding uncertainty of εS is less than 30 % even for 20 % input errors. The
most unstable parameter in the retrieval is the number density where the correspond-
ing uncertainty for particles with r0 = 2 µm is above 100 % for 20 % input errors. The
particle refractive index can be retrieved more accurately for big particles, where the
corresponding uncertainty of the real part is below ±0.04 for ε= 20 %, while for small25

particles this uncertainty increases to ±0.07.
In our retrievals we considered the full data set 3β+2α and the reduced one 3β+1α,

where extinction at 532 nm was removed. The important finding is that the uncertain-
ties in the estimates of particle parameters from 3β+1α data in most cases did not
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exceed the corresponding values for 3β+2α, thus it seems apparent that the number
of input data can be decreased when only particle bulk properties are desired. Evalua-
tion of retrieval uncertainties for different combinations of the optical data and different
particles characteristics is in our plans but beyond the scope of present paper.

The imaginary part of the refractive index is one of the most difficult parameters to5

estimate from multi-wavelength lidar as the kernels are not very sensitive to changes
in the value of mI . As already mentioned, the inverse problem (1) is strongly underde-
termined, so the solution depends on the constraints used, in particular on the range
of refractive index values considered during the minimization of the discrepancy (26).
To evaluate the influence of the range of mI considered on the retrievals, we performed10

simulations for three intervals: 0<mI <0.01, 0<mI <0.02 and 0<mI <0.03 assuming
10 % errors in input data and model value m= 1.5− i0.005. Computations performed
for particles with r0 = 2 µm show that the uncertainties in the estimate of mI for these
intervals are 50, 100 and 140 %, respectively. Hence, for reasonable estimation of the
imaginary part of the refractive index it is very desirable to have a priori information15

about the aerosol type to constrain the range of mI that is considered.
To illustrate the influence of mI on the estimation of other parameters, Fig. 3 shows

the cumulative probability plots for the volume retrieval of particles with r0 = 0.2 and
2 µm using the three ranges of mI mentioned above. For particles in the coarse mode
the uncertainty in εV increases from 25 to 35 % when maximal value of mI rises from20

0.01 to 0.03. For particles in the fine mode the retrieval is essentially insensitive to the
range of mI considered. Thus, in spite of the ambiguity in the retrieval of the imaginary
part, the uncertainty in mI has little influence on the estimation of the other parameters.

4 Comparison with regularization retrievals

To validate the approach described in Sect. 2, the linear estimation (LE) and regu-25

larization (Veselovskii et al., 2002) algorithms were applied to the same experimental
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data obtained by multiwavelength Raman lidar at NASA/GSFC in Greenbelt, MD dur-
ing August–September, 2006 (Veselovskii et al., 2009). The lidar is based on a tripled
Nd : YAG laser and provided three particle backscattering and two extinction coeffi-
cients. The retrieval of particle microphysical parameters from these 3β+2α data
using inversion with regularization was discussed in our earlier publication, where5

good agreement between AERONET and lidar observations was reported (Veselovskii
et al., 2009).

Figure 4 shows the vertical profiles of aerosol backscattering and extinction coef-
ficients measured at 355, 532 and 1064 nm wavelengths on 15 August 2006. The
backscattering shows a maximum at 1250 m and a secondary maximum at 1900 m.10

The top of the boundary layer is at approximately 2250 m. The particle size distribution
for this day was represented mainly by the fine mode (Veselovskii et al., 2009). The
vertical profiles of volume density, effective radius and real part of refractive index ob-
tained with the regularization and LE approaches are shown in Fig. 5 where the results
obtained with both techniques are similar. The volume density profile has a similar15

shape as the particle backscattering, meaning that the particle radius and refractive
index don’t change significantly with height. The retrieved effective radius, as shown in
Fig. 5b, is about 0.22±0.055 µm for all heights. It should be noted that the vertical pro-
file of the effective radius obtained with LE oscillates less than the profile obtained with
regularization, suggesting a more stable inversion. The refractive indices retrieved with20

both techniques agree reasonably well. The real part of the refractive index increases
slightly rises with height from 1.37±0.05 to 1.43±0.05, the imaginary part is less than
0.005 for all heights.

As discussed in the previous section, the number of input optical data can be reduced
when only bulk particle properties are desired. To test this claim, we also performed25

the inversion using the reduced set of optical data given by 3β+1α, where extinction at
532 nm is removed. The corresponding results are also shown in Fig. 5. The inversion
using either the full (3β+2α) or reduced (3β+1α) data sets leads to similar results,
supporting the conclusions made from the numerical simulations. This comparison
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of the regularization and LE approaches illustrates that the LE technique can provide
trustworthy estimations of particle parameters. At the same time, the high speed of
the retrieval using linear estimates makes the method preferable for generating bulk
aerosol information from long-term series of lidar observations.

