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Abstract

Hierarchical agglomerative cluster analysis was performed on single-particle multi-
spatial datasets comprising optical diameter, asymmetry and three different fluores-
cence measurements, gathered using two dual Waveband Integrated Bioaerosol Sen-
sor (WIBS). The technique is demonstrated on measurements of various fluorescent5

and non-fluorescent polystyrene latex spheres (PSL) before being applied to two sep-
arate contemporaneous ambient WIBS datasets recorded in a forest site in Colorado,
USA as part of the BEACHON-RoMBAS project. Cluster analysis results between both
datasets are consistent. Clusters are tentatively interpreted by comparison of concen-
tration time series and cluster average measurement values to the published literature10

(of which there is a paucity) to represent: non-fluorescent accumulation mode aerosol;
bacterial agglomerates; and fungal spores. To our knowledge, this is the first time clus-
ter analysis has been applied to long term online PBAP measurements. The novel
application of this clustering technique provides a means for routinely reducing WIBS
data to discrete concentration time series which are more easily interpretable, without15

the need for any a priori assumptions concerning the expected aerosol types. It can
reduce the level of subjectivity compared to the more standard analysis approaches,
which are typically performed by simple inspection of various ensemble data products.
It also has the advantage of potentially resolving less populous or subtly different parti-
cle types. This technique is likely to become more robust in the future as fluorescence-20

based aerosol instrumentation measurement precision, dynamic range and the number
of available metrics is improved.

1 Introduction

Primary biological aerosol particles (PBAP) are those which are emitted or suspended
directly from the biosphere to the atmosphere, and as such are composed of biological25

matter (Després et al., 2012). These aerosols can consist of: viruses (0.01–0.3 µm);

6388

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/6387/2012/amtd-5-6387-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/6387/2012/amtd-5-6387-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
5, 6387–6422, 2012

Cluster analysis of
WIBS data

N. H. Robinson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

bacteria and bacteria agglomerates (0.1–10 µm); fungal and plant spores (1–30 µm);
and pollen (5–100 µm), as well as fragments thereof and of plant or animal matter (De-
sprés et al., 2012; Elbert et al., 2007). PBAP can affect human health as allergens
or through the transmission of disease, either naturally or through acts of bioterrorism
(Cresti and Linskens, 2000). There is evidence that PBAP may influence the hydro-5

logical cycle and climate by initiating warm ice nucleation processes (Christner et al.,
2008; Möhler et al., 2007; Pratt et al., 2009; Prenni et al., 2009) or acting as giant CCN
(Möhler et al., 2007; Pope, 2010).

It is clear that the PBAP classification consists of aerosol from various diverse
sources which may have wide reaching effects in the atmosphere. In order to pre-10

dict these potential effects under future emissions scenarios it is useful to be able to
identify the group to which a measured PBAP belongs. To date, this has largely been
achieved by the use of off-line techniques, which, whilst allowing accurate identification
of different aerosols, are labour intensive, have poor time resolution and introduce sig-
nificant identification biases. Several light-induced fluorescence (LIF) techniques have15

recently been developed which characterise the auto-fluorescence of particles, utilizing
the presence of certain biofluorophores such as NAD(P)H, riboflavin, and tryptophan
as indicators of PBAP material (Hill et al., 2001; Huffman et al., 2010; Kaye et al., 2005;
Pöhlker et al., 2012).

Here we focus upon development of analysis techniques for the Waveband Inte-20

grated Biological Spectrometer (WIBS) range of auto-fluorescence detectors (Foot
et al., 2008; Gabey et al., 2010, 2011; Kaye et al., 2005). We demonstrate the ap-
plication of a cluster analysis technique to the WIBS single particle data, allowing for
robust statistical resolution of different PBAP subgroups.

2 The Waveband Integrated Bioaerosol Spectrometer25

The measurements reported here were performed using two individual dual Waveband
Integrated Bioaerosol Spectrometers (Foot et al., 2008; Gabey et al., 2010; Kaye et al.,
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2005; Stanley et al., 2011) – a model 3 (WIBS3) and a model 4 (WIBS4). In both these
variants, the single particle elastic scattering intensity (at 633 nm) is measured in the
forward direction and at an angular range centred at 90◦. These measurements are
then used to infer the particle optical-equivalent diameter, DO. The forward scattering
component is measured by a quadrant photomultiplier tube that allows for measure-5

ment of the variation in azimuthal scattering from the particle. This in turn can be re-
lated to particle asymmetry or shape via an asymmetry factor, AF (e.g. Gabey et al.,
2010). This sizing measurement triggers subsequent pulses from filtered xenon flash-
lamps at 280 nm and 370 nm, designed to excite molecules such as tryptophan and
nicotinamide adenine dinucleotide phosphate (NAD(P)H) respectively within the parti-10

