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Abstract

A Markov switching algorithm is introduced to classify attenuation measurements from
telecommunication microwave links into dry and rainy periods. It is based on a sim-
ple state-space model and has the advantage of not relying on empirically estimated
threshold parameters. The algorithm is applied to data collected using a new and orig-5

inal experimental set-up in the vicinity of Zürich, Switzerland. The false dry and false
rain detection rates of the algorithm are evaluated and compared to 3 other algorithms
from the literature. The results show that, on average, the Markov switching model
outperforms the other algorithms. It is also shown that the classification performance
can be further improved if redundant information from multiple channels is used.10

1 Introduction

Precipitation is an important component of the Earth’s water cycle and needs to be
accurately measured. So far, several techniques have been proposed to measure
rainfall with different spatial and temporal resolutions, ranging from traditional point
measurements from rain gauges to observations from weather radars and satellites.15

Not surprisingly, each of these techniques has its advantages but also its limitations
(Germann, 2006; Upton et al., 2005; Sevruk, 1996).

Recently, microwave links (MWL), which are commonly used in telecommunication
networks for wireless data transmission, have been suggested as a novel tool to moni-
tor rainfall in urban areas (Messer et al., 2006; Leijnse et al., 2007c). The main idea be-20

hind this technique is to relate the rain-induced signal attenuation to the path-averaged
rain-rate along the considered link. The potential of this technique has been demon-
strated using microwave links specifically designed for rainfall estimation (Ruf et al.,
1996; Rahimi et al., 2003; Holt et al., 2003; Upton et al., 2005; Krämer et al., 2005)
and commercial microwave links operated by telecommunication companies (Messer25

et al., 2006; Zinevich et al., 2009). Note that, in addition to estimating rain-rates, MWL
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can also be used to measure evaporation (Leijnse et al., 2007a) and water vapour
(David et al., 2009). In fact, MWL nicely complement traditional rainfall sensors be-
cause they provide rain-rate measurements (near the ground level) at an intermediate
scale between point measurements from rain gauges and weather radars with sam-
pling volumes up to several km3. The fact that MWL networks can be very dense5

can also be used to improve rain-rate estimates using spatial interpolation techniques
(Zinevich et al., 2008).

A very important issue that needs to be addressed prior to rainfall estimation using
MWL is the so-called baseline estimation problem (Rahimi et al., 2003; Leijnse et al.,
2007c). It consists in identifying and separating the attenuation occurring during dry10

periods from the rain-induced attenuation (which is the quantity of interest in most ap-
plications). Depending on the link characteristics, this problem can be very difficult
(Upton et al., 2005). Dry-weather signal attenuations can exhibit significant variability
caused, for example by changes in water vapour, wind effects on the antennas, birds
or insects crossing the beam, losses during transmission or reception, interferences,15

wet-antenna and multi-path effects (Zinevich et al., 2010). Moreover, attenuation mea-
surements are often quantized, which introduces additional variability in the process.
It is only after the attenuation baseline has been properly estimated for each time step
that the corresponding path-averaged rain-rate can be retrieved. A very important step
in this procedure is the ability to identify the dry and rainy periods using solely the mea-20

surements of the MWL. The measured attenuation levels during the dry periods can
then be used to better estimate the attenuation baseline during rainy periods.

So far, various techniques have been suggested to solve this identification problem
(see Sect. 2 for a detailed description). The simplest of them uses a global attenuation
threshold, i.e. all the periods for which the path-integrated attenuation (PIA hereinafter)25

is above a given threshold are considered rainy and vice versa (Leijnse et al., 2007b).
A slightly more sophisticated procedure was suggested by Schleiss and Berne (2010)
who proposed to use a threshold on the temporal variability of the PIA. A more com-
plex algorithm by Reller et al. (2011) investigates the possibility to identify dry and wet
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periods using a Bayesian approach based on Factor Graphs (Loeliger et al., 2010). The
underlying idea is that the variations of the baseline are learned during dry weather
and propagated to wet periods. Although it is more sophisticated and flexible, the
algorithm also requires the choice of a subjectively estimated threshold for classifica-
tion. Finally, special algorithms have been developed for situations where signals from5

dual-frequency MWLs or simultaneous PIA’s from two communication channels are
available. For example, Holt et al. (2003) and Rahimi et al. (2003) proposed a method
based on the assumption that the correlation between the attenuations from two differ-
ent frequencies tend to be higher during rainy periods. Such methods, however, also
rely on empirically adjusted thresholds for the classification, which is not necessarily10

optimal.
In this article, a new classification algorithm based on Markov switching models is

introduced. It is based on a simple state-space model and has the advantage of not re-
lying on any empirically estimated threshold parameters. Also, the proposed algorithm
can be easily generalized to multivariate inputs, i.e. inputs from different channels or15

frequencies. A real-world application of the algorithm (see Sect. 4) shows that it per-
forms better than other existing techniques and that its performance can be improved if
multiple channel inputs are considered. The proposed algorithm thus improves the sig-
nal processing of MWL data and helps estimating better attenuation baselines required
for accurate rainfall retrieval.20

This article is structured as follows: Sect. 2 describes some of the existing classifica-
tion methods and introduces the Markov switching model. In Sect. 3, the experimental
set-up used to quantify the performances of the classification algorithms is described.
Section 4 evaluates and compares the performances of the different algorithms for two
very different datasets. Possible improvements of the algorithm are then discussed in25

Sect. 5. The conclusions are given in Sect. 6.
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2 Methods

This section briefly describes some of the existing methods proposed in the literature
to identify dry and rainy periods using single channel MWL attenuation measurements.
Then, a new classification method based on Markov switching models is introduced
and discussed in detail.5

2.1 Existing algorithms

Three popular classification methods have been chosen: the simple threshold method
(ST), the moving window method (MW) and the Factor Graph (FG). The simple thresh-
old algorithm (Leijnse et al., 2007b) is straightforward and computationally efficient. It
uses a global threshold on the path-integrated attenuation to distinguish between dry10

and the rainy periods. Each time period for which the PIA is above the threshold is
classified as rainy, and vice versa.