5 Inversion of long-term series of multiwavelength lidar observations5

To test the retrieval of time-sequences of particle parameters we used data from the
multiwavelength Raman lidar at TUBITAK Research Center located in the vicinity of
Istanbul, Turkey. The lidar is based on a frequency-tripled Quantel Brilliant B Nd : YAG
laser with 10 Hz repetition rate. The pulse energies at λ= 355, 532 and 1064 nm are
200, 250 and 300 mJ, respectively. The backscattered light is collected by a 40-cm10

aperture Newtonian telescope inclined so that the elevation angle is 40 degrees to the
horizontal. The outputs of the detectors are recorded at 7.5 m range resolution us-
ing a Licel data acquisition system that incorporates both analog and photon-counting
electronics. The system is able to monitor backscattering at 355, 532, 1064 nm, Raman
nitrogen signals at 387, 608 nm and Raman water vapor signal at 408 nm. A polarizing15

beamsplitter cube in the 355 nm channel allows simultaneous monitoring of co- and
cross-polarized components of backscattered radiation. In each file 3000 laser pulses
were accumulated, thus the temporal resolution of the measurements is 5 min.

The measurements were performed during May 2010 when weak ash layers from the
Eyjafjallajökull volcanic eruption periodically reached Turkey. The temporal evolution of20

the particle depolarization ratio δp at 355 nm during the night of 20–21 May is shown in
Fig. 6. The highly depolarizing volcanic layer with maximum particle depolarization ratio
of approximately δp =20 % appears at 22:00 UTC and is observed for about a period of
approximately four hours at 2–3 km heights. During the same time but below altitudes
of 2 km, the particle depolarization ratio didn’t exceed 5 %. The depolarization ratio in25

the ash layer is lower than the values of δp ∼ 40 % that were observed over Northern
Europe (Ansmann et al., 2010), implying that the ash may have been mixed with more
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locally produced aerosols. The analysis of the meteorological situation for this day is
given in Papayannis et al. (2011). The same figure shows the temporal variation of
the aerosol extinction at 355 nm. The extinction is calculated from the Raman nitrogen
signal (Ansmann et al., 1992). To decrease the uncertainty we reduced the height
resolution up to 200 m and introduced a 3 point sliding average in the temporal domain.5

Comparing Fig. 6a and b we conclude that the optical depth of the ash layer is quite
low (below 0.05). The Angstrom exponent calculated from the extinction coefficients
at 355 and 532 nm was about 1.8 in 0.8–2 km height range, meaning that the particles
are relatively small.

To retrieve the time-sequences of particle parameters, we used the 3β+1α data set,10

because the uncertainty of extinction at 532 nm was too high for the chosen temporal
resolution. It also allowed us to test the ability of a reduced dataset to provide useful
time series results. Figure 7a shows the time-height distribution of the particle volume
density, which is similar to the time-height extinction distribution in Fig 6b. The region
of enhanced volume density is contoured and shown also in Fig. 5a in order to illus-15

trate that it coincides well with the region of enhanced particle extinction. This implies
that the particle size and refractive index didn’t vary significantly in this region. In the
color maps in Fig. 7b,c showing effective radius and the real part of refractive index, the
regions where the particle extinction is low are removed, because no reliable retrieval
could be performed there. The particle effective radius is about 0.22 µm in 0.8–2 km20

height range and it doesn’t vary significantly over the night. Some increase of effective
radius is observed near the ash plume. The retrievals inside the ash layer should be
taken with care because ash particles are of irregular shape and the retrieval is based
on Mie kernels, assuming a spherical particle shape, that introduces significant uncer-
tainties. In particular the real part of refractive index is significantly underestimated25

with this approach (Veselovskii et al., 2010). For the treatment of non-spherical parti-
cles, the kernels corresponding to randomly oriented spheroids (Dubovik et al., 2006)
can be implemented as previously shown (Veselovskii et al., 2010), but that effort goes
beyond the scope of present paper.
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The real part of refractive index shown in Fig. 7c varies in the range of 1.39–1.45.
The marked region is characterized by a value mR ≈ 1.4, indicating that the aerosol
contains a significant amount of water. At low altitudes after midnight some enhance-
ment of mR up to 1.45 is observed. As mentioned, above 2 km the real part of the
refractive index can be underestimated due to particle non-sphericity. The imaginary5

part of refractive index was estimated as 0.006±0.003. The enhancement of mI up to
0.01 was observed inside the ash layer, but again, for accurate quantification of mI in
this layer the spheroidal model should be used. Thus obtained results look reasonable
and demonstrate that the use of linear estimates makes possible the fast retrieval of
time-height distributions of particle parameters from extended lidar observations. The10

inversion of optical data to the aerosol parameters shown in Fig. 7 took approximately
5 min using a standard laptop computer illustrating the potential of the LE technique for
processing large volumes of the MW lidar data.