cle. Any resultant fluorescence is measured in two wavelength regimes named FL1 and
FL2. This gives rise to three separate fluorescence channels; in FL1 and FL2 following
the 280 nm excitation (named FL1 280 and FL2 280) and in FL2 following the 370 nm
excitation (named FL2 370). The FL1 and FL2 fluorescence detection regimes overlap
spectrally in the WIBS3, but have been separated in the WIBS4. There is no FL1 37015

channel as the 370 nm light pulse lies within the FL1 detection regime, which leads to
saturation. NAD(P)H does not fluoresce in the FL1 wavelength regime and riboflavin
only weakly, while proteins and amino acids are more fluorescent in this channel. Ta-
ble 1 details the fluorescence excitation and detection regimes for the two WIBS mod-
els. The WIBS4 also incorporates additional improvements to the optics configuration,20

excitation light delivery, sample inlet and logging software. A fluorescence baseline is
determined from measurements of fluorescence when the xenon sources are fired in
the absence of particles. This baseline has been subtracted from all fluorescence mea-
surements presented here. In total, the WIBS provides five different measurements of
each particle that are used in subsequent analyses herein: optical size, asymmetry25

factor, and three fluorescence measurements.
Previous work has identified different classes of PBAP using the physical properties

measured by the WIBS instrument (Gabey et al., 2010, 2011; Gabey, 2011). However,
this has so far been achieved by inspection of ensemble histograms which are then
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compared with particle standard measurements. This approach is labour intensive,
vulnerable to error, and may lead to the oversight of minor but important PBAP sub-
groups. It also does not easily lend itself to the production of concentration time series
of PBAP subgroups necessary for more detailed understanding of particle emission
sources.5

Various cluster analysis techniques have previously been used to classify single par-
ticle fluorescence data (Pinnick, 2004) and mass spectral data (Murphy et al., 2003), as
well as back trajectories (Cox et al., 2005; Kalkstein et al., 1987; Robinson et al., 2011).
In addition, neural networks have been trained to dynamically classify single particle
mass spectral data (Song et al., 1999). These studies have successfully demonstrated10

various approaches for objectively reducing large data sets so that they become easier
to interpret, but have not yet been applied to data from WIBS or similar commercially
available instruments. Previous studies have also focused on relatively short monitoring
times (several days), in contrast to the data analysed here which cover several weeks.
The following section identifies the most appropriate approach for the identification of15

a measured particle type. Firstly, several different approaches for identifying particle
groups by analysing a sub-set of the data are discussed. This is followed by a discus-
sion of particle attribution approaches, where the particles that were not included in the
data sub-set are compared to and allocated to the previously identified groups. This al-
lows for the construction of concentration time series of the different particle types for20

the entire measurement periods, while only performing time-intensive calculations on
representative sub-sets of the data.

3 Analysis techniques

The choice of particle grouping technique depends on the goals of the analysis and
the type of a given data set. We have chosen the following criteria as fundamental to25

suitable WIBS single particle data analysis:
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1. It should not require any assumptions about the types of particle present in the
data set as this precludes the identification of PBAP types that have not previously
been characterised using similar measurements.

2. It should not require any assumptions about relative group sizes, as different types
of PBAP can be present in very different concentrations.5

The technique also need not be dynamic, as WIBS analysis is performed offline. Neu-
ral network techniques have many attractive qualities such as their dynamic group-
ing, efficiency and accumulation of skill. However, they need prior training with mea-
surements of different particle types, which requires assumptions about the types of
particle present and so can lead to systematic misinterpretation. Cluster analysis is10

more suitable for WIBS data sets as it requires no such assumptions. The so-called
K-means approach is a common, efficient cluster analysis technique, however, it tends
to produce clusters of similar group size and spatial extent (Everitt, 1993), rendering it
unsuitable for grouping PBAP. Hierarchical agglomerative (HA) cluster analysis meets
all of the stated criteria (Everitt, 1993).15

In HA cluster analysis each measured particle is initially considered to represent
its own single-membered cluster. The algorithm identifies two clusters with the high-
est degree of similarity, which are then agglomerated into a new cluster. This step is
repeated until all particles populate a single cluster. The analyst is then required to de-
termine which step (number of clusters) most appropriately represents the data, which20

is a subjective process, but may be informed by several statistics. There are several
different HA cluster analysis algorithms, each defined by the respective metric used for
comparing the similarity of clusters.

