
Author reply to the short comment by E. Lewis and A. J. S. Sedlacek: 
 
We thank Ernie Lewis and Arthur Sedlacek for their detailed examination of our data set and for 
their suggestions. Their comments are repeated in plain black font, author replies are provided in 
plain blue font and modified/additional excerpts of the manuscript are provided in quoted italic 
blue font. 
  
As black carbon (BC) particles are typically not spherical but rather composed of aggregates of 
smaller spherules, determination of the mass m of such a particle from its mobility diameter Dmob 
is not straightforward. The authors parameterize the relation between m and Dmob in terms of the 
effective density rhoeff, which is the density calculated under the assumption that the particle is 
spherical with diameter equal to the mobility diameter. Further, they present relations between 
this effective density and mobility diameter for Aquadag particles with Dmob between 60 and 710 
nm and for Fullerene particles with Dmob between 65 and 900 nm, which they display (along with 
their measurements) on a log-log plot. The relation for Aquadag is an 8th order polynomial and 
that for Fullerene a 9th order polynomial, with coefficients presented in Table 1, together with a 
warming not to round to coefficients to fewer significant digits (most are given to six significant 
digits). However, despite the appearance of high accuracy, the estimated accuracy of the 
measurements is only ±10%. In light of such a large uncertainty it would seem that such a 
function form for the fits is a bit excessive, and that the data could be represented nearly as well 
with a simpler fit. 
We had some discussions among ourselves about the required number of polynomial coefficients 
and the number of significant digits to be provided. As a consequence the first author of this 
manuscript made the tedious effort, already for the AMTD version of this manuscript, to determine 
the minimum number of coefficients and number of significant digits, required to assure 1% 
relative precision of the polynomial fit across the whole diameter range, separately for every 
single polynomial coefficient provided in Table 1. It has to be emphasized that more than n 
significant digits in the polynomial coefficients may be required to achieve n significant digits in 
the corresponding value of the polynomial! Reducing the number of significant digits by one in all 
coefficients, i.e. increasing the tolerance to 10% precision wouldn’t make much sense as we don’t 
want to add an extra 10% uncertainty on top of the experimental uncertainty. In summary, 
reducing the number of digits in the polynomial coefficients is a no-go, as emphasized in the 
caption of Table 1. 
 
Indeed, if the effective density for Aquadag and Fullerene is graphed against the mobility 
diameter on a linear-linear plot, as shown in Figure 1, an underlying linear relationship is seen to 
represent the data exceedingly well over the vast majority of the range of mobility diameters. The 
relations rhoeff = 820 − 0.64Dmob for Aquadag and rhoeff = 770 − 0.53*Dmob for Fullerene can be 
clearly seen to be quite accurate over most of the range of accumulation mode mobility diameters 
studied, agreeing to within 5% for mobility diameters greater than 100 nm for Aquadag and 150 
nm for Fullerene, and to within approximately 1% for mobility diameters greater than 115 nm for 
Aquadag and 185 nm for Fullerene. For the sake of completeness, and to facilitate calculation of 
the effective density for lower sizes, the fits rhoeff = 1490 − 10.9*Dmob + 0.039*Dmob^2 for Aquadag 
and rhoeff = 1640 − 10.8*Dmob + 0.031*Dmob^2 for Fullerene (shown in Figure 1 by dashed lines) 
match those presented by the authors to within 1% for Dmob in the ranges 60-140 nm for Aquadag 
and 65-165 nm for Fullerene. 
We had some discussion among ourselves about the most suitable form of parametrisation to be 
used for the effective density and mass as a function of mobility diameter before submitting the 
manuscript to AMTD. Briefly, mainly two conditions have to be fulfilled by any acceptable fit: 

I. The fit should represent the experimental data within their own spread and experimental 
uncertainty across the whole parameter space. 



II. The fitted mass-mobility diameter relationship AND its first derivative MUST be continuous. 
(Otherwise one will end up with discontinuities in the measured mass size distribution of the 
investigated calibration material, if one applies this mass-mobility diameter relationship to 
convert the SP2’s mass measurement to diameter values. This step is very useful to cross-
check the fitted calibration curve against the calibration data set. A continuous derivative will 
also assure a smooth size dependence of the fractal dimension as a function of mobility 
diameter.) 