Decision rule for ST:
{

rainy if At >a0
dry if At ≤a0

(1)

where At [dB] denotes the path-integrated attenuation at time t and a0 [dB] is a given
threshold value. The method has shown to produce good results in practical applica-15

tions and can be applied in real-time. Finding the optimal detection threshold a0 is,
however, difficult. Moreover, the performance (in terms of false dry and rain detections)
of this algorithm can be very sensitive to the value of the threshold. Finally, this method
is only appropriate for datasets for which the dry-weather attenuation is more or less
constant. This is not always the case as can be seen in the right panel of Fig. 2. In20

some situations, the dry-weather attenuation exhibits clear daily cycles and a strong
temporal drift in the PIA, possibly due to changes in temperature between day and
night and hardware instabilities. Obviously, the simple threshold is not appropriate for
such types of signals and alternative classification methods have been suggested.
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A slightly more complex approach which may be better suited for non-stationary dry-
weather attenuations has been proposed by Schleiss and Berne (2010). Their method,
hereinafter referred to as the moving window algorithm, is based on the assumption
that the temporal variability of the PIA is small and bounded during dry weather. On
the other hand, rainy periods are characterized by larger signal fluctuations. Hence5

each time period is classified according to the following decision rule:

Decision rule for MW:
{

rainy if SWt
>σ0

dry if SWt
≤σ0

(2)

where SWt
[dB] represents the local (temporal) variability of the signal attenuation for

a moving window [t−w,t] and σ0 [dB] is a rain detection threshold estimated using
one of the two approaches described in Schleiss and Berne (2010). The moving win-10

dow algorithm is also computationally efficient and can be applied in real-time to non-
stationary time series of attenuations. However, finding the optimal detection threshold
σ0 can be very difficult without appropriate calibration data over extended periods of
time. Moreover, one of the main disadvantages of the moving window algorithm is
its inability to separate light rain from dry periods because both signals exhibit similar15

variability.
The Factor Graph algorithm proposed by Reller et al. (2011) can also be applied to

non-stationary MWL signals but does not require large datasets for model calibration.
A Factor Graph is a particular type of graphical model, with applications in Bayesian
inference, which computes marginal distributions through the sum-product message20

passing algorithm (Kschischang et al., 2001). More specifically, the Factor Graph al-
gorithm models the attenuation baseline during dry weather using a line model whose
parameters can vary slowly over time together with periodicity constraints. In this, it
assumes a smoothly varying baseline and, where the signal exceeds a certain thresh-
old, the algorithm identifies that the system enters another state. The Factor Graph25

algorithm possesses several advantages, as it can deal with irregular time series and
not only identifies dry and rainy periods, but simultaneously estimates the baseline and
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thus delivers the rain-induced attenuation. However, it also relies on several tuning pa-
rameters that need to be estimated subjectively prior to the classification into dry and
rainy periods.

In the following, a new algorithm for the identification of dry and rainy periods based
on MWL attenuation measurements is introduced. It uses Markov switching models to5

estimate the state of the system (i.e. dry or rainy).

2.2 Univariate Markov switching model (MSU)

A Markov switching model combines dynamic linear system behaviour with a Markov
process, which models the transitions between different states. It belongs, similar
as the Factor Graph, to a very general class of so-called state-space models. Such10

models are commonly used to model a change in behaviour with respect to different
regimes. The regimes themselves can be related to certain events, often stochastic,
such as a financial crisis or changes in government policy. Practical applications of
such models can be found (among others) in the fields of Economics (Hamilton, 1989)
and Physics (Yue and Han, 2005; Metzner et al., 2007). Markov switching models have15

also been used in weather generators to model rainfall patterns (Weiss, 1964).
For simplicity, the details of the algorithm are only given for the univariate case,

i.e. a single channel input. The multivariate case is briefly described at the end of
this section. For more details on Markov switching models, the reader is referred to
Hamilton (1989, 1990) and Kim (1994).20

The underlying assumption of the Markov switching algorithm is that the magnitude
and the variability of the PIA are fundamentally different during dry and rainy peri-
ods. During dry periods, the PIA mildly fluctuates around a given value, while for rainy
periods it is much larger and variable. This additional variability is caused by the scat-
tering and absorption of the transmitted signal by the raindrops along the path of the25

link. Hence, it should be possible two identify two fundamentally different states of the
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system (dry/rainy) from the different behaviour of the PIA. For example, the following,
very simple model can be used to describe the data:

At =
{
µ0+ε0 for every dry period
µ1+ε1 for every rainy period

(3)

where At [dB] represents the path-integrated attenuation at time t, µ0 [dB] and µ1 [dB]
represent the average value of the attenuation during dry and rainy periods. The noise5

terms ε0 [dB] and ε1 [dB] are assumed to be independent Gaussian random variables
with zero mean and standard deviations given by σ0 [dB] and σ1 [dB]. The transitions
between the dry and the rainy periods are modelled using a stationary hidden random
variable St ∈ {0,1} where

St =
{

0 for every dry period
1 for every rainy period

(4)10

The unconditional probability of the system being in the dry state is denoted by p0 =
Pr(St = 0)= 1−p1. Combining Eqs. (3) and (4), it is possible to write At using a single
expression given by

At =µSt
+εSt

(5)

with 5 model parameters θ = (µ0,µ1,σ0,σ1,p0). The maximum likelihood technique15

is then used to infer the optimal model parameters for a given set of observations
{At =at}:

θ̂ =argmax{l (θ )} (6)

where the log-likelihood function l (θ ) is given by

l (θ )=
∑
t

log

[
1∑

k=0

fk(at,θ )pk(at,θ )

]
(7)20
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with

fk(x,θ ) =
1√

2πσ2
k

exp

(
−

(x−µk)2

2σ2
k

)
k =0,1

and

pk(x,θ ) =
pkfk(x,θ )

p0f0(x,θ )+ (1−p0)f1(x,θ )
k =0,1

The maximization of l (θ ) is performed using a standard Newton-type algorithm. In5

order to be valid, the solution must satisfy some simple conditions. Specifically, one
must have 1 >p0 > 0, σ1 > σ0 > 0 and µ1 >µ0 > 0. Once θ̂ has been estimated, the
classification into dry and rainy periods can be easily derived from the estimated state
probabilities p0(at,θ̂ )=1−p1(at,θ̂ ).