The average-linkage HA cluster analysis algorithm is used herein as it is regarded
as being robust and is conducive to groups of different size (Everitt, 1993; Kalkstein25

et al., 1987). It has the unique quality that it minimises the sum of squares within
(SSW) cluster groups whilst maximising the sum of squares between (SSB) clus-
ter groups. Average-linkage defines the two most similar clusters as those with the
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smallest distance across an n-dimensional space, where n is the number of measure-
ments made of each particle (five in the case of the WIBS). The distance between
two clusters is defined as the average squared Euclidian distance between all possible
pairs of particles, one from each cluster, or

LA,B =
1
pq

p∑
i=1

q∑
j=1

‖Ai −Bj‖2 (1)5

where LA,B is the distance between clusters, A is the coordinate vector of cluster A
which contains p members, and B is the coordinate vector of cluster B with q mem-
bers. The use of Euclidian distances assumes symmetrically distributed data, so any
variables that appear to be log-normally distributed are handled as their logarithms
so as to give a more symmetric distribution. The data set is then z-score normalised10

before analysis.
The choice of the optimum number of clusters to retain is a subjective step but it may

be informed by various metrics (Everitt, 1993; Kalkstein et al., 1987). In average-linkage
clustering the suitability of a solution of N clusters may be assessed by inspecting the
coefficient of determination15

R2 = 1−
∑
N

sum of squares within groups

total sum of squares
(2)

where a sharp decrease as N decreases is an indicator of the number of clusters to
retain (Kalkstein et al., 1987; Robinson et al., 2011). An increase in the root mean
squared (RMS) distance between clusters is an indication that two dissimilar clusters
have been agglomerated (Cape et al., 2000). Additionally, the number of major clusters20

at each step is defined as being the number of clusters that are greater than half the
mean cluster group size (Loureiro et al., 2004; Zoubi, 2009). This final metric is useful
for assessing statistically insignificant clusters, but implicitly assumes that clusters are
a similar size. There is no robust way of determining which clusters are insignificant
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(i.e. due to rogue measurements) and which clusters are significant (i.e. due to rare,
but important particle types). Any cluster deemed to be major by this metric should be
retained in the subsequent analysis. Ultimately, due to the potential for radically differ-
ent cluster group sizes, the analyst must decide which of the most minor clusters are
unlikely to be representative of a physical particle type, and thus should be discarded.5

It should be noted that these statistics may indicate more than one solution is statis-
tically significant. In such a case any indicated solution may be employed, with both
being physically representative. If the solution comprises a greater number of clusters
than there are particle types, then cluster time series will be split, and conversely if
the solution comprises fewer clusters than there are particles types, then cluster time10

series will be conflated.
An average-linkage clustering algorithm was incorporated into the pre-existing suite

of WIBS analysis tools, the WIBS AnalysiS Program (WASP). The routine was writ-
ten using Igor Pro1, with the numerical routines used to calculate cluster distances
written in C and compiled as an external operation (XOP) library, in order to improve15

performance. A synthetic test data set was generated, consisting of three groups of
2-dimensional points. Each group consisted of randomly generated points normally
distributed around different centres (Fig. 1). The WASP average-linkage routine statis-
tics indicate that the three-cluster solution is optimum (Fig. 2). This solution correctly
attributes 99 % of points to their original groups (Fig. 3). The only incorrect determina-20

tions are of points at the boundary between purple and green points.

4 Cluster analysis of WIBS data

The application of this approach to WIBS data presents some additional issues. Firstly,
an implicit assumption of cluster analysis is that clustered particle types are static, that
is that they do not evolve in the atmosphere through chemical or physical processing.25

1Wavemetrics Inc., OR, USA.
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When this is not the case, one particle type may be resolved as two or more clusters
which represent different stages in the evolution of the particle. Additionally, the vari-
ables used in clustering should ideally not be inter-dependent, but for any given particle
composition, larger particles will fluoresce more intensely, despite no increase in their
quantum yield (inherent ability to fluoresce). This means that WIBS fluorescence mea-5

surements are a convolution of particle size and fluorescence quantum yield. Inspec-
tion of WIBS measurements of monodisperse polystyrene latex spheres2 (PSLs), which
serve as particles of consistent inherent fluorescent ability but different sizes, show that
this effect is not compensated for by normalisation to the total elastic scattering or side
scattering measurements also provided by the WIBS. As such, cluster analysis was10

performed using un-normalised WIBS fluorescence measurements. It should be noted
that clustering will be weighted towards resolving particle groups that are separated by
size, at the expense of resolving inherent fluorescent ability.

Additionally, a fluorescence detection channel can be saturated by some very large
or very fluorescent particle, usually pollen or other large PBAP. Typically around 5 %15

of ambient particles measured saturate at least one of the three fluorescence mea-
surements. As the saturating particles are likely to be associated with a particular
PBAP type, they have been included in the cluster analysis. During interpretation of
the clustering solution, it should be noted that a cluster of saturating measurements
may conflate different aerosol types (e.g. pollen subtypes) which would have been re-20

solved had the detection range of the instrument been greater. Additionally, saturating
aerosols may be conflated with highly fluorescent, but not saturating, aerosols, which
can appear close in fluorescence space despite having relatively different quantum
yields.

