
TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 1 of 16

Transient signal flagging algorithm

definition for radiance data

Summary: This document provides the description of transient signal flagging
algorithm for radiance data to be implemented in the GDPS. The function is
described with the associated input and output data.
.

 Date Signature
Author: Q. L. Kleipool July 12, 2005

Checked: N. Rozemeijer

Approved: M. Dobber

Archive: R. Noordhoek

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 2 of 16

DISTRIBUTION LIST
Pieternel Levelt KNMI

Marcel Dobber KNMI

Bert van den Oord KNMI

Nico Rozemeijer TriOpSys

M. ter Linden Dutch Space

V. Schenkelaars Dutch Space

T. Watts Dutch Space

Harry Förster NIVR

CHANGE STATUS
Issue Date Author Comments Affected

pages
1 June 13, 2005 Q. L. Kleipool Initial Version All
2 July 12, 2005 Q. L. Kleipool modified tables for the OPF 8

References
• [rd_01] Wirth, Niklaus, Algorithms + Data structures = Programs, p. 84. Prentice Hall,

1976, ISBN: 0130224189

Acronyms
CCD : Charge Coupled Device

OMI : Ozone Monitoring Instrument

OPF : Operational Parameter File

SAA : Southern Atlantic Anomaly

SNR : Signal to Noise Ratio

UV : Ultra Violet

VIS : Visual

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 3 of 16

1 Transient signal flagging algorithm for radiance data
It has been observed that OMI is not perfectly shielded from radiation events in its current
space environment. Radiation that impinges on the two OMI CCD devices introduce
transient signals (i.e. spikes) in the observations. These spikes manifest themselves as
singular events localized in space and time; i.e. only a single pixel is hit at a time, and this
event can not be noticed in the next measured image.

The transient pixel flagging algorithm for radiance data will work on partially processed
earthshine data. The algorithm shall be executed after the slit irregularity correction and
before the radiance sensitivity conversion. The algorithm requires radiance data and the
associated noise as input. Both have to be expressed as electrons per second to allow
measurements with different exposure times to be mixed. Additional input data like the
thresholds have to be taken from the OPF data. The algorithm will work in a pipeline
environment as long as the previous CCD readout is remembered. This step is necessary to
normalize each frame.

1.1 Algorithm description
The algorithm is based on comparison of a measured image (frame) to its predecessor
image by dividing with that image. Because radiance measurements are not expected to
vary widely on short time-scales, this ratio will be close to unity. An additional smoothing can
be applied per row in the column (i.e. the wavelength) direction. This holds because a
change in ground-scene over time will in general manifest itself as a smooth change of the
measured spectrum. If each row of the image is divided by a smooth version of that same
row, the aforementioned fraction will be even closer to unity. The smooth version of the row
under inspection is generated using a running median filter (like a boxcar filter) with a
variable width. The same approach can be used to apply additional smoothing per column in
the row direction. The algorithm does not flag the pixel if the signal-to-noise-ratio is too low.
This in order to prevent nearly all pixels with low radiances to be flagged; the minimum
required SNR is a tuneable parameter. Based on empirical observations, thresholds can now
be defined that can distinguish between a ‘true’ measured change and a single radiation
event. These thresholds are defined in the operational parameter file (OPF).

1.1.1 Applicable area
The transient flagging algorithm for radiance data should only work on the optic regions of
the two CCD channels, i.e. the UV1, UV2 and VIS sub-channels.

1.1.2 Mixed orbits
Currently orbits are not foreseen that contain a combination of global measurements and
measurements with another binning factor like spatial zoom, super zoom or spectral zoom.
However the algorithm should check if the current frame is of the same type of the previous
frame to ensure that the division is valid. If this is not the case, the sequence should be
considered to restart, i.e. no pixels are flagged, the frame is stored, and the process should
proceed to the next frame.

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 4 of 16

1.1.3 Flagged data handling
Pixels that have one of the following flags raised should be ignored by the transient detection
algorithm:

• Dead Pixel

• Missing Pixel

• Processing Error

1.1.4 Properties of the median filter
• The median filter works like a boxcar average, with the difference that the filtered

value are not calculated by the mean, but by the median.

• The width of the median filter is the amount of pixels that are included in the
calculation of the median value.

• If the width is an odd number, the median value is the middle number.

• If the width is an even number, the median value is the mean of the two middle
numbers.

• At the edges, the filter should fill all values from the edge to the width with the
median value of the width. Example: if the width equals five than all five values at the
edge are filled with the median value of these five elements; note that all these five
elements are same. This feature is required to ensure that spikes at the edges can
be found.