ŝt =
{

0 if p0(at,θ̂ )> 1
2

1 else
(8)10

Note that it is also possible to choose another threshold depending on the relative cost
associated to each of the classification errors. One of the advantages of the Markov
switching model is that it can be easily generalized to include multivariate inputs from
different channels or frequencies.

2.3 Multivariate Markov switching model (MSM)15

Telecommunication microwave links are usually operated using multiple channels such
as two directions, frequencies or polarizations. This redundant information can be used
to improve the classification performance.

In the multivariate case with N channels, the attenuation at time step t is given by
a vector At = (A(1)

t ,...,A(N)
t ) where20

A(j )
t =µ(j )

St
+ε(j )

St
∀j =1,...,N. (9)
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Note that the vector of model parameters is now significantly longer and given by
θ = (µ(1:N)

0 ,µ(1:N)
1 ,σ(1:N)

0 ,σ(1:N)
1 ,p0), that is, 4N+1 variables to estimate. The major dif-

ference with respect to the univariate case concerns the difficulty to estimate the joint
densities f0(At,θ ) and f1(At,θ ), although significant simplifications occur if the chan-
nels are assumed independent. While this is certainly not the case for rainy periods,5

it is, at least, reasonable during dry periods (which usually represent the majority of
all the periods). In the absence of any further information, a pragmatic solution there-
fore consists in assuming that all channels are independent and that the log-likelihood
function is given by

l (θ )=
∑
t

log

 1∑
k=0

N∏
j=1

f (j )
k (a(j )

t ,θ )pk(at,θ )

 (10)10

where

f (j )
k (x,θ ) =

1√
2π(σ(j )

k )2

exp

−
(x−µ(j )

k )2

2(σ(j )
k )

2

 k =0,1

and

pk(at,θ ) =

pk

N∏
j=1

f (j )
k (a(j )

t ,θ )

1∑
i=0

pi

N∏
j=1

f (j )
i (a(j )

t ,θ )

Maximizing l (θ ) yields, similarly to the univariate case, the maximum likelihood esti-15

mate θ̂ . The classification into dry and rainy periods can then be derived from the
estimated state probabilities pk(at,θ̂ ). Possible extensions to correlated attenuation
values, at least during rainy periods, and more general expressions for the joint density
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f1(At,θ ) will not be discussed. For simplicity, only the independent case is presented
in Sect. 4.

3 Experimental set-up

The experimental site is located in Dübendorf, near the city of Zürich, Switzerland (see
Fig. 1). It consists of a 1.85 km long commercial dual-polarization microwave link, 5 dis-5

drometers and 3 rain gauges placed approximatively at equal distances along the path
of the link. The dataset is complemented by climatic and meteorological data from two
weather stations. The experiment is designed to investigate different aspects of rainfall
monitoring using microwave links in the context of a humid continental climate, such as
the retrieval of path-averaged rain-rates, the influence of the drop size distribution, the10

characteristics of dry-weather attenuation and wet-antenna effects. In particular, the
horizontally and vertically polarized signals could be used to retrieve the effective drop
size distribution along the link path.

Microwave link

The installed microwave link is an “Ericsson Mini-link TN ETSI”, a widely used system15

in commercial telecommunication applications. The MWL is operated at about 38 GHz
in a dual-polarization set-up with the specific characteristics given in Table 1. For more
redundancy, the link provides measurements on 4 different channels (2 polarizations
and 2 directions). In its original configuration, the link only records the transmitted
and received powers every 15 min. This is clearly not sufficient for accurate rainfall20

monitoring at scales relevant for modern hydrological and meteorological applications.
Therefore, a stand-alone data logging application using the SNMP protocol has been
developed and implemented to record the power measurements in much shorter in-
tervals (see Appendix). For the purposes of this project, a 4 s temporal resolution has
been chosen.25
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The experiment started in March 2011 and is continuing into the first half of 2012.
It is divided into two parts. During the first part of the project, i.e. until the 10 October
2011, the antennas of the link were fully exposed to the rain. Consequently, during
rainy periods, a thin film of water was formed on the surface of the antennas, causing
additional attenuation in the order of several dB. Preliminary data analysis suggest that5

the antennas remain wet for sometime after the rain stopped. Antenna drying seems
to fundamentally depend on the weather conditions and lasted up to several hours for
some cases. In the second part of the experiment, i.e. after the 10 October 2011, the
antennas were shielded from rain using plastic shields specifically designed for this
experiment (see 5.A in Fig. 1). Visual inspection of the antennas proved that these10

shields effectively protect the surface of the antennas, even during strong rainfall and
moderate wind speeds.

In addition to wet-antenna effects, the experimental set-up also revealed unexpected
fluctuations in the transmitted power levels. According to the manufacturer, the re-
ceived power is measured with an accuracy of 0.1 dB and the transmitted power with15

an accuracy of 1 dB. Additional measurements of the transmitted power using a power
meter showed that the transmitted power was accurate within a range of approxima-
tively 0.35 dB over a period of 11 days, for temperatures between 7 ◦C and 23 ◦C and
relative humidities between 37 and 100 %. This is confirmed by independent mea-
surements collected in the laboratory, with (more or less) constant temperatures and20

humidities and for which the uncertainty on the transmitted power was found to be
0.3 dB.