Data are assumed to be normally or log-normally distributed. In reality, the distribu-25

tion of the data for a given measurement type is a convolution of measurement noise
and the physical distribution of that property, with the relative contribution of each to
the combined distribution related to their width. Inspection of the PSL data showed

2Manufactured by Polysciences Inc., PA, USA.
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the inherent measurement noise of the WIBS to be normally distributed. Inspection
of ambient data showed the overall distribution of size and AF measurements to be
log-normally distributed, so these measurements were converted to log space prior
to clustering. The distribution of fluorescence data is more complicated, with mea-
surements values of zero and full saturation both possible. Given this, fluorescence5

measurements are assumed to be normally distributed. If this assumption is wrong,
particles of low fluorescence are less likely to be resolved as separate clusters.

The computer processing time for the cluster analysis of a given data set grows ap-
proximately as the square of the size of the data set. An ambient data set may consist of
measurements of ∼1×106 particles, which is impractically large for the WASP cluster10

analysis routine. Instead clusters are characterised using a randomly chosen subset of
∼1×104 particles, which takes approximately four hours3. Once a suitable clustering
solution has been chosen by inspection of the statistics, the remaining data are as-
signed to the different clusters by comparison to the cluster centroid. Measurements
are again converted so that they are symmetrically distributed for this assignment. If15

the data belonging to each cluster forms a distinct mode, then the mean and standard
deviation are calculated from a Gaussian fit. This has the advantage of accurately iden-
tifying the modal centre, even if the entire distribution does not fall within the measure-
ment range of the instrument. If a mode is not apparent (for instance when fluorescence
measurements are saturated or zero, or there are a small number of measurements),20

the mean and standard deviation are calculated from the data itself. Several different
attribution algorithms were tested to find the most appropriate.

Two metrics can be used to assess the similarity of a particle measurement to a clus-
ter. Firstly, the proximity of an individual measurement to the cluster centroid can be cal-
culated after normalising each variable by its population standard deviation to account25

for differences in magnitude and variability. This is henceforth referred to as “population
normalised distance”, and is expressed by

3Using a 3.4 GHz quad core processer, 8 GB RAM, 64-bit OS.
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di =

∣∣∣∣ci −p

σpop

∣∣∣∣ (3)

where di is the distance of the particle measurement from cluster i , ci is the position
vector of cluster i in n-dimensional space, where n is the number of measured vari-
ables, p is the position vector of the particle in n-dimensional space, and σpop are the
standard deviations of each measured variable across the entire data subset used in5

the cluster analysis. This approach does not take into account the spread (instrumental
or physical) in the cluster distributions, but merely compares a particle measurement
to the cluster modal centre.

Secondly, the population normalised distance approach can be extended by express-
ing the distance in each dimension in terms of the number of cluster standard devia-10

tions. This is henceforth referred to as “cluster normalised distance”, and is expressed
by

di =

∣∣∣∣ci −p

σ i

∣∣∣∣ (4)

where the symbols have their previous meaning and σ i is a vector of the standard de-
viations of cluster i for each of the measured variables. This approach is conceptually15

pleasing in that it accounts for the spread of the variable values within the cluster and
so represents the statistical uncertainty in apportioning a single particle measurement
to one cluster or another. However, this approach relies on the standard deviations of
the distributions being precise. In practice, some clusters can display standard devia-
tions that do not reflect the true spread of variable, which can then lead to systematic20

miss-attribution. This can be the case where less populous clusters do not form strong
modes. It may also occur where standard deviations are estimated for modes that do
not fall entirely within the measurement range of the instrument.

There are then two ways to use either of these di metrics to apportion the particle to
a cluster. Firstly, the particle may be apportioned to the cluster which has the smallest25
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di -value, henceforth referred to as “simple attribution.” Secondly, a fraction of each
particle’s count may be apportioned to each cluster that is inversely proportional to
the distance of the particle from the cluster, such that the total of the fractions for any
particle is unity. This is henceforth referred to as “fuzzy attribution”, and the fraction
attributed to cluster i is expressed by5

Fi =
(
di

∑ 1
di

)−1

(5)

where the symbols have their previous meanings. Any particles that are further away
than a limit distance, dl, are considered insignificant and deemed “unclassified.” dl is
chosen as the minimum value which also results in the unclassified particles being
a minor group.10

5 Cluster analysis of polystyrene latex spheres

Five different PSL types were measured sequentially using the WIBS4: 0.99±0.01 µm
standard4; 1± < 0.1 µm fluorescent; 1.90±0.02 µm5; 3.005±0.027 µm standard4; and
4.76±0.04 µm standard4. The excitation maxima of the fluorescent PSLs are 365 nm,
388 nm and 412 nm, with respective emission maxima at 447 nm, 447 nm and 473 nm.15

