Final Author Comments to Anonymous Referee #2 comments on "Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth atmosphere" by V. N. Gubenko et al.

Page	Line	mark	Comment
		No.	
		(from	
		left	
		to	
		right)	
1398	2		ОК
1398	3		OK
1398	14	1	OK
1398	14	2	ОК
1398	15		over France
1398	16-		radiosonde temperature data
	17		
1398	17	2	the wave parameters determined by Cot and Barat (1986)
1398	24		OK
1398	25		OK
1399	8		OK
1399	10		OK
1399	11		was
1399	23		rely
1399	27		the
1400	12		temperature amplitude of the wave field
1400	16		Other part of signal may be associated with the stable layers or turbulence
1400	19		OK
1400	25		ОК
1400	28		ОК
1401	1		ОК
1401	9	1	ОК
1401	9	2	ОК
1401	12		ОК
1401	17		ОК
1402	3		We will discuss these assumptions in more details in a re-worked paper
1402	10		ОК
1402	12		ОК
1403	20		ОК
1404	2		ОК
1404	11		relative to the horizontal plane
1405	2		OK
1405	3		a, is experimental analog of a (see p. 1404, line 1)
1405	6-8		We will add a comment in a re-worked paper
1405	9		RO data
1405	11		We will introduce the termin RO in a re-worked paper

V. N. Gubenko et al.

vngubenko@gmail.com

1405	13		OK
1405	15		vertical
1405	19	1	from RO
1405	19	2	OK
1405	24		This statement follows from the GPS/MET RO analysis and simulations by Marquardt and Healy (2005)
1406	1		absolute value of
1406	9	1	Because such parameters as vertical wavelength (and vertical
1400	,	1	wavenumber) Brunt-Vaisala frequency squared normalized amplitudes
			of temperature and density fluctuations can be determined from the
			vertical RO temperature or density profiles, so Eq. (11) or Eq. (12)
			enables to find experimentally the relative amplitude threshold a_e
1406	9	2	OK
1406	10		$ m =2\pi/\lambda_z$
1406	13		OK
1406	15		Our sign convention here assumes that an intrinsic frequency is positive
			definite (see Fritts and Alexander, 2003)
1406	16		OK
1408	3	1	Essence of this method is in following: such parameters as vertical
			wavelength (and vertical wavenumber), Brunt-Vaisala frequency squared,
			normalized amplitudes of temperature fluctuations can be determined
			from the vertical temperature profile; this enables to find experimentally a
			magnitude of the hypothetical relative amplitude threshold a_e ; if this
			magnitude a_e satisfies to the IGW identification criterion then temperature
			fluctuations can be considered as wave-induced, and a_e is the real
			amplitude of the wave field correspondent to the amplitude threshold for
			shear instability; additional knowledge of this important parameter gives a
			profile with the aid of basic dispersion and polarization relations
1408	3	2	
1408	11	2	This is standard form of the WKB approximation in the case of the small
1100	11		wave-induced harmonic perturbations (see Holton, 1992; Fritts and
			Alexander, 2003)
1408	16		$ \mathbf{m} =2\pi/\lambda_z$; we consider only situations when wave amplitude, vertical
			wavelength and background Brunt-Vaisala frequency are approximately
			constant on short vertical intervals of wave observations. Our approach is
			invalid when approaching a critical level
1409	11		ОК
1410	7	1	ОК
1410	7	2	We omit "verified"
1410	8		with
1410	18		OK
1411	8	1	OK
1411	8	2	Indeed, we calculate a magnitude of the hypothetical relative amplitude
			threshold a_e from the experimental temperature data. In the case when a_e
			saushes to the IGW identification criterion then temperature fluctuations
			found from the vortical temperature profile
1/11	12		The simultaneous temperature and wind velocity measurements obtained
1411	14		in a high-resolution balloon experiment (Cot and Barat 1986) were used
		1	in a mgn resolution barloon experiment (Cot and Darat, 1700) were used
			in a high-resolution balloon experiment (Cot and Barat, 1986) were used