• If the OPF median width equals zero or one do nothing, i.e., skip smoothing and
flagging in that direction.

• If the OPF median width is less than zero take the median of the whole array

• If the OPF median width is greater than one then smooth the row data using the
specified width

1.1.5 Computational sequence

1. Determine whether the current frame is the first radiance frame in the current file. If
this is true then store this frame in a buffer, raise no transient flags and proceed to
the next frame.

2. Check if the previous frame has the same number of rows, number of columns and
binning factor as the current frame. If this is not true then store the current frame in
a buffer, raise no transient flags and proceed to the next frame.

3. Divide the current frame by the previous frame which is stored in the buffer. Prevent
division by zero by padding with ones (1.0) if necessary. Also pad all pixels for which
one of the flags specified in section 1.1.3 is raised.

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 5 of 16

4. Loop over all rows in the frame. Use a median filter to calculate a smooth version of
each row of data from step 3. The width of this filter varies per optic region and is set
in the OPF.

5. Divide the current row by the smoothed version of the row. Check for division by zero;
if necessary pad with ones (1.0)

6. Loop over all pixels in the current row. For each pixel in this row determine whether
the value calculated in step 5 minus one exceeds the allowed spike threshold as set
by the OPF, and store this flag locally.

7. Repeat from step 4 for all rows.

8. Loop over all columns in the frame. Use a median filter to calculate a smooth version
of each column of data as calculated in step 3. The width of this filter varies per optic
region and is set in the OPF.

9. Divide the current column by the smoothed version of the column. Check for division
by zero; if necessary pad with ones (1.0)

10. Loop over all pixels in the current column. For each pixel in this column determine
whether the value calculated in step 9 minus one exceeds the allowed spike
threshold as set by the OPF, and store this value as another flag.

11. Repeat from step 8 for all columns.

12. For all pixels check if the signal-to-noise-ratio (SNR) of exceeds the SNR-threshold
as set by the OPF. In case the SNR cannot be calculated due to flagging, then
calculate no transient flag.

13. For each pixel check whether the flag from step 6 or 10 was raised (OR function).

14. Raise the transient flag for each pixel that has passed the conditions calculated in
step 10 and 11 (AND function).

15. Store the current frame in the buffer in order to normalize the next frame.

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 6 of 16

1.1.6 Equations

),,(_),,(__),,(_
),,(__),,(__),,(_

)(___),,(__),,(__
)(___),,(__),,(__

)(__),,(),,(_
),,(
),,(),,(

1
),,(__

),,(_),,(__

1
),,(__

),,(_),,(__

))(___),,,(_(),,(__
))(___),,,(_(),,(__

)1,,,(
),,,(),,(_

mjiflagspikemjiflagvalidsnrmjiflagtransient
mjicolflagspikemjirowflagspikemjiflagspike

mcolthresholdspikeopfmjicollevelspikemjicolflagspike
mrowthresholdspikeopfmjirowlevelspikemjirowflagspike

mthresholdsnropfmjisnrmjivalidsnr
mjinoise
mjisignalmjisnr

mjirowfilteredmedian
mjisignalnormalizedmjirowlevelspike

mjicolfilteredmedian
mjisignalnormalizedmjicollevelspike

mrowwidthmedianopfmallisignalnormalizedMEDIANmjirowfilteredmedian
mcolwidthmedianopfmjallsignalnormalizedMEDIANmjicolfilteredmedian

fmjisignal
fmjisignalmjisignalnormalized

∧=
∨=

≥=
≥=

≥=

=

−=

−=

=
=

−
=

1.1.7 Definition of variables
In table 1 to 3, the description of the variables are given. The following abbreviations are
used in the tables. Column C describes the characteristic of the variable (I=Input, L=Local,
O=Output). Column D describes the type (df=float, ui=unsigned integer). Column U
describes the dimension (dl=dimensionless).