As such, the fluorescent PSL would be expected to be detected mainly in the FL2 370
channel, with potential contributions to the other channels, depending on the width of
the excitation/emission spectra. It should be noted that standard PSL are also fluores-
cent but to a lesser extent, with fluorescence occurring due to 280 nm excitation. The
modal values and relative standard deviations of the data input to the cluster analysis20

algorithm are shown in Table 2. The 13 cluster solution was chosen due to the observed
decrease in R2 and N, and the concomittant rise in RMS (Fig. 4). Of these 13 clusters,

4Manufactured by Polyscience Inc., PA, USA.
5Manufactured by Duke Scientific Corp., CA, USA.
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the six major clusters were retained for subsequent analysis (Table 3). It should be
noted that, in this instance, the different PSLs are likely to be present in concentrations
of a similar order of magnitude, meaning that each PSL type is likely to be resolved as
a major cluster. Figure 5 shows the input single particle size measurements as a func-
tion of time, coloured by cluster, and below that, a comparison of cluster concentration5

time series generated using the attribution methods described above. Both fuzzy attri-
bution sets used a significant distance limit (dl) of five, which was set at the minimum
value at which most particles are successfully attributed.

The PSL cluster analysis successfully resolves much of the data, with most of the
PSL types individually represented by a cluster. In particular, the 3 and 4.76 µm PSL10

data are separately resolved as clusters E and F respectively. The 1 µm fluorescent
PSL data are successfully resolved, although, in this solution, they are split between
clusters A and B, which are qualitatively similar. It is not clear if this split is physically
real (on the basis of different AF modes) or artificial. The 1 µm non-fluorescent PSL
data are represented by cluster C. The majority of 2 µm PSL data are resolved as15

cluster D, however a significant amount of these data belong to cluster C, apparently
erroneously. This is likely due to the similarity of the 1 µm and 2 µm PSLs, which are
very close in WIBS measurement space.

The population normalised distance simple attribution approach appears to repre-
sent the data more satisfactorily than the other attribution algorithms. It generates con-20

centration time series reflective of the clustering solution, with the exception of very
small concentrations of Cluster C particles during the introduction of 3 and 4.7 µm
PSL. The two cluster normalised distance approaches attribute the majority of the non-
fluorescent PSL to cluster C, presumably because cluster C has a greater spread in
values than the other clusters. The population normalised distance fuzzy attribution25

approach, while correctly attributing the majority of particles to the correct clusters,
attributes a significant number of the particles to other clusters.

The population normalised distance simple attribution is used for the rest of the pre-
sented analysis, given the combined advantages of transparent methodology, lack of
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sensitivity to potentially spurious distribution widths, and the lack of the need for setting
a subjective distance limit.

6 Cluster analysis of two ambient WIBS data sets

The WIBS3 and WIBS4 were deployed as part of the Bio-hydro-atmosphere interac-
tions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain5

Biogenic Aerosol Study project (BEACHON-RoMBAS6) which was performed between
20 June 2011 to 23 August 2011 in the Manitou Experimental Forest, 35 km west of
Colorado Springs, CO, USA, 2300 m a.s.l. This project aims to investigate the effect
biogenic aerosol emissions have on regional precipitation in the Central US, and a full
characterisation of aerosol properties and fluxes will be presented in Robinson et al.10

(2012). The WIBS3 was positioned around 200 m away from the main measurement
site and sampled from ∼1 m above the forest floor via ∼0.5 m of 1/4′′ o.d. stainless
steel tubing. The WIBS4 sampled via ∼0.5 m of 1/4′′ stainless steel tubing as part
of an automated profiling system running up the side of the main site measurement
tower. WIBS4 profiles were regularly performed between 3.5 m and 20 m above the15

forest floor, measuring below, in, and above the forest canopy.
For the WIBS3 data set, the four cluster solution was selected based on the sharp

drop in R2 and rise in RMS (Fig. 6). All four clusters were retained for attribution.
For the WIBS4 data set, the ten cluster solution was selected based on the drop in R2

and concomitant rise in RMS distance (Fig. 7). The six most populous of these clusters20

were retained for attribution, with the discarded clusters comprising five measurements
or fewer. Note that the three cluster solution is also statistically significant, but that it
was considered likely that it was conflating particle types.

There is a paucity of published work characterising the measurement response of
the WIBS to different aerosol types under controlled laboratory conditions. Tentative25

6http://web3.acd.ucar.edu/beachon/.

6400

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/6387/2012/amtd-5-6387-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/6387/2012/amtd-5-6387-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://web3.acd.ucar.edu/beachon/


AMTD
5, 6387–6422, 2012

Cluster analysis of
WIBS data

N. H. Robinson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

physical interpretations are presented here based on the existing literature, however,
interpretation of the results of this clustering technique will be facilitated by further
characterisation work.

The refinements made between WIBS models are likely to make certain quantitative
comparisons of measurements impossible: the FL1 and FL2 measurement regimes5

have changed between instruments (Table 1) which could potentially lead to measure-
ments of slightly different fluorescence properties of the same aerosol population; the
reduced instrument noise in the WIBS4 should generally lead to smaller standard de-
viation values; and the improved fluorescence detection has led to lower fluorescence
baselines, particularly in the FL2 280 channel. However, the clustering solutions of the10

two WIBS models are qualitatively similar. The clustering statistics indicate that cluster
analysis has resolved a larger number of clusters using the WIBS4 data set than that
of the WIBS3. This may be due to the greater precision of the WIBS4 allowing the res-
olution of particle groups that are conflated in analysis of the WIBS3 data. Inspection
of the WIBS4 clustering solutions shows that clusters A4 and B4 are agglomerated in15

the nine cluster solution, and clusters C4 and D4 are agglomerated in the six cluster
solution (with intervening solutions agglomerating discarded clusters). This suggests
that these clusters are the most statistically similar of the six retained clusters, and,
as such, their concentrations may need to be summed for comparison to the WIBS3
solution.20

Clusters A3, A4 and B4 are likely to represent the tail end of the ambient accumulation
mode, being relatively abundant, small in diameter and non-fluorescent. As such, it is
likely to comprise several different non-PBAP sources.

Clusters B3, C4 and D4 show high fluorescence in FL1 280. The bacteria P. syrengae
and P. fluorescens have previously been shown to fluoresce strongly in FL1 280 using25

the WIBS3 (Gabey, 2011). Bacteria is often present in the atmosphere as bacteria ag-
gregate clumps or as a constituent part of some other aerosol (Després et al., 2012).
Aerosols containing culturable bacteria have been reported to have aerodynamic diam-
eters of ∼4 µm at several continental sites (Després et al., 2012; Tong and Lighthart,
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2000; Wang et al., 2007), which is similar to the cluster diameters of ∼2–4 µm. The
relatively high cluster AFs are consistent with bacterial aggregates which are expected
to be highly asymmetric. Thus, this literature as it stands suggests these clusters may
represent bacterial aggregates or some other bacteria containing aerosol.

Clusters C3 and E4 both show high fluorescence in FL2 370 which has previously5

been found to be characteristic of grass smut fungal spores such as Bermuda Grass
smut and Johnson Grass smut (Gabey, 2011) using the WIBS3. However, those
species tend to be larger in size than the DO of ∼3 µm (6–8 µm and 6–10 µm re-
spectively). It is possible that these clusters represent some other fungal spore. C3
and E3 have substantially different FL2 280 measurements which is likely to be due to10

the stated differences between WIBS models. Previous work has not yet established if
FL2 280 is typical of grass smut fungal spore measurements in the WIBS4.

Clusters D3 and F4 are very likely to represent fungal spores, as they are highly
fluorescent in all three channels, are relatively large and asymmetric (Gabey, 2011).
While the average diameter is much smaller than that of pollen, it is likely that any15

pollen detected has been conflated with this cluster, as it is also highly fluorescent in
all channels.

Population normalised distance simple attribution was used to generate concentra-
tion time series for the clusters resolved by each instrument. The time series gradient
of scatter and Pearson’s r-values are shown in Table 6 with the time series for each20

cluster shown in Fig. 8. The time series from each instrument compare very well, es-
pecially considering that some of the less populous clusters are close to the limit of
detection of the instruments. The time series show clear separation of different factors.
The Accumulation Mode and Smut Fungal Spore Clusters were found to respond to
meteorological variables, while the Bacteria and Other Fungal Spore Clusters show a25

strong nocturnal profile.
The diurnal profiles are largely consistent with the physical interpretation of the clus-

ters. It should be noted that the extreme upper size range of the accumulation mode,
which these clusters represent, may not have the same source profile as the rest of the
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accumulation mode. The nocturnal elevation of the concentrations of the Other Fungal
Spore Clusters is consistent with the literature, which reports some kinds of active fun-
gal spore emissions at night when the relative humidity is high (Després et al., 2012;
Elbert et al., 2007; Gabey et al., 2010). The nocturnal elevation of the Bacteria Clus-
ters is inconsistent with previous bacteria measurements, which tend to show peak5

culturable bacteria concentrations during the day (Shaffer and Lighthart, 1997), how-
ever data from comparable sites is limited. It is also possible that the WIBS technique
is more sensitive to non-culturable bacteria that are missed by off-line techniques, or
insensitive to smaller bacteria aerosols which are detected on filters. It is also possible
that these clusters represent some non-bacteria aerosol type which has yet to be char-10

acterised using the WIBS. The nocturnal increase seen in the Other Fungal Spores
and Bacteria Clusters may also be due to the collapse of the nocturnal boundary layer
if sources are local . A full interpretation of the time series of these clusters, plus cluster
gradient flux estimates, will be presented in Robinson et al. (2012).

Fluorescence scanning electron microscope (SEM) and DNA analysis of filter sam-15

ples were performed as part of the same project (Huffman et al., 2012; Prenni
et al., 2012). That analysis is consistent with the interpretation of the cluster analy-
sis presented here, with identified species including: proteobacteria, actinobacteria,
firmicutes, bacteroidetes, enterobacteraceae and pseudomonadaceae bacteria; ba-
sidiomycota (club fungi) and ascomycota (sac fungi) fungal spores; and smut fungal20

spores.

7 Conclusions

Hierarchical agglomerative cluster analysis was successfully applied to a subset of
WIBS measurements. The remaining measurements were then attributed to the re-
solved clusters, allowing the generation of respective concentration time series. The25

approach was tested and verified on a controlled data set of PSLs measurements. Sev-
eral attribution approaches were compared, with the most effective being association
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of each particle with the cluster to which it is closest to in n-dimensional measurement
space when normalised for variability and magnitude. The cluster analysis of PSL data,
whilst it partially conflated two similar PSLs, successfully resolved most PSL groups.

The technique was then applied to two separate contemporaneous ambient WIBS
data sets. To our knowledge, this is the first time cluster analysis has been applied to5

a data set of long term online PBAP measurements. The average measurement values
of clusters were qualitatively similar between the two instruments, if differences in in-
strument design are taken into account. The cluster concentration time series compare
quantitatively well between the two instruments. The ambient cluster results were asso-
ciated with aerosol types by comparison of the cluster measurement averages and time10

series to the existing literature. It appears that the cluster analysis resolved: accumu-
lation mode aerosol; bacterial clusters; fungal smut spores; and other fungal spores. It
should be noted that there is a paucity of work characterising the response of the WIBS
to different PBAP types, and, as such, the physical interpretation presented here is ten-
tative. Future studies should aim to present systematic laboratory characterisation of15

PBAP subtypes in order to allow more rigorous interpretation of WIBS cluster analy-
ses. Future WIBS models are expected to increase instrument precision and introduce
more fluorescence measurement channels, which will vastly improve the effectiveness
of this cluster analysis approach. Future work should aim to extend this method to
real-time discriminatory PBAP monitoring.20
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Huffman, J. A., Pöhlker, C., Mason, R. H., Prenni, A. J., DeMott, P. J., Robinson, N. H., Fröhlich-
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Table 1. The excitation and detection wavelengths of the two WIBS models.

FL1 280 FL2 280 FL2 370
Excitation Detection Excitation Detection Excitation Detection

WIBS3 280 nm 320–600 nm 280 nm 410–600 nm 370 nm 410–600 nm
WIBS4 280 nm 310–400 nm 280 nm 420–650 nm 370 nm 420–650 nm
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Table 2. Average modal centres of PSL data input to cluster analysis algorithm.

1 µm 1 µm fl 2 µm 3 µm 4.76 µm

FL1 280 89±0.2 14±0.6 377±0.1 860±0.1 2083±0.1
FL2 280 5±1.8 2038±0.1 10±1.2 54±3.7 252±0.2
FL2 370 6±2.2 1543±0.4 9±1.7 121±0.4 241±0.3
DO (µm) 1.18±1.3 1.19±1.3 1.91±1.2 3.49±1.1 5.16±1.1
AF 7.3±1.4 7.1±1.4 3.8±1.6 4.7±1.4 5.8±1.4
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Table 3. Cluster average values and relative standard deviations of the six major clusters of the
13 cluster solution. Bottom row shows the number of constituent measurements. Minor clusters
have been disregarded.

A B C D E F

FL1 280 12±0.5 11±0.7 229±0.7 373±0.1 889±0.1 2106±0.0
FL2 280 2060±0.0 2060±0.0 12±4.6 9±1.2 19±1.6 212±0.2
FL2 370 1859±0.0 1853±0.0 11±5.3 7±1.8 15±1.5 112±0.6
DO (µm) 1.07±1.2 1.10±1.3 1.38±1.5 1.82±1.2 3.43±1.1 5.02±1.1
AF 3.9±1.1 7.2±1.3 5.0±1.6 3.0±1.3 4.46±1.2 5.2±1.3
# 281 1995 841 288 436 646
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Table 4. Cluster averages and relative standard deviations for the WIBS3 data set. Bottom row
shows the number of constituent measurements.

A3 B3 C3 D3

FL1 280 25±3.1 1725±6.6 87±1.6 1542±0.5
FL2 280 44±1.4 230±0.5 331±0.4 1475±0.2
FL2 370 90±1.6 136±0.1 1224±0.3 1885±0.1
DO (µm) 1.6±1.6 2.9±1.6 3.1±1.7 4.4±1.6
AF 15.9±1.8 21.2±1.5 17.5±2.2 18.5±1.5
# 9670 456 243 43
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Table 5. Cluster averages and standard deviations for the WIBS4 data set. Bottom row shows
the number of constituent measurements.

A4 B4 C4 D4 E4 F4

FL1 280 5±3.8 30±2.1 2087±0.0 1124±0.6 86±1.5 2110±0.0
FL2 280 98±1.4 702±0.5 1486±0.3 518±0.5 1849±0.2 2055±0.0
FL2 370 80±1.3 620±0.5 492±0.6 119±0.9 1893±0.1 1822±0.1
DO (µm) 1.6±1.6 2.1±2.0 3.5±1.4 2.4±1.5 2.8±1.8 4.9±1.4
AF 8.6±2.0 9.5±2.3 20.6±1.8 15.6±1.9 12.3±3.5 26.8±1.8
# 7934 384 138 92 91 27
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Table 6. Gradient, m, of straight line least squares regression fit trhough zero of scattered data,
and Pearson’s r , for cluster time series from each WIBS instrument. Only profile data from
below 5 m were used to aid comparison.

WIBS3 vs. WIBS4 A3, A4 B3, B4 C3, C4 D3, D4 +E4

m 0.92 1.23 2.18 1.43
r 0.84 0.81 0.73 0.73
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Fig. 1. Input to cluster analysis routine. Three synthetic separately generated groups (differentiated by colour)

of random, normally distributed data of arbitrary units centred around three separate points.
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Fig. 2. Average-linkage statistics. The optimum solution as indicated by the statistics is highlighted.

operation (XOP) library, in order to improve performance. A synthetic test data set was generated,

consisting of three groups of 2-dimensional points. Each group consisted of randomly generated

points normally distributed around different centres (Figure 1). The WASP average-linkage routine

statistics indicate that the three-cluster solution is optimum (Figure 2). This solution correctly at-

tributes 99% of points to their original groups (Figure 3). The only incorrect determinations are of

points at the boundary between purple and green points.

4 Cluster analysis of WIBS data

The application of this approach to WIBS data presents some additional issues. Firstly, an implicit

assumption of cluster analysis is that clustered particle types are static, that is that they do not evolve

6

Fig. 1. Input to cluster analysis routine. Three synthetic separately generated groups (differen-
tiated by colour) of random, normally distributed data of arbitrary units centred around three
separate points.
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Fig. 1. Input to cluster analysis routine. Three synthetic separately generated groups (differentiated by colour)

of random, normally distributed data of arbitrary units centred around three separate points.
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operation (XOP) library, in order to improve performance. A synthetic test data set was generated,

consisting of three groups of 2-dimensional points. Each group consisted of randomly generated

points normally distributed around different centres (Figure 1). The WASP average-linkage routine

statistics indicate that the three-cluster solution is optimum (Figure 2). This solution correctly at-

tributes 99% of points to their original groups (Figure 3). The only incorrect determinations are of

points at the boundary between purple and green points.

4 Cluster analysis of WIBS data

The application of this approach to WIBS data presents some additional issues. Firstly, an implicit

assumption of cluster analysis is that clustered particle types are static, that is that they do not evolve

6

Fig. 2. Average-linkage statistics. The optimum solution as indicated by the statistics is high-
lighted.
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Fig. 3. Cluster analysis results, three-cluster solution. Each cluster indicated by colour. Three separate groups

are resolved.

in the atmosphere through chemical or physical processing. When this is not the case, one particle

type may be resolved as two or more clusters which represent different stages in the evolution of

the particle. Additionally, the variables used in clustering should ideally not be inter-dependent,

but for any given particle composition, larger particles will fluoresce more intensely, despite no

increase in their quantum yield (inherent ability to fluoresce). This means that WIBS fluorescence

measurements are a convolution of particle size and fluorescence quantum yield. Inspection of

WIBS measurements of monodisperse polystyrene latex spheres2 (PSLs), which serve as particles

of consistent inherent fluorescent ability but different sizes, show that this effect is not compensated

for by normalisation to the total elastic scattering or side scattering measurements also provided

by the WIBS. As such, cluster analysis was performed using un-normalised WIBS fluorescence

measurements. It should be noted that clustering will be weighted towards resolving particle groups

that are separated by size, at the expense of resolving inherent fluorescent ability.

Additionally, a fluorescence detection channel can be saturated by some very large or very fluores-

cent particle, usually pollen or other large PBAP. Typically around 5% of ambient particles measured

saturate at least one of the three fluorescence measurements. As the saturating particles are likely to

be associated with a particular PBAP type, they have been included in the cluster analysis. During

interpretation of the clustering solution, it should be noted that a cluster of saturating measurements

may conflate different aerosol types (e.g. pollen subtypes) which would have been resolved had the

detection range of the instrument been greater. Additionally, saturating aerosols may be conflated

with highly fluorescent, but not