		parameters reconstruction technique. Cot and Barat (1986) identified an inertia-gravity wave propagating upwards using a wind velocity hodograph analysis. For the determination of IGW parameters from the basic dispersion and polarization relations they utilized not only the wind velocity data but temperature data also. Using the temperature data only, we independently identified the same wave and reconstructed the IGW parameters determined by Cot and Barat (1986) with relative deviations not larger than 31%
1411	15	OK
	16	You are quite right thinking that we used the values of λ_{c_2} , [T'], T_bar and N (left hand side of Table 1) to derive the IGW parameters from temperature data (right hand side of Table 1). Indeed, the values of λ_z and [T'] (indicated by Cot and Barat (1986) on their p.2752) can be obtained from the vertical temperature profile shown in Figure 1c on their p.2750. The background values of T_bar and N (don't indicated by Cot and Barat (1986)) can be estimated from the same vertical temperature profile also. You are quite right assuming that our method just follows directly from the relations of the IGW linear theory. However, the new relationship (Eq.12), followed from the basic relations of the linear theory, was first obtained by us (Gubenko et al., 2008), and this relationship gives the possibility: 1) to calculate the values of a_e from a single vertical temperature profile measurement; 2) to test the analyzed temperature variations with the aid of IGW identification criterion for the calculated value of a_e ; we obtained that the magnitude $a_e=0.67<1$ satisfies the IGW identification criterion (see Table 1), and concluded that the wavelike temperature variations in the data of Cot and Barat (1986) can be considered as wave-induced; 3) to reconstruct the magnitudes of the key IGW parameters such as intrinsic frequency, etc. (see Table 1). For the comparison, let us consider a hodograph analysis method of the IGW parameters reconstruction which was used by Cot and Barat (1986). According to the IGW linear theory the tip of the wave wind velocity vector describes an ellipse. The direction of its major axis indicates that of wave number vector with an 180° ambiguity. The lengths of the major and minor semi-axes of the hodograph ellipse correspond to amplitudes of IGW wind velocity components parallel to ($ u $) and perpendicular to ($ v' $) the wave number vector. The ratio f(α and intrinsic frequency oc an be determined from the polarization relation (2), where f is the inertial frequency at t
1411	18	ОК

1411	19		Although Cot and Barat (1986) indicated the high accuracy and high
			vertical resolution of their radiosonde data but, unfortunately, they did not
			indicate uncertainties of the results of IGW parameters reconstruction.
			Therefore, we do not know why are some results better than others and
			the all we have is the mutual comparison of our IGW parameters
			reconstruction results and that of Cot and Barat (1986) and relative
			deviations between compared parameters.
1412	1	1	see answer for 1411/19
1412	1	2	ОК
1412	3		see answer for 1411/19
1412	6		ОК
1412	7		will be deleted "validated"
1412	9		will be specified in a re-worked paper
1412	10		will be specified in a re-worked paper
1412	13		will be specified in a re-worked paper
1412	17		we used similar assumptions as earlier in deriving this expression
1412	20	1	Yes
1412	20	2	amplitude threshold a _e of the temperature wave field
1413	6		in the atmospheric region over territory with pointed coordinates
1413	8		Yes
1413	12		original profiles = profiles with perturbations
1413	24		"confirms" will be replaced for "it is seen from Fig.1"
1413	27		OK
1414	3	1	ОК
1414	3	2	reference will be made in a re-worked paper
1414	5		OK
1414	8		the discussion of the results in this table will be made in a re-worked
			paper
1414	21	1	when uncertainties are less than 100%
1414	21	2	1) Radiosonde soundings consist of point measurements while RO
			soundings represent averages over finite volumes of the atmosphere and
			hence there are significant interpretation difficulties when the two types of
			soundings are compared. Moreover, the validation studies (Kitchen, 1989;
			Sofieva et al., 2008) indicate that separations of less than a few tens of
			kilometers and 1 or 2 hours are necessary for useful comparisons between
			point measurement instruments. This implies that profiles should be
			almost exactly collocated in time and space for validation of high-
			resolution profiles. It is quite hardly to get from the CDAAC website the
			radiosonde data collocated in time and space with RO data where an IGW
			is clearly visible. We suppose that the simultaneous high-resolution
			radiosonde wind velocity and temperature data are most appropriate for
			the further examinations of the technique's validity. Wave parameters and
			their uncertainties are listed in Table 2. Description of the uncertainties
			calculation method can be found in the paper of Gubenko et al. (2008).
			2) see answer for 1411/16
1415	1		OK
1420			namely, $\omega * 10^4$
1421			when they are less than 100%; rel. un. – relative units
1422			ОК

P.S. In accordance with the referee #1 remark the Sections 2 and 3 will be combined. In a reworked section the needed key equations will be summarized in a couple of paragraphs, and the new equations will be kept.

References

Cot, C., and J. Barat (1986), Wave-turbulence interaction in the stratosphere: A case study, J. Geophys. Res., 91, D2, 2749–2756.

Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), 1-64, 1003, doi:10.1029/2001RG000106, 2003.

Gubenko, V. N., A. G. Pavelyev, and V. E. Andreev (2008), Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement, J. Geophys. Res., 113, D08109, doi:10.1029/2007JD008920.

Holton, J. R.: An introduction to dynamic meteorology, 3rd edition, Academic Press, San Diego, 507 pp., 1992.

Kitchen, M. (1989), Representativeness errors for radiosonde observations, Q. J. R. Meteorol. Soc., 115, 673-700.

Marquardt, C. and Healy, S. B.: Measurement noise and stratospheric gravity wave characteristics obtained from GPS occultation data, J. Meteorol. Soc. Jpn., 83(3), 417–428, 2005.

Sofieva, V. F., F. Dalaudier, R. Kivi, and E. Kyro (2008), On the variability of temperature profiles in the stratosphere: Implications for validation, Geophys. Res. Lett., 35, L23808, doi.: 10.1029/2008GL035539.