Besides it is of course desirable to keep the parametrisation as simple as possible. The 
alternative fit approach suggested in this comment fulfills condition I) but condition II) is not 
fulfilled at the point where the linear and quadratic parts of the fit are stitched together. This could 
be solved by fitting a continuous two segment spline with continuous derivative and the additional 
constraints that the lower and upper spline segments are second and first order polynomials, 
respectively. The first author actually started off with using multi-segment polynomial splines to 
parametrise the experimental data. However, in the end we came to the conclusion that a single 
higher order polynomial valid for the whole range of mobility diameters covered by the experiment 
is at least as simple to explain to the readership, to present in a table and to implement in the 
data analysis code, compared to providing and implementing a multi-segment spline stitched 
together from multiple lower order polynomials. Therefore we keep the parametrisation as is. Any 
user of the experimental data reported here (provided as supplementary information) can of 
course fit and use its own parametrisations as long as they represent the data well. 
 
The departure of rhoeff from the linear trend at small mobility diameters reflects the fact that as the 
size of the aggregate decreases the effective density must approach that of the primary particles 
(i.e., individual spherules) that make up the aggregate (in the limit of the ‘aggregate’ consisting of 
a single primary particle the effective density would equal that of the primary particle itself). To 
illustrate this point, consider a Fullerene particle comprised of primary particles of diameter 50 nm 
and density 1200 kg m−3 (the values stated in the paper). A particle with Dmob = 100 nm would 
consist of approximately 5 primary particles, and one with Dmob = 70 nm (the leftmost data point 
on Figure 4 of the paper) of only 2.4 primary particles. If it were assumed instead that the 
individual spherules had diameter 60 nm, the number of primary particles would be 3 and 1.4, 
respectively. An aggregate consisting of so few primary particles cannot attain the “wispiness” or 
fractal nature that larger aggregates can, and thus it is not surprising that the density deviates 
from the linear relationship exhibited by these larger aggregates. Additionally, it should be noted 
that discrete values of the mobility diameters should occur at small sizes, reflecting the small 
number of configurations possible for few primary particles. 
 
Aquadag particles are aggregates of irregular flakes of graphite (Moteki et al., 2009) and fullerene 
soot particles are aggregates of spherical primary particles with ~50 nm diameter (Moteki et al., 
2009). Either material has kind of a fractal-like structure, which explains the sharp increase of 
effective density at small mobility diameters, as detailed in this comment. However, occurrence of 
discrete values of mobility diameters and effective density values are not expected, as the 
building blocks of these aggregates vary in size and to some extent in shape, and they tend, at 
least in the case of fullerene soot, to conglutinate with each other (Moteki et al., 2009). 
We added the following statement to discussion of the results for Aquadag: 
“Decreasing effective density with decreasing mobility diameter is consistent with aggregates of 
small irregular flakes of graphite (see Moteki et al., 2009, for a detailed characterisation of the 
structure of Aquadag).” 
And the discussion of the results for fullerene soot reads now: 
“The effective density of fullerene soot decreases from ~1000 kg/m³ at Dmob=80 nm to <400 kg/m³ 
at Dmob>700 nm. This is much lower than the bulk density of fullerene soot of ~1720 kg/m³ (Kondo 
et al., 2011), and consistent with a fractal-like agglomerate of small primary spheres (see Moteki 
et al., 2009, for a detailed characterisation of the structure of fullerene soot).” 
 
 



Finally, we would also like to point out that the Gysel dataset offers the opportunity to examine 
the fractal dimension, defined as Df=ln(m)/ln(Dmob), for these two substances. Using the 
expression for mass in terms of effective density given above, this expression is equivalent to 
Df=3+(Dmob/rhoeff)(rhoeff/Dmob). The values of Df calculated using the linear relations presented 
above are shown in Figure 2 as a function of mobility diameter. As per expectations, the fractal 
dimension approaches 3 at the smaller aggregate sizes, reflecting the limited clustering that can 
occur with few spherules, and decreases as the number of primary particles that make up the 
aggregate increases, reflecting the increased wispiness of these larger aggregates. (There is 
some anomalous behavior of the fractal dimension at mobility diameters below that at which the 
data deviate from the linear fit, possibly due to the few number of primary particles resulting in 
Dmob not being a continuous function, as required for the derivate in the definition of fractal 
dimension, but rather a discrete quantity.) It is hoped that this brief “back-of-the-envelope” 
analysis will inspire the authors to examine additional lines of inquiry. For example, why is the 
effective density approximately linear in mobility diameter, and what is the criterion, in terms of 
mobility diameter or number of primary particles, above which this linear relation holds? 
We agree that the fractal dimension increases, as expected, with decreasing particle diameter 
down to Dmob~200 nm, and that some anomalous behavior of the fractal dimension occurs at 
mobility diameters below that. The data set available in this study does not allow making 
conclusive statements on the reasons for the observed size dependence of the fractal dimension. 
Therefore we decided not to include such a discussion, which would be speculative for the most 
part, in the revised manuscript. Instead we refer the reader to the study by Moteki et al. (2009) for 
more detailed investigations on the structure of different BC materials (this has already been 
done in response to the above comment).  