variables descriptive name C D U range reference

signal(I,j,m,f) Earths radiance
measurement

I df e/s

noise(I,j,m) Error in the measurement I df e/s

opf_median_width_row(m) Width of the median filter in
the row dimension

I ui dl Operational parameter
file

opf_median_width_col(m) Width of the median filter in
the column dimension

I ui dl Operational parameter
file

opf_snr_threshold(m) Signal-to-noise-ratio
threshold

I df dl Operational parameter
file

opf_spike_threshold_col(m) Spike threshold in the column
direction

I df dl Operational parameter
file

opf_spike_threshold_row(m) Spike threshold in row
direction

I df dl Operational parameter
file

Table 1: Input variables associated with the transient signal flagging algorithm

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 7 of 16

Variables descriptive name C D U range

i Column number in the optic region L ui dl

j Row number in the optic region L ui dl

m Optic region identifier L ui dl UV1, UV2, VIS

f Sequential image identifier L ui dl

normalized_signal(I,j,m) Normalized signal L df dl

median_filtered_row(I,j,m) Median filtered row data L df dl

median_filtered_col(I,j,m) Median filtered col data L df dl

spike_level_col(I,j,m) Will be compared to the col thresholds L df dl

spike_leve_row(I,j,m) Will be compared to the row
thresholds

L df dl

spike_flag_row(I,j,m) Boolean L ui dl True, false

spike_flag_col(I,j,m) Boolean L ui dl True, false

snr(I,j,m) Signal-to-noise-ratio L df dl

snr_valid(I,j,m) S/r high enough L ui dl True , false

Table 2: Local variables associated with the transient signal flagging algorithm

variables descriptive name C D U range

Transient_flag(I,j,m) Transient flag O ui dl True, false

Table 3: Output variables associated with the transient signal flagging algorithm

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 8 of 16

1.2 OPF data for transient signal flagging of radiance data
The OPF data for transient pixel flagging of radiance data contains settings for each optic
region. The three optic regions are denoted by UV1, UV2 and VIS. For each region, a
threshold is given for the “spike level” and a threshold for the signal-to-noise-ratio.
Furthermore, the width of the median filter for each optics region is specified. If the median
width is set to zero then no spike detection in that direction is done. Currently the spike
detection in the row direction is switched of; if switched on the width should be approximately
5. The values of these thresholds are given in the following tables:

Column spike level Row spike level SNR threshold
0.1 0.5 18.0

Table 4: OPF filter thresholds for the UV1 channel

Table 5: OPF filter widths for the UV1 channel

Column spike level Row spike level SNR threshold

0.1 1.0 20.0

Table 6: OPF filter thresholds for the UV2 channel

Table 7: OPF filter widths for the UV2 channel

Column spike level Row spike level SNR threshold

0.1 1.0 40.0

Table 8: OPF filter thresholds for the VIS channel

Table 9: OPF filter widths for the VIS channel

Column median filter width Row median filter width
11 0

Column median filter width Row median filter width
11 0

Column median filter width Row median filter width
11 0

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 9 of 16

1.3 Comments on prototype code
The IDL prototype code is attached in Appendix A. This code ignores the pipeline
environment of the actual data processor. It is only supplied to clarify the algorithm
description and to be used as an example. IDL codes are overloaded to support vector data,
so no explicit references to row or column numbers are needed. A star (*) used in the
indexing of an array denotes that the operation works on all elements of the array in that
specific dimension.

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 10 of 16

2 Test results and examples
Examples of two spikes are given in Figure 1 and Figure 2. The first example is that of an
extremely strong spike, while the latter is of medium strength. Each figure is for a single
frame and a full column, and contains four panels. The top panel shows the spike level value
as calculated by the algorithm; this value is checked versus the threshold to identify spikes.
The bottom panel shows the signal-to-noise-ratio of the measurement at that column; this
has to exceed a certain level in order to flag is spike as a transient. The second and third
panel show the radiance data on a normal and a logarithmic scale consecutively; both plots
are given in pixel charge in units of electrons per second. The diamonds in the plots indicate
the position of the spike.

Note that some spikes seem to be very small; inspection of the radiance data on a
logarithmic scale clearly indicates that the spikes are well above the expected signal level.
Furthermore, it becomes evident that more spikes are flagged at the higher column numbers.
This is due to the fact that the signal values are lower, and thus that a small spike has a
higher impact. The signal-to-noise-ratio check prevents too many pixel to be flagged at
extremely low pixel fillings.

In Figure 3 the algorithm is demonstrated on a single frame (measurement) acquired during
a passage of the Southern Atlantic Anomaly. The data shown is approximately half of the
UV1 optic region. This part has very low radiances due to the short wavelengths; therefore,
spikes are very well visible here. The figure contains two panels, the upper is the radiance
data in electrons per second; many spikes can be seen clearly. The lower panel depicts the
same data, but now without the pixels that the algorithm has identified as having a spike.
The majority of the spikes are removed, with some exceptions at the border of the channel.
This is due to the fact that the radiances are extremely low, too low for the algorithm to work
properly. This is not considered a problem because this data is unreliable to start with.

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 11 of 16

Figure 1: Example of a very strong spike at column 71

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 12 of 16

Figure 2: Example of a medium strength spike at column 108 .

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 13 of 16

Figure 3: Radiance in UV1 channel during crossing of the SAA. Top panel shows raw
signal, bottom panel signal with spikes removed.

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 14 of 16

Appendix A IDL prototype source code
;-----

;

; SPYKER algorithm for radiance data

; detects spikes in processed radiance data, given in electrons,

; using sequential comparison for all frames, ignoring the first

; frame.

; returns an array with the same size of the input data containing

; flags for pixels with a spike

; these pixels should be excluded when the data is averaged onwards

;

; KNMI, 28-apr-2005 13:50

; version 1.2(radiance)

; Q. L. Kleipool

;

;-----

function Spyker , Data , Error , Settings , VALUES=RowValues

;

; Data is a 3 dimensional array containing raw data rames for a

; single optics region

; Error contains the corresponding noise values

; On exit the Values variable contains the 'cost function'

; this is only used as a diagnostic to tune the threshold parameters

;

ColumnCount = n_elements(Data[*,0,0])

RowCount = n_elements(Data[0,*,0])

FrameCount = n_elements(Data[0,0,*])

;

; and declare some variables

;

Normalised = fltarr(ColumnCount,RowCount,FrameCount)

ColumnValues = fltarr(ColumnCount,RowCount,FrameCount)

RowValues = fltarr(ColumnCount,RowCount,FrameCount)

ColumnMask = bytarr(ColumnCount,RowCount,FrameCount)

RowMask = bytarr(ColumnCount,RowCount,FrameCount)

SpikeMask = bytarr(ColumnCount,RowCount,FrameCount)

;

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 15 of 16

; determine the valid Signal-to-Noise-Ratio flag

;

SNR_valid = (Data/Error) GT Settings.SnrThreshold

;

; divide each frame with the previous frame

; to bring all values close to one

; set the normalised values for the first frame to 1

;

Normalised[*,*,0] = 1.

for Frame=1,FrameCount-1 do begin

 Normalised[*,*,Frame] = Data[*,*,Frame] / Data[*,*,Frame-1]

endfor

;

; apply additional smoothing in the column direction

; this is the wavelength direction

; if the OPF median width equals zero do nothing

; if the OPF median width is less than zero take the median of the

; whole row

; if the OPF median width is greater than zero then smooth the row

; data using a media filter of the given width

;

for Frame=0,FrameCount-1 do begin

 for Row=0,RowCount-1 do begin

 ThisRow = reform(Normalised[*,Row,Frame])

 RowFit = fltarr(ColumnCount) + 1.

 if Settings.ColumnWidth EQ -1 then RowFit = median(ThisRow)

 if Settings.ColumnWidth GT 1 then RowFit = median(ThisRow,Settings.ColumnWidth)

 ColumnValues[*,Row,Frame] = (ThisRow/RowFit) - 1

 endfor

endfor

;

; do the same in the row direction

;

for Frame=0,FrameCount-1 do begin

 for Col=0,ColumnCount-1 do begin

 ThisCol = reform(Normalised[Col,*,Frame])

 ColFit = fltarr(RowCount) + 1.

TN-OMIE-KNMI-717
Transient signal flagging algorithm

 for radiance data
Issue 2, July 12, 2005

Quintus L. Kleipool
Page 16 of 16

 if Settings.RowWidth EQ -1 then ColFit = median(ThisCol)

 if Settings.RowWidth GT 1 then ColFit = median(ThisCol,Settings.RowWidth)

 RowValues[Col,*,Frame] = (ThisCol/ColFit) - 1

 endfor

endfor

;

; check where the thresholds are exceeded for all data elements

;

if Settings.ColumnWidth NE 0 then ColumnMask = (ColumnValues GT
Settings.ColumnThreshold)

if Settings.RowWidth NE 0 then RowMask = (RowValues GT
Settings.RowThreshold)

print,'flagged in column direction: ',long(total(ColumnMask AND SNR_valid))

print,'flagged in row direction : ',long(total(RowMask AND SNR_valid))

;

; a spike is now defined when it is flagged in either the row analysis or the column

; analysis

; in the final mask only pixels are flagged as spiked when they have a sufficient

; signal to noise ratio

;

SpikeMask = ColumnMask OR RowMask

FinalMask = SpikeMask AND SNR_valid

return,FinalMask

end

;-----