3.1 Disdrometers and rain gauges

5 optical disdrometers of type Parsivel (1st generation, manufactured by OTT) have
been deployed at 4 different sampling locations (sites 2–5) along the 1.85 km path of25

the link (see Fig. 1). For more details on the principle of these optical disdrometers, see
Löffler-Mang and Joss (2000). All the disdrometers are designed to be autonomous
in terms of power supply and data transmission (Jaffrain et al., 2011). They provide
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measurements of particle sizes and velocities at a 30-s temporal resolution. Note that
sampling point 2 is equipped with two collocated disdrometers in order to quantify the
measurement uncertainty associated with Parsivel disdrometers (Jaffrain and Berne,
2011). The 4 sampling locations have been chosen as a trade-off between a regular
distribution of the instruments, the distance to the path of the link, line of sight for data5

transmission between the different instruments and minimum probability of disturbance
and vandalism.

In addition to the 5 disdrometers, 3 tipping-bucket rain gauges from Précis
Mécanique (model 3029) have been deployed at sampling locations 2, 4 and 5. The
tipping-bucket rain gauges have a catching area of 400 cm2 and are connected to data10

loggers that record the tipping time with an accuracy of 0.1 s. One tip corresponds to
0.1 mm of rain. Note that the 3 rain gauges are not transmitting the data in real time.
The collected data are used to check the calibration of the disdrometers and to identify
possible biases between the sensors.

3.2 Additional data15

The rainfall measurement network is complemented by operational radar data provided
by MeteoSwiss. Processed maps of rain-rate and radar reflectivities are available at
a spatial resolution of 1×1 km2 and a temporal resolution of 5 min. In addition, mete-
orological and climatic data (e.g. temperature, relative humidity, pressure, wind speed
and wind direction) are collected using a MIDAS IV weather station (manufactured by20

Vaisala) located at the airport in Dübendorf. The MIDAS IV system collects data from
two sensors situated at both ends of the runway. The temporal resolution depends on
the considered parameter and can vary between 3 and 60 s.

3.3 Originality

Several other studies involving simultaneous measurements of microwave links, rain25

gauges, disdrometers and weather radar can be found in the literature. Rincon and
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Lang (2002) proposed a method to estimate the drop size distribution from the mea-
surements of a dedicated 2.3 km, dual-frequency research link and validated their re-
sults using 6 rain gauges and a single 2-D video disdrometer placed along the path
of the link. Rahimi et al. (2003) used a 23.3 km, dual-frequency research link with 22
rain gauges and radar data. However, only 4 or 5 rain gauges were reasonably close5

to the considered link. More recently, Leijnse et al. (2007c) used a 4.89 km, 27 GHz
research link with 6 rain gauges placed along the path of the link. Finally, Zinevich et al.
(2010) compared the rain estimates from 23 commercial microwave links with 5 nearby
rain gauges. The experimental set-up presented above is original because it combines
attenuation measurements from a dual-polarization commercial microwave link with10

a sufficiently dense network of disdrometers to accurately estimate the path-averaged
DSD. This provides a platform to develop and validate new methods for rainfall retrieval
using MWL and to evaluate their respective performances as outlined above. In par-
ticular, it can be used to investigate if the redundancy between the different channels
and polarizations can be used to improve the rain-rate estimates. Furthermore, it might15

also be of interest to radio engineers concerned with better predictions of rain-induced
attenuation and MWL simulation methods (Paulson, 2002; Callaghan et al., 2008). It
is intended to make the data publicly available for download from a web-platform after
the end of experiment.

3.4 Selected datasets20

Two datasets have been selected from the experimental observational record to eval-
uate the performance of the algorithms described in Sect. 2 under fundamentally dif-
ferent conditions. A visual illustration of these datasets is given in Fig. 2. Note that
for a better visibility, the attenuation measurements are only shown for one channel.
The first dataset covers the period between the 17 May 2011 and the 12 June 201125

and is representative of a (more or less) constant dry-weather attenuation baseline
(hereinafter referred to as the stationary case). This period is also characterized by
small variations in the PIA during dry weather. The second dataset covers the period
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between the 17 March 2011 and the 26 April 2011 and illustrates a very different be-
haviour (hereinafter referred to as the non-stationary case). This period is character-
ized by a highly-variable attenuation baseline with a strong temporal drift and daily
cycles in the PIA, due to changes in temperature and humidity. A preliminary analysis
of the current observational record suggests that the non-stationary cases represent5

a non-negligible amount (about 10–20 %) of all the time periods and must therefore be
considered carefully.

4 Results and model comparison

4.1 False rain and dry detections

The performances of the algorithms described in Sect. 2 are evaluated and compared10

using two criteria:

type I error:
#dry periods classified as rainy

#dry periods

type II error:
#rainy periods classified as dry

#rainy periods

In other words, type I errors correspond to false rain detections and type II errors to
false dry detections. A perfect classification algorithm has 0 type I error and 0 type15

II error. In practical applications, however, both types of errors are usually competing
against each other, i.e. if the type I error decreases, the type II increases and vice
versa. Finding an optimal trade-off between both errors is difficult and depends on the
underlying application and the cost associated to each type of error. However, this
goes far beyond the scope of this paper and will not be addressed here.20

For comparison purposes, it is assumed that the path-averaged rain-rate measured
by the 5 disdrometers along the path of the link (see Sect. 3) is representative of the
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“true” weather state. If the path-averaged rain rate is greater than zero, the period is
considered rainy. Otherwise, it is supposed to be dry. In order to analyse the sensitivity
of the results with respect to this rain-detection threshold, a slightly higher rain detec-
tion threshold of 0.1 mm h−1 is also considered. All periods for which the path-averaged
rain rate is smaller than 0.1 mm h−1 are considered dry and vice versa. The value of5

0.1 mm h−1 was chosen as a threshold because it approximatively corresponds to the
hardware-induced measurement uncertainty of 0.1 dB in the path-integrated attenua-
tion (ITU-R P.838-3, 2005). In other words, rainy periods with rain rates smaller than
0.1 mm h−1 cannot be distinguished from dry periods because of the uncertainty on the
power measurements. Finally, note that because the disdrometer data are provided at10

a 30-s temporal resolution, the corresponding MWL data (at a 4-s temporal resolution)
are averaged at 30-s prior to the analysis. Periods for which one of the instruments
was not working are not considered for the comparison.