6 Conclusions

An algorithm for the linear estimation of aerosol bulk properties such as particle volume15

and complex refractive index from multiwavelength lidar measurements is presented.
The particle concentration is estimated from a linear combination of aerosol backscat-
tering and extinction coefficients measured by multi-wavelength lidar while avoiding the
retrieval of the particle size distribution. This approach is shown to both increase the
speed and stability of the inversion. The definition of the coefficients required for the20

linear estimates is based on an expansion of the particle size distribution in terms of
the measurement kernels. Once the coefficients for the linear estimates are estab-
lished, the approach allows very fast retrieval of aerosol bulk properties. In addition,
the straightforward estimation of bulk properties stabilizes the inversion making it more
resistant to noise in the optical data: the retrieval doesn’t fail even for input random25

uncertainties as large as 30 %. The uncertainties of the retrieval derived from numeri-
cal simulations are close to the values reported previously for the full inversion scheme
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that was used to derive the entire family of solutions using the regularization procedure
(Veselovskii et al., 2002, 2004). The application of both techniques to the same lidar
measurements did not reveal significant differences in the results of the two retrieval
approaches.

An important finding of this study is that it is feasible to reduce the number of input5

optical characteristics and still retrieve useful bulk aerosol properties. A comparison
of inversions using 3β+2α and 3β+1α data demonstrates that excluding particle
extinction at 532 nm does not significantly degrade the retrieval. At the same time,
removing extinction at 355 nm enhances uncertainties of retrieval.

The high speed of the retrieval using linear estimates makes the method prefer-10

able for generating aerosol information from long-term series of lidar observations. To
demonstrate the efficiency of the method long-term series of aerosol physical proper-
ties derived from lidar observations performed in Turkey in May 2010 were processed.
As a result, the multi-wavelength lidar data, for the first time, were inverted into time-
height distributions of particle parameters. We should mention though that the algo-15

rithm studied here should not be considered as a replacement for the full inversion
(regularization) approach, because in many applications 3β+2α data exist and the
retrieval of PSD is critical. However, if the data set is reduced, the current work demon-
strates clearly that useful physical information may still be retrievable.
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Table 1. Uncertainties of particle parameters estimation. Results are obtained for PSDs dV
d lnr

with modal radii 0.2 µm and 2 µm for input errors ε=0, 10, 20 %.

r0, µm 0.2 2
Input random 0 10 % 20 % 0 10 % 20 %
uncertainties

εV , % 5 20 35 15 30 45
εS , % 5 20 45 2 10 30
εReff

, % 5 25 40 15 25 35
εN , % 10 40 60 25 75 110
εmR

0.01 0.05 0.07 0.015 0.025 0.04
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Fig. 1. Dependence of discrepancy ρ and uncertainty of particle volume estimation εV on the
real part of refractive index. Simulation was performed for r0 =1 µm and m=1.5− i0.005.
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Fig. 2. Cumulative probability of uncertainty εv of volume density retrieval from 3β+2α data
with input errors ε = 10, 20, 30 %. Simulation was performed for r0 = 0.2 µm using volume
kernels.
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Fig. 3. Uncertainty of particle volume estimation for different ranges of considered mI : [0, 0.01],
[0, 0.02], [0, 0.03]. Simulation was performed for distribution dV

d lnr with (a) r0 = 0.2 µm and (b)
r0 =2 µm. Input errors are ε=10 % and model refractive index m=1.45− i0.005.

7524

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 7499–7528, 2011

Linear estimation of
particle parameters

I. Veselovskii et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Vertical profiles of aerosol backscattering (solid lines) and extinction (dashed lines)
coefficients measured at 355, 532 and 1064 nm wavelengths on 15 August 2006.

7525

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 7499–7528, 2011

Linear estimation of
particle parameters

I. Veselovskii et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. Vertical profiles of (a) particle volume density, (b) effective radius, (c) real part of refrac-
tive index retrieved with LE approach from 3β+2α and 3β+1α data and with regularization
approach from 3β+2α data.

7526

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/7499/2011/amtd-4-7499-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 7499–7528, 2011

Linear estimation of
particle parameters

I. Veselovskii et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 6. Particle (a) depolarization ratio and (b) extinction at 355 nm measured near Istanbul on
20 May 2010. Vertical resolution is 30 m for depolarization and 150 m for extinction.
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Fig. 7. Time-series of (a) particle volume density; (b) effective radius; (c) real part of refractive
index retrieved from measurements on 20 May 2010.
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