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Abstract

This paper addresses the problem of estimating range-varying parameters of the
height-dependent refractivity over the sea surface from radar sea clutter. In the for-
ward simulation, the split-step Fourier parabolic equation (PE) is used to compute the
radar clutter power in the complex refractive environments. Making use of the inher-5

ent Markovian structure of the split-step Fourier PE solution, the refractivity from clut-
ter (RFC) problem is formulated within a nonlinear recursive Bayesian state estimation
framework. Particle filter (PF) that is a technique for implementing a recursive Bayesian
filter by Monte Carlo simulations is used to track range-varying characteristics of the
refractivity profiles. Basic ideas of employing PF to solve RFC problem are introduced.10

Both simulation and real data results are presented to check up the feasibility of PF-
RFC performances.

1 Introduction

The refractive environment is generally characterized by the refractivity profile (N-
profile) or the modified refractivity profile (M-profile) and there are many techniques15

that measure or predict the tropospheric index of refraction. Conventional methods of
the refractive index measurement consisting of detecting height dependence of tem-
perature, pressure and humidity performed by radiosondes, microwave refractometers,
or rocketsondes have some drawbacks, such as expensive and/or difficult deployment.
Moreover, these measurements tend to provide estimates of refractivity versus height20

only at a single range (Halvey, 1983; Yan et al., 2006). Therefore, it is necessary to
develop more sophisticated methods for refractivity detection.

Richter (1969) has pointed out that the temporal and spatial variations of radar
echoes are related to the temporal and spatial variations in the layers of the refrac-
tivity profile, which motivates the research of atmospheric refractivity estimation from25

radar clutter returns, i.e. refractivity from clutter (RFC). More investigations concerning
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the phenomenology of sea clutter returns from extended ranges associated with duct-
ing conditions have been discussed in the work of Gossard and Strauch (1983). The
idea of RFC is to extract the refractive information contained in the sea surface clutter.
The advantage of RFC is that it can provide a synoptic characterization of the duct over
the spatial extent of the radar and it overcomes the necessity of additional hardware or5

extra meteorological/electromagnetic measurements. In addition, it can sense range-
varying refractivity at a temporal sampling rate that can track changes in atmospheric
conditions (Vasudevan et al., 2007).

RFC is a complex inverse problem because the relationship between refractivity pa-
rameters and radar sea clutter is clearly nonlinear and ill-posed. It is difficult to get an-10

alytical solutions according to current theories, and global optimization method might
be a good choice to get approximate solutions (Wang et al., 2009). In the last decade,
many advances have been made in remotely sensing refractivity parameters from radar
sea clutter. In order to simplify the computation, most of these works treat the refrac-
tive environment horizontally homogeneous (Rogers et al., 2000; Barrios, 2004; Kraut15

et al., 2004; Yardim et al., 2006, 2009; Douvenot et al., 2008; Huang et al., 2009; Wang
et al., 2009; Zhao and Huang, 2011; Zhao et al., 2011). Although the spatial change
of tropospheric refractivity is larger with height than with range and generally the hor-
izontal homogeneity assumptions of the refractive environments are demonstrated to
be reasonable (Hitney et al., 1985; Goldhirsh and Dockery, 1998), the environment can20

change drastically at air/mass boundaries associated with wave clones and land/ocean
interfaces (Barrios, 1992). Therefore, some studies for range-varying estimations have
also been investigated.

Gerstoft et al. (2003a,b) proposed the usage of the genetic algorithm (GA) to per-
form global refractivity estimation. In their work, the authors presented a method to25

model both the range- and the height-dependent refractive environment using a total
of 11 parameters (5 parameters describe vertical structure and 6 parameters describe
horizontal variations). Although GA does well in estimating the maximum a posteri-
ori (MAP) solution, it gives poor results in calculating the multi-dimensional integrals

6061

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/6059/2012/amtd-5-6059-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/6059/2012/amtd-5-6059-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
5, 6059–6082, 2012

Using particle filter
to track horizontal

variations

X. F. Zhao and
S. X. Huang

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

required to obtain means, variances and underlying probability distribution functions of
the estimated parameters. Accurate distributions can be obtained using MCMC sam-
plers, such as the Metropolis-Hastings and Gibbs sampling algorithms (Yardim et al.,
2007). Their drawback is that they require a large number of samples and become im-
practical with increasing number of unknowns. Vasudevan et al. (2007) exploited the5

inherent Markovian structure of the split-step Fourier PE solution and show how recur-
sive Bayesian estimation when combined with forward and Viterbi algorithms can be
used to solve the problem of estimating RFC in a sequential manner. Through estab-
lishing many pre-computed, modeled radar clutter returns for different environments
in a database, Douvenot et al. (2010) inverted real-time profiles based on finding the10

optimal environment from the database.
Recent developments have demonstrated that particle filter (PF) is an emerging and

powerful methodology for sequential signal processing with a wide range of applica-
tions in science and engineering (Arulampalam et al., 2002; Lee and Chia, 2002; Djuric
et al., 2003; Hlinomaz and Hong, 2009). Based on the concept of sequential impor-15

tance sampling and the use of Bayesian theory, PF is particularly useful in dealing with
nonlinear and non-Gaussian problems. The underlying principle of the methodology is
the approximation of relevant distributions with random measures composed of parti-
cles and their associated weights. Yardim et al. (2008) have used PF to track temporal
change of refractivity profile from radar sea clutter, mainly for range-independent case.20

In their work, the observations were assumed to be collected at different time point,
each time they could obtain an integral observed data. Different from Yardim’s work, in
this paper, PF is extended to range-varying refractivity estimations from just once radar
observations. The reminder of this paper is organized as follows. In Sect. 2, the state-
space model including state evolution equation and observation equation is introduced.25

The fundamentals of PF-RFC algorithm are described in Sect. 3. Section 4 shows the
performances of PF-RFC estimations, including idea duct model simulations and real
data results.
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2 State-space model

2.1 Atmospheric duct model

In the marine environment, there exist three types of atmospheric ducts: the evapo-
ration duct, surface-based duct, and elevated duct. For the purposes of propagation
studies, several parameterized duct models are used to present the height-dependent5

duct structures, in which tri-linear height-dependent refractivity profile (see Fig. 1) is
quite versatile in its ability to include refractivity representations of the commonly atmo-
spheric ducts (Rogers, 1996).

As described in Fig. 1, tri-linear profile can be represented by four parameters, i.e.
base height zb, thickness zt, M-deficit Md, and slope of refractivity in the lower layer c.10

The modified refractivity M for the tri-linear profile can be determined at any height z
by the relationship:

M(z) =M0 +


cz, for z ≤ zb

czb −
Md
zt

(z− zb), for zb < z ≤ zb + zt

czb −Md +0.118(z− zb − zt), for z > zb + zt

(1)

where M0 is the modified refractivity at the sea surface usually taken as 330 M-units.
When the value of base height reduces to zero, tri-linear profile will be ended up with15

a bilinear profile, which means that the bottom of the duct touches the ground.
Let x be the state vector of refractivity parameters. Then, for tri-linear profile model,

x = [zb,zt,Md,c]T . Since the index of refraction is a function of physical quantities such
as pressure, temperature and humidity, it is reasonably assumed that the parameters of
the refractivity do not undergo drastic changes over small range intervals. Moreover, the20

correlation of the refractive process suggests characterizing the relationship between
the parameters from one range step to another by a Markov process (Vasudevan et al.,
2007). Thus, the evolution of the refractivity parameters over range can be expressed
as:
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xk+1 = Γ(xk)+w k (2)

where Γ(·) is the system transition function and w k models the uncertainty in the varia-
tions of refractivity parameters over range. Generally, it is assumed to be a zero mean,
white Gaussian sequence with covariance matrix Qk , and is independent of past and
current states.5

2.2 Measurement equation

Before performing RFC estimations, a forward simulation of the received radar sea
clutter power Pc has to be computed. In the absence of receiver noise, the received
signal power from the clutter can be modeled as a function of the one-way propagation
loss Lloss in decibels (Gerstoft et al., 2003a):10

Pc(rk ,xk) = −2Lloss(rk ,z0,xk)+10log10(rk)+C (3)

where rk is the propagation range, z0 is the height of sea surface level, xk is the
refractivity parameter vector at range rk , and C is a constant that includes wavelength,
radar cross-section (RCS), transmitter power, antenna gain, etc. In Eq. (3), propagation
loss Lloss can be computed as (Barrios, 1991):15

Lloss(rk ,z) = −10log10

(
λ2 |u(rk ,z)|2

(4π)2rk

)
(4)

where λ is the wavelength, and u is the electric field that can be computed numerically
using the split-step Fourier PE method:

u(rk+1,z) = exp
[
ik0δrM(rk ,z)10−6

]
F −1

{
exp

[
i
p2δr
2k0

]
F {u(rk ,z)}

}
(5)
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where k0 is the free space wave number, δr is the range increment, defined by δr =
rk+1 − rk . M(rk ,z) is the modified refractivity at range rk and height z, which can be
determined by the state vector xk , see Eq. (1). F {·} and F −1 {·}, respectively, are the
Fourier transform and inverse Fourier transform operator, and p is the Fourier transform
variable. Detailed description of the split-step Fourier PE solution has been given in the5

works completed by Kuttler and Dockery (1991).
From Eq. (5), it is clear that if the electric field at range rk is known, the field at the

next range rk+1 is only determined by the state vector xk , which formulates a Markovian
structure. If the initial field u(r0,z) at the transmitter range r0 = 0 is known, recurring to
the recursive relationship given in Eq. (5), the field at range rk+1 is a function of all10

the refractivity parameters up to range rk+1. Thus, we must begin with an initial field
u(r0,z) in order to propagate the field forward. Initial field is a function of radar system
parameters. Detailed computation could refer to Barrios (1991).

Let y be the measurement vector, H(·) be the measurement function, and v be the
measurement noise. Then, the noisy measurements related to the state vector can be15

expressed as:

yk = H(xk)+ v k (6)

where the measurement function H(·) is determined by Eqs. (3)–(5). v k is another zero
mean, white Gaussian sequence with covariance matrix Rk , and it is independent of
past and present states and the process noise.20

3 Particle filter

According to Eqs. (2) and (6), the RFC problem has been modeled as a nonlinear
continuous state-space estimation problem:{
xk = Γ(xk−1)+w k−1
yk = H(xk)+ v k

(7)
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The objective now is to estimate the state vector xk from the measurement vector yk .
The method that has been investigated most and that has been frequently applied in

practice to the state-space estimation is the Kalman filter (KF) (Anderson and Moore,
1979). KF is optimal in the important case when the equations are linear and the noises
are independent and Gaussian. In this situation, the distributions of interest (filtering,5

predictive, or smoothing) are also Gaussian and the KF can compute them exactly
without approximations. For scenarios where the models are nonlinear or the noise
is non-Gaussian, various approximate methods have been proposed of which the ex-
tended Kalman filter (EKF) is perhaps the most prominent of all. EKF is based on
linearizing the state and/or measurement equations using Taylor’s series expansions.10

In RFC estimation, using EKF is problematic because the refractivity parameters of
interest appear in the complex exponential in Eq. (5) which when linearized leads to
instability of EKF and very poor estimates of refractivity parameters (Sheng, 2011).

Recently, particle filter (PF) method has become an important alternative to EKF.
With PF, continuous distributions are approximated by discrete random measures,15

which are composed of weighted particles, where the particles are samples of the
unknown states from the state space, and the particle weights are probability masses
computed by Bayes theory. The advantage of PF over other filtering methods is in that
the exploited approximation does not involve linearization around current estimates
but rather approximations in the representation of the desired distributions by discrete20

random measures (Djuric et al., 2003). There are many different variants of PF such
as sequential importance resampling particle filter (SIRPF), regularized particle filter
(RPF), Gaussian particle filter (GPF), and auxiliary particle filter (APF). The SIRPF is
used throughout this work.

In order to develop the details of the algorithm, let
{
x
i
0:k ,w i

k

}Np

i=1
denote a cloud of25

Np particles to approximates the estimate of the posterior probability density function

(PDF) p(x0:k |y1:k), where
{
x
i
0:k , i = 0, · · · ,Np

}
is a set of support points with associated

weights
{
w i
k , i = 0, · · · ,Np

}
and x0:k =

{
xj , j = 0, · · · ,k

}
is the set of all states up to time
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k. The weights are normalized such that
∑

i w
i
k = 1. Then, the posterior PDF at time k

can be approximated as:

p(x0:k |y1:k) ≈
∑Np

i=1
w i
kδ(x0:k −xi

0:k) (8)

One therefore has a discrete weighted approximation to the true posterior PDF. The
weights are chosen using the principle of importance sampling (Doucet, 1998). This5

principle relies on the following.
Sometimes, it is difficult or impossible to directly sample from the posterior PDF

p(x0:k |y1:k). Then, a new density π(x) that can be evaluated and that is chosen to
satisfy p(x) ∝ π(x) is defined. Additionally, let xi ∼ q(x), i = 1, · · · ,Np be samples that
are easily generated from a proposal q(·) that is referred to as the importance density.10

The weights of each normalized particle are then defined as:

w i
k ∝

π(xi )

q(xi )
(9)

Since p(x) ∝ π(x), the normalized particle weights can also be obtained via:

w i
k ∝

p(xi
0:k |y1:k)

q(xi
0:k |y1:k)

(10)

The importance density is chosen to factorize such that:15

q(x0:k |y1:k) = q(xk |x0:k−1,y1:k)q(x0:k−1|y1:k−1) (11)

Then, one can obtain samples x
i
0:k ∼ q(x0:k |y1:k) by augmenting each of the existing

samples x
i
0:k−1 ∼ q(x0:k−1|y1:k−1) with the new state x

i
k ∼ q(xk |x0:k−1,y1:k). To derive

the weight update equation, p(x0:k |y1:k) is expressed as:
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p(x0:k |y1:k) =
p(yk |xk)p(xk |xk−1)

p(yk |y1:k−1)
p(x0:k−1|y1:k−1)

∝ p(yk |xk)p(xk |xk−1)p(x0:k−1|y1:k−1) (12)

By substituting Eqs. (11) and (12) into Eq. (10), the weight update equation can then
be shown to be:5

w i
k ∝

p(yk |x
i
k)p(xi

k |x
i
k−1)p(xi

0:k−1|y1:k−1)

q(xi
k |x

i
0:k−1,y1:k)q(xi

0:k−1|y1:k−1)
= w i

k−1

p(yk |x
i
k)p(xi

k |x
i
k−1)

q(xi
k |x

i
0:k−1,y1:k)

(13)

If the importance density describes a Markovian process, then the importance density
becomes only dependent on the previous state xk−1 and the current measurement yk .
In this case, Eq. (13) can be expressed as:

w i
k ∝ w i

k−1

p(yk |x
i
k)p(xi

k |x
i
k−1)

q(xi
k |x

i
k−1,yk)

(14)10

A key issue in PF is choosing an appropriate importance density. Generally, it is often
convenient to choose the importance density to be the prior state density p(xi

k |x
i
k−1).

This handling way is adopted in SIRPF. When the prior is used, the weight update
equation can be expressed as:

w i
k ∝ w i

k−1p(yk |xi
k) (15)15

The SIRPF resamples the particles with replacement at every time increment and sets
the resampled particle weight to 1/Np. Then, Eq. (15) can be reduced to be:

w i
k ∝ p(yk |xi

k) (16)
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This removes the dependency of the current particle weight to the previous particle
weight. The weights given by the proportionality in Eq. (16) should be normalized be-
fore the resampling stage. The stratified sampling scheme (Carpenter et al., 1999) is
adopted in this paper. Since the particle weights are now equal, after resampling the
state estimate is:5

x̂k |k =
1
Np

∑Np

i=1
xi
k |k (17)

The SIRPF is popular because it is easy to implement. Consequently it has been used
in numerous non-linear/non-Gaussian filtering applications. A significant drawback of
the SIRPF is that it does not incorporate current measurements into the importance
density. Thus, it may require a large number of particles in order to work well if the prior10

density and likelihood function have only a small region of overlap. Additional detailed
discussions on SIRPF can be found in the tutorials provided in Doucet (1998) and
Arulampalam et al. (2005).

The application of the SIRPF to RFC estimations can be summarized as follows:

– Initialization: it is assumed that the initial PDF p(x0|y0) ≡ p(x0) of the state vector15

is available. Start from a cloud of Np random samples
{
x
i
0,1/Np

}Np

i=1
with equal

weight from p(x0). In RFC estimations, historical observations and/or possibly an
in situ measurement of refractivity profile at the radar can be used to form a prior
distribution on x0.

– Prediction: each sample is passed through the state equation, i.e. Eq. (2), to ob-20

tain the samples from the prior at time step k: x̃i
k = Γ(xi

k−1)+w
i
k−1.

– Update: on receipt of the measurement yk , evaluate the likelihood function of
each prior sample by the measurement equation: p(yk |x̃

i
k) = H(x̃i

k)+ v
i
k . Then,

compute the normalized weight for each sample:
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w i
k =

p(yk |x̃
i
k)∑Np

j=1p(yk |x̃
j
k)

(18)

p(yk |x̃i
k) ∝ exp

{
−1

2

[
yk −H(x̃i

k)
]T

R−1
k

[
yk −H(x̃i

k)
]}

(19)

Thus define a discrete distribution over
{
x̃
i
k ,w i

k

}Np

i=1
. Now resample Np times from

the discrete distribution to generate samples
{
x
i
k ,1/Np

}Np

i=1
.5

4 PF-RFC results

In this Section, the performances of PF-RFC estimations are tested. First, a horizontal
varying refractive environment is simulated by the idea tri-linear duct model and using
the corresponding synthetic propagation losses at sea level to quantify the performance
of PF-RFC estimations. Then, a real refractivity and radar sea clutter data collected in10

Wallops98 experiments are used.

4.1 Simulation results

In our simulations, the Space and Range radar (SPANDAR) parameters operated in
Wallops98 experiments are used, i.e. a vertical polarization antenna with operational
frequency of 2.84 GHz, horizontal beamwidth of 0.39 deg, elevation angle of 0 deg,15

range bin width of 600 m, and antenna height of 30.78 m (see Gerstoft et al., 2003a).
Figure 2 compares the propagation loss with respect to the distance at sea level

obtained with the two similar surface-based duct profiles.
From Fig. 2 it can be seen that when the duct structures are similar, there are some

discrepancies between the two corresponding propagation losses. However, the struc-20

ture of the propagation losses, especially within 20 km near the transmitter, are very
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close. In practical operations, the range bin width for measurement is usually several
hundred meters. If the propagation loss at every range increment is used as an in-
dependent observation, this may result in deficiencies in the observations and bring
about larger errors in RFC estimations. In our computations, the range step δr for the
split-step Fourier PE solution is set to be 600 m, while the state evolution range is set5

to be 6 km. The refractive environment between the two state profiles is obtained using
linear interpolation. Thus, we could get 10 discrete point observations in every state
evolution. The propagation range in this paper is selected to be 60 km.

Here, we consider the following state evolution equations as a simulated example.
zb,k+1 = zb,k +0.1×k2/(k +1)
zt,k+1 = zt,k +0.1×k
Md,k+1 =Md,k +0.1×k
ck+1 = ck −0.0004×k1.2

(20)10

The initial state is taken to be x0 = [100m,40m,30M−units,0.13M−unitsm−1]T , the
covariance for the process noise Qk and measurement noise Rk are respective set

to be Qk = diag
{[

(10m)2 , (10m)2 , (10M−units)2 ,
(

0.1M−unitsm−1
)2
]}

and Rk =

diag
{

(3dB)2
}

. The prior distributions of each parameter are randomly generated from

a given parameter bounds. The range of base height is 50 ∼ 150m, thickness is15

5 ∼ 80m, M-deficit is 5 ∼ 60M−units, and slope is 0.1 ∼ 0.2mM−units−1.
In order to quantify PF-RFC performance, the root-mean squared error (RMSE) is

used:

RMSE(x̂) =

 1
Ns ×NMC

NMC∑
i=1

NS∑
k=1

(x̂k −xk)2

1/2

(21)

where NMC is the number of Monte Carlo (MC) runs, and NS is the number of state20

evolutions.
6071

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/6059/2012/amtd-5-6059-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/6059/2012/amtd-5-6059-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
5, 6059–6082, 2012

Using particle filter
to track horizontal

variations

X. F. Zhao and
S. X. Huang

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

As mentioned above, the importance density of SIRPF does not incorporate current
measurements. Thus, the performance of SIRPF may be sensitive to the number of
particles. Table 1 shows the RMSE values for different particles averaged over 10 MC
runs.

The results given in Table 1 indicate that PF-RFC algorithm can successfully track5

range-varying refractivity profiles. The RMSE values are downtrending with the incre-
ment of particle number. With more particles, however, it required much larger compu-
tation. Taking estimation accuracy and efficiency into account, 800 particles are used
in the following computation. A typical result for the 800 particles scenario described
above is shown in Fig. 3.10

4.2 Real data results

To test PF-RFC estimations with real data, the radar sea clutter measurement col-
lected in Wallops98 is used. The corresponding refractivity profiles are measured by
a helicopter-borne instrument flying to and fro on 150◦ radial from the shore to a dis-
tance of approximately 60 km out to sea. The clutter return (dB) observed by the radar15

along azimuth 150◦ and the contour plot of the corresponding modified refractivity ver-
sus range and height are shown in Fig. 4. Detailed information about Wallops98 exper-
iments can be found in the works completed by Rogers et al. (2000) and Gerstoft et al.
(2003a,b).

From the bottom plot of Fig. 4, the contour shows a little range variability of the20

refractive environment. Within 6 km range bin, however, the horizontal change of the
refractivity is not very strong. Thus, in real data estimations, the range-varying charac-
teristics of the refractivity within 6 km range bin are assumed to be a Gaussian random
process. Owing to the duct structures in Fig. 4 (black lines) are approximate to bilin-
ear profiles which could be modeled by two parameters, i.e. thickness and M-deficit,25

here the covariance for the process noise Qk and measurement noise Rk are respec-

tive set to be Qk = diag
{[

(10m)2 , (10M−units)2
]}

and Rk = diag
{

(3dB)2
}

. The prior
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distributions of thickness are randomly generated from 5 m to 80 m, and M-deficit from
5 M−units to 60 M−units.

Using PE to simulate the electric field propagations in the troposphere does not ob-
tain correct results for very short ranges (Gerstoft et al., 2003a), thus in our retrievals,
the first 10 km clutter data are not used. The atmosphere between 0 and 18 km is5

assumed to be horizontally homogeneous, which is estimated only by clutter data be-
tween 10 and 18 km.

The refractivity profiles estimated using real clutter data are also shown in the bottom
plot of Fig. 4 (read dashed line). Compared retrievals with the measured profiles, it can
be seen that the features of the range-varying nature of the duct are captured, but the10

first two retrievals are not very good. This phenomenon can be ascribed to prior distri-
butions of the state vector and/or the measurement errors of the used observation data.
However, the final goal of the refractivity estimation is not to give the exact refractivity
profiles, but to propose potential structures that could be able to render an approxima-
tion of the real atmospheric condition to predict microwave propagation for assessing15

the performance of both communications and radar systems (Douvenot et al., 2008).
Figure 5 shows the coverage diagrams (dB) of the modeled propagation loss com-

puted by the split-step PE method using the measured refractivity and the estimated
profiles. The top diagram shows the propagation loss corresponding to the helicopter
profiles, and the medium diagram corresponding to the estimated profiles. It is obvi-20

ously seen that owing to the existence of the surface-based ducts, the radar signal is
remarkably trapped in the duct, which increases the maximum radar channel range.
The absolute difference of the above two diagrams is displayed at the bottom. Most
of the differences are controlled within 20 dB, which demonstrates that how well the
estimated profiles are able to predict the propagation characteristics.25
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5 Conclusions

RFC is a novel technique, which plays an important role in the full usage of radar
systems. This paper has shown how PF can be coupled with the split-step Fourier
PE solution to track range-varying refractive environments from radar sea clutter. The
performances of PF-RFC algorithm are tested by both simulations and real data esti-5

mations. Through computing RMSE of the retrievals, the simulation results of different
particles are analyzed. Taking estimation accuracy and efficiency into account, 800
particles are used in the real data computations. Although the results show promise,
further work is required to evaluate the performance of the method with more real clut-
ter data.10
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Table 1. RMSE values for different particles averaged over 10 MC runs.

Particle number zb zt Md (M-units) c (M−unitsm−1)

100 2.6602 2.4770 2.4192 0.0227
200 0.9746 1.6886 1.9926 0.0182
300 1.0915 1.0893 1.6205 0.0171
400 1.0648 1.1412 1.5716 0.0137
500 0.7899 1.0547 1.1295 0.0164
800 0.6895 0.7276 0.9357 0.0098
1000 0.6566 0.4924 0.7402 0.0105
2000 0.7457 0.4848 0.3629 0.0094

6077

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/6059/2012/amtd-5-6059-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/6059/2012/amtd-5-6059-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
5, 6059–6082, 2012

Using particle filter
to track horizontal

variations

X. F. Zhao and
S. X. Huang

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 

Fig. 1. The sketch map of tri-linear profile and bilinear profile.
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Fig. 2. Two similar surface-based duct profiles and their corresponding propagation loss at sea
level.
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Fig. 3. Typical results for PF-RFC estimations of 800 particles.
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Fig. 4. The clutter return (dB) observed by the radar along azimuth 150◦ (top panel), and the
contour plot of the corresponding modified refractivity versus range and height (bottom panel).
The black lines indicate the measured profiles at every 6 km range bin and the red dashed lines
indicate the estimated profiles.
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 Fig. 5. Coverage diagrams (dB) of propagation loss corresponding to the helicopter profiles
(top panel), estimated profiles (middle panel), and the absolute difference between the above
two diagrams (bottom panel).
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