4.2 Stationary dry-weather attenuation baseline

The results for the first dataset (stationary case) are shown in Table 2. For better il-15

lustration of important details, a small subset of dataset 1 (a 5-days period between
the 8 June 2011 and the 12 June 2011) is plotted in Fig. 3. The univariate Markov
switching model (MSU) clearly produced the best classification performances among
the univariate models, closely followed by the simple threshold method. The good per-
formance of the simple threshold algorithm is explained by the fact that the dry-weather20

attenuations over this time period are (more or less) constant with very low fluctuations.
The moving window and the Factor Graph, on the other hand, have significantly higher
values of type I and type II errors. This can be partially explained by the fact that these
models rely on pre-defined threshold parameters which were not necessarily optimal
over the considered time period. For example, it is possible to decrease the type II error25

rate in the moving window algorithm by increasing the value of σ0. This will, however,
also result in an increased type I error rate. Additional tests with different threshold
parameters confirmed that the moving window algorithm produces, on average, less
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reliable classifications than the threshold and the Markov switching algorithm. Not sur-
prisingly, the multivariate Markov switching model outperformed all the other univariate
models in terms of type I and type II errors. Its false rain/dry detection rates are 2.46
and 21.97 % for a rain detection threshold of 0 mm h−1 and 4.27 and 11.82 % for a rain
detection threshold of 0.1 mm h−1(not shown). This confirms the intuitive idea that the5

state of the system can be estimated more accurately using 4 channels rather than
1. The improvement is, however, only minor because the univariate Markov switching
model already produced good and similar classifications for all the considered chan-
nels (except for channel 2 for which no valid model parameters could be fitted). The
fact that the univariate Markov switching model provides realistic classifications can10

also be seen in Fig. 3, which shows the estimated states (dry/rainy) for all the con-
sidered algorithms. A qualitative evaluation suggests that the best classifications are
obtained for the threshold method and the univariate Markov switching model (MSU).
The classifications obtained using the Factor Graph and the moving window algorithm
are not satisfactory. Both the Factor Graph and the moving window produce consid-15

erable false dry detections. The moving window algorithm also produces some false
rain detections at the beginning of the period. Clearly, the threshold parameters (which
were subjectively estimated for the entire dataset) are not optimal for this period.

4.3 Non-stationary dry-weather attenuation baseline

The results for the second dataset are shown in Table 3. As for the first dataset, the20

classification performances is illustrated in Fig. 4, where the results are plotted for
a 11-days subset from the 27 March 2011 to the 7 April 2011. The first point to no-
tice is that all the considered models have a very high rate of type II errors (about
50–60 % for the first rain detection threshold and 20–35 % for the second rain detec-
tion threshold). This is due to the large variability of the attenuation baseline during25

dry periods, which makes it difficult for the models to separate dry periods from light
rainfall. Consequently, more rainy periods are classified as dry. This is also confirmed
by the low type I error rates, meaning that very few dry periods are actually classified
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as rainy. The “best” average performance (among the univariate algorithms) is again
obtained for the univariate Markov switching model and the simple threshold method,
although these two models do not have the same type I,II error rates. As can be seen
in Table 3, the threshold method produces less false dry detections but more false
rain detections. The moving window algorithm has the highest rate of type II errors5

(65.74 % on average for a rain detection threshold of 0 mm h−1), but most of these
false dry detections correspond to very light rain rates. This is indicated by the fact
that, for a rain detection threshold of 0.1 mm h−1, which essentially removes light rain-
fall, a much lower type II error rate of 17.54 % is obtained. In fact, for the higher rain
detection threshold, the moving window algorithm performs similarly than the simple10

threshold and the univariate Markov switching model. Again, the multivariate Markov
switching algorithm outperformed (on average) the univariate algorithms in terms of
false dry and rain detections. In particular, it is worth mentioning that no valid model
parameters could be fitted for the univariate Markov switching model for channels 2 and
4 whereas the multivariate Markov switching model (using all 4 channels) was still able15

to provide valid parameter estimates for all channels. The threshold method and the
multivariate Markov switching algorithm (MSM) produce very good and similar results
for this time period. The classifications obtained using the Factor Graph and the mov-
ing window algorithm do not look very good. In particular, the strong variability in the
attenuation baseline causes the moving window algorithm to produce a large amount20

of false rain detections. This problem could be (partially) solved by considering a lower
detection threshold σ0 for this time period, but there is currently no easy way of doing
this automatically in the absence of any control data. from nearby weather stations.

5 Discussion and possible developments

The Markov switching model proposed in Sect. 2 already provides good results at25

a reasonable computational cost. It remains, however, very simple in its formulation
and does not exploit the full potential of state space models. Further improvements can
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be expected for more complex models that take into account the temporal dependency
of the attenuation measurements. As a possible extension, the performance of an
autoregressive model of order 1 was also investigated:

At =µSt
+ (At−1−µSt−1

)+εSt
(11)

with associated transition probabilities p00 =Pr{St = 0 | St−1 = 0} and p11 =Pr{St = 1 |5

St−1 = 1}. This model is conceptually more elaborate but also more difficult to adjust
because of the temporal dependency between the states. It was found that the au-
toregressive model of order 1 only exhibited a small improvement in performance at
a significantly higher computational cost and thus was discarded. Furthermore, ex-
tending such autoregressive models to the multivariate case is not trivial and becomes10

even more challenging for higher order autoregressive models. Another, maybe more
promising approach, is to consider different error structures depending on the state of
the system:

At =
{
µ0+ε0 for every dry period
µ0+ε0+ε1 for every rainy period

(12)

where ε0 is a Gaussian random variable with zero mean and standard deviation σ015

and ε1 is a positive random variable (e.g. log-normal or Gamma) representing the rain-
induced attenuation. The major drawback of such a formulation is that, depending on
the distributions of ε0 and ε1, there might be no analytical expression for the conditional
density of At knowing St = 1. This problem can, however, be solved numerically at the
cost of an increased computational effort.20

It is important to note that the Markov switching models suggested here are general
switching autoregressive models, which might not perfectly represent the structural
patterns observed in each and every MWL dataset. This also holds true for the other
models. However, as these models are applied in a classification context, there is
usually more concern about overfitting. Overfitting would be problematic where the25

model sticks too closely to the data and reproduces irrelevant details, which impairs
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the capabilities to predict future observations. In our case, however we do not use
the ground truth on dry and wet periods from the disdrometers for training and only
compare the performance after classification.

Another fundamental problem that needs to be addressed in future studies concerns
the problem of the wet antenna effects on the classification into dry and wet periods.5

Most commercial microwave links do not have shielded antennas. Consequently, they
experience some additional attenuation due to a thin water film formed on the surface
of the antennas. This effect can be in the order of several dB and must be taken
into account when estimating dry and rainy periods, especially during and immediately
after a given rain event where the antenna can stay wet for several hours. Future10

investigations could consider two different states for dry periods, depending on the
state of the antenna.

St =


0 for every dry period with dry antenna
1 for every dry period with wet antenna
2 for every rainy period (with wet antenna)

(13)

In this case, a possible attenuation model could be given by

At =


µ0+ε0 for every dry period with dry antenna
µ1+ε1 for every dry period with wet antenna
µ2+ε2 for every rainy period

(14)15

It must be noted, however, that such a model might be poorly identifiable, i.e. the pa-
rameters and states can not be identified without ambiguity because of the uncertainty
affecting the power measurements and because of the strong dependence between
the model parameters.

430

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/411/2012/amtd-5-411-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/411/2012/amtd-5-411-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
5, 411–445, 2012

Markov switching
models to infer

dry/rainy periods

Z. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

6 Conclusions

In this article, a new algorithm based on a Markov switching model has been intro-
duced to classify attenuation measurements from commercial microwave links into dry
and rainy periods. The performance of the algorithm has been evaluated using real
data from a new and original experimental set-up and compared to 3 existing classifi-5

cation methods. The results show that the Markov switching algorithm performs well
and that its classification performance can be increased if multiple channel inputs are
considered. Clearly, this is a big advantage compared to other univariate algorithms
from the literature which cannot be generalized easily to the multivariate case. The fact
that the Markov switching model does not require any empirically estimated threshold10

parameters is also of advantage.
The experimental set-up described in Sect. 3 provides a unique platform from which

various aspects of rainfall retrieval using MWL can be investigated. For example, it
is now possible to rigorously evaluate and compare the classification performances of
the different algorithms presented in Sect. 2, which is difficult based on single gauges,15

which are usually not directly under the MWL beam. The potential applications and
scientific value of this experiment go, however, far beyond the simple application pre-
sented in this article. Future studies will, for example, investigate the effect of wet
antenna bias on retrieved rain rates, explore how attenuation of orthogonal polariza-
tions can be used to retrieve the effective drop size distribution (DSD) along the link20

path, and the possibility to use multiple channels in order to improve the accuracy of
the rain-rate estimates.
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Appendix A

SNMP programming on mini-link

The microwave link used in this experiment is an “Ericsson Mini-link TN ETSI”, a widely
used platform in commercial telecommunication applications. However, it is not a dedi-5

cated remote sensing device, which required the development of a custom software for
high-frequent data logging. As the Mini-link is relatively inexpensive and widely used,
details of our solution might be of use to others and facilitate future studies.

The Mini-link can provide some management information through a software called
Mini-link Craft. In the case of rainfall estimation, the major parameters of interest are10

the transmitted and received powers. However, in its initial configuration, these values
are only provided at a 15 min temporal resolution. This is clearly not enough consid-
ering the temporal and spatial dynamics of rainfall. Consequently, a simple network
management protocol (SNMP) has been implemented to query the transmitted and
received powers using a much higher temporal resolution.15

SNMP is an Internet-standard protocol for managing devices on IP networks. It
allows network management systems to monitor the conditions of network devices.
Three SNMP versions can be distinguished: the initial implementation (SNMP v1)
and its revised versions SNMP v2, SNMP v3 which offer enhanced security for Inter-
net communications. In our case, a Windows/C++ library called SNMP++ (Mellquist,20

1997), was used to query the MWL data. The SNMP for the Mini-link uses three key
software components, as shown in Fig. 5.

SNMP manager. The client software running on the administrator’s computer.

SNMP agent. The server software running on the Mini-link.

Management information base (MIB). The MIB is a virtual database, i.e. a hierarchi-25

cally arranged collection of information that lists all objects that can be accessed via
SNMP reading/writing operations. Each object has a unique object identifier (OID).
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Communication is usually initiated by the manager who sends a read/write request
to the agent via the command GetRequest. The agent reads/writes the desired val-
ues from/to the local information base, and sends a response via the Response com-
mand together with a status information. If the manager and the agents are connected
through the Internet, IP addresses need to be assigned for remote communications.5

The SNMP manager and agents can also be connected locally through a USB connec-
tion.

The Ericsson Mini-link provides a large number of object identifiers for system man-
agement purposes. An SNMP manager can query the Mini-link OIDs for specific infor-
mation. For example, the OID “1.3.6.1.4.1.193.81.3.4.3.1.3.1.1.0” denotes the trans-10

mitted power and “1.3.6.1.4.1.193.81.3.4.3.1.3.1.10.0” denotes the received power. If
there are more than one channel in the Mini-link system, each channel is identified
using a number, e.g. “2129920257”. The transmitted power for this channel is then
identified using the OID “1.3.6.1.4.1.193.81.3.4.3.1.3.1.1.2129920257”. Because OIDs
can be very long and complicated, the MIB translates each OID into a human readable15

form. To conveniently retrieve OIDs, Net-SNMP and MG-SOFT proved to be useful
tools.

Once the OID for each parameter and channels have been identified, the implemen-
tation of the data acquisition and logging is straight forward. A flowchart illustrating
the procedure is shown in Fig. 6. For our application, the retrieved data are orga-20

nized into daily files. Each file contains the date (dd/mm/yy), time (HH:MM:SS) in
UTC and the transmitted/received powers (in dB) for all the considered channels. The
path-integrated attenuation is then derived by subtracting the received power from the
transmitted one. The data acquisition software can be made available on request.
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Table 1. Longitude, latitude, height and frequencies of the installed microwave link.

Parameters Site 1: Dübendorf Site 5: Wangen

Longitude 8◦37′43.10′′ E 8◦38′16.26 E
Latitude 47◦24′4.80′′ N 47◦25′0.25′′ N
Height 436 m a.m.s.l. 486 m a.m.s.l.
Freq. (horizontal) 38 657.5 MHz 37 397.5 MHz
Freq. (vertical) 38 650.5 MHz 37 390.5 MHz
Length 1.85 km
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Table 2. Classification performances (in percentages) for the simple threshold (ST), the moving
window (MW), the Factor Graph (FG), the univariate Markov switching (MSU) and the multivari-
ate Markov switching (MSM) algorithms for dataset 1 (stationary case). For the univariate algo-
rithms, the value given in the table corresponds to the average classification performance for all
4 channels. In parentheses the associated standard deviation. Note that no model parameters
could be fitted for the MSU algorithm on channel 2.

Models rain detection threshold 0 mm h−1 rain detection threshold 0.1 mm h−1

type I error type II error type I error type II error

ST 2.74 (0.88) 23.07 (4.44) 4.52 (0.98) 13.06 (4.26)
MW 12.35 (0.46) 39.04 (2.44) 14.43 (0.14) 11.84 (1.78)
FG 12.00 (2.13) 38.78 (5.75) 12.80 (2.04) 27.07 (6.06)
MSU 2.11 (0.10) 23.32 (2.50) 3.89 (0.18) 13.28 (2.53)
MSM 2.46 21.97 4.27 11.82
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Table 3. Classification performances for dataset 2 (non-stationary case). Same format than in
Table 2. Note that no model parameters could be fitted for the MSU algorithm on channels 2
and 4.

Models rain detection threshold 0 mm h−1 rain detection threshold 0.1 mm h−1

type I error type II error type I error type II error

ST 7.30 (2.74) 48.91 (2.35) 7.51 (2.69) 17.72 (3.57)
MW 11.54 (0.28) 65.74 (0.77) 11.97 (0.34) 17.54 (2.16)
FG 1.80 (0.47) 61.81 (1.40) 1.93 (0.46) 34.78 (2.57)
MSU 1.83 (0.43) 56.10 (2.17) 2.06 (0.47) 27.09 (2.27)
MSM 3.24 50.55 3.53 20.08
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of variable density, Adv. Water Resour., 31, 1470–1480, doi:
10.1016/j.advwatres.2008.03.003, 2008.

Zinevich, A., Alpert, P., and Messer, H.: Frontal rainfall observa-
tion by commercial microwave communication network, J. Appl.755

Meteor. Climate, 48, 1317–1334, 2009.
Zinevich, A., Messer, H., and Alpert, P.: Prediction of rainfall in-

tensity measurement errors using commercial microwave com-
munication links, Atmos. Meas. Tech., 3, 1385–1402, 2010.

Fig. 11. Experimental set-up deployed in Dübendorf, Switzerland.
The Disdrometers are located at sites 2 (2 collocated stations), 3, 4
and 5. The rain gauges at sites 2, 4 and 5. Pictures 5.A and 5.B show
the MWL (at site 5) with (respectively without) the rain shields.

Table 11. Longitude, latitude, height and frequencies of the in-
stalled microwave link.

Parameters Site 1: Dübendorf Site 5: Wangen
Longitude 8◦37’43.10” E 8◦38’16.26 E
Latitude 47◦24’4.80” N 47◦25’0.25” N
Height 436 m AMSL 486 m AMSL

Freq. (horizontal) 38’657.5 MHz 37’397.5 MHz
Freq. (vertical) 38’650.5 MHz 37’390.5 MHz

Length 1.85 km

Fig. 1. Experimental set-up deployed in Dübendorf, Switzerland. The disdrometers are located
at sites 2 (2 collocated stations), 3, 4 and 5. The rain gauges at sites 2, 4 and 5. Pictures
5.A and 5.B show the MWL (at site 5) with (respectively without) the rain shields.

440

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/411/2012/amtd-5-411-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/411/2012/amtd-5-411-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
5, 411–445, 2012

Markov switching
models to infer

dry/rainy periods

Z. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Wang et al.: Markov switching models to infer dry/rainy periods 11

0
2

4
6

8

Date

R
ai

n 
In

te
ns

ity
(m

m
/h

)

Date

P
at

h−
in

te
gr

at
ed

 a
tte

nu
at

io
n

(d
B

)

2011−3−17 2011−3−27 2011−4−6 2011−4−16 2011−4−26
47

49
51

53
Date

0
2

4
6

8

Date

R
ai

n 
In

te
ns

ity
(m

m
/h

)

48
50

52
54

56

Date

P
at

h−
in

te
gr

at
ed

 a
tte

nu
at

io
n

(d
B

)

2011−5−17 2011−5−24 2011−5−31 2011−6−7 2011−6−14

Date

Dataset 1 Dataset 2

Fig. 12. Rain-rate [mmh−1] and path-integrated attenuation [dB] for dataset 1 (stationary) and 2 (non-stationary). For better illustration,
only the attenuation of channels 1 (dataset 1), and 4 (dataset 2) are shown. The time is given in UTC.

Table 12. Classification performances (in percentages) for the simple threshold (ST), the moving window (MW), the Factor Graph (FG),
the univariate Markov switching (MSU) and the multivariate Markov switching (MSM) algorithms for dataset 1 (stationary case). For the
univariate algorithms, the value given in the table corresponds to the average classification performance for all 4 channels. In parentheses the
associated standard deviation. Note that no model parameters could be fitted for the MSU algorithm on channel 2.

Models rain detection threshold 0 mmh−1 rain detection threshold 0.1 mmh−1

type I error type II error type I error type II error
ST 2.74 (0.88) 23.07 (4.44) 4.52 (0.98) 13.06 (4.26)

MW 12.35 (0.46) 39.04 (2.44) 14.43 (0.14) 11.84 (1.78)
FG 12.00 (2.13) 38.78 (5.75) 12.80 (2.04) 27.07 (6.06)

MSU 2.11 (0.10) 23.32 (2.50) 3.89 (0.18) 13.28 (2.53)
MSM 2.46 21.97 4.27 11.82

Table 13. Classification performances for dataset 2 (non-stationary case). Same format than in Table 12. Note that no model parameters
could be fitted for the MSU algorithm on channels 2 and 4.

Models rain detection threshold 0 mmh−1 rain detection threshold 0.1 mmh−1

type I error type II error type I error type II error
ST 7.30 (2.74) 48.91 (2.35) 7.51 (2.69) 17.72 (3.57)

MW 11.54 (0.28) 65.74 (0.77) 11.97 (0.34) 17.54 (2.16)
FG 1.80 (0.47) 61.81 (1.40) 1.93 (0.46) 34.78 (2.57)

MSU 1.83 (0.43) 56.10 (2.17) 2.06 (0.47) 27.09 (2.27)
MSM 3.24 50.55 3.53 20.08

Fig. 2. Rain-rate [mm h−1] and path-integrated attenuation [dB] for dataset 1 (stationary) and
2 (non-stationary). For better illustration, only the attenuation of channels 1 (dataset 1), and 4
(dataset 2) are shown. The time is given in UTC.

441

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/411/2012/amtd-5-411-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/411/2012/amtd-5-411-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
5, 411–445, 2012

Markov switching
models to infer

dry/rainy periods

Z. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

12 Wang et al.: Markov switching models to infer dry/rainy periods

Index

R
ai

nf
al

l i
nt

en
si

ty
 (

m
m

/h
)

1
2

3

Date

MSU
Measured series

48
49

50
51

Dry

Wet

Date

Threshold
Measured series

48
49

50
51

Dry

Wet

Date

Factor Graph
Measured series

48
49

50
51

Dry

Wet

Date

48
49

50
51

Dry

Wet

Moving window
Measured series

2011−6−8 2011−6−9 2011−6−10 2011−6−11 2011−6−12
Date

P
at

h−
in

te
gr

at
ed

 a
tte

nu
at

io
n

 (
dB

)

Fig. 13. Illustration of the classification performances for the uni-
variate Markov switching algorithm (MSU), the simple threshold,
the Factor Graph and the moving window on a subset of dataset 1
(stationary case). Displayed are the observations from channel 1.
The time is given in UTC.
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Fig. 14. Illustration of the classification performances of the algo-
rithms on a subset of dataset 2 (non-stationary case). Displayed are
the observations from channel 4. Note that the results of the MSU,
which did not converge for this channel, have been replaced by the
results of the MSM.

Fig. 15. SNMP client/server concept to communicate with and
manage the Mini-Link.

Fig. 16. Flowchart for data acquisition and logging.

Fig. 3. Illustration of the classification performances for the univariate Markov switching algo-
rithm (MSU), the simple threshold, the Factor Graph and the moving window on a subset of
dataset 1 (stationary case). Displayed are the observations from channel 1. The time is given
in UTC.
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Fig. 13. Illustration of the classification performances for the uni-
variate Markov switching algorithm (MSU), the simple threshold,
the Factor Graph and the moving window on a subset of dataset 1
(stationary case). Displayed are the observations from channel 1.
The time is given in UTC.
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Fig. 14. Illustration of the classification performances of the algo-
rithms on a subset of dataset 2 (non-stationary case). Displayed are
the observations from channel 4. Note that the results of the MSU,
which did not converge for this channel, have been replaced by the
results of the MSM.

Fig. 15. SNMP client/server concept to communicate with and
manage the Mini-Link.

Fig. 16. Flowchart for data acquisition and logging.
Fig. 4. Illustration of the classification performances of the algorithms on a subset of dataset 2
(non-stationary case). Displayed are the observations from channel 4. Note that the results
of the MSU, which did not converge for this channel, have been replaced by the results of the
MSM.
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Fig. 13. Illustration of the classification performances for the uni-
variate Markov switching algorithm (MSU), the simple threshold,
the Factor Graph and the moving window on a subset of dataset 1
(stationary case). Displayed are the observations from channel 1.
The time is given in UTC.
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Fig. 14. Illustration of the classification performances of the algo-
rithms on a subset of dataset 2 (non-stationary case). Displayed are
the observations from channel 4. Note that the results of the MSU,
which did not converge for this channel, have been replaced by the
results of the MSM.

Fig. 15. SNMP client/server concept to communicate with and
manage the Mini-Link.

Fig. 16. Flowchart for data acquisition and logging.

Fig. 5. SNMP client/server concept to communicate with and manage the Mini-Link.
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Fig. 13. Illustration of the classification performances for the uni-
variate Markov switching algorithm (MSU), the simple threshold,
the Factor Graph and the moving window on a subset of dataset 1
(stationary case). Displayed are the observations from channel 1.
The time is given in UTC.
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Fig. 14. Illustration of the classification performances of the algo-
rithms on a subset of dataset 2 (non-stationary case). Displayed are
the observations from channel 4. Note that the results of the MSU,
which did not converge for this channel, have been replaced by the
results of the MSM.

Fig. 15. SNMP client/server concept to communicate with and
manage the Mini-Link.

Fig. 16. Flowchart for data acquisition and logging.

Fig. 6. Flowchart for data acquisition and logging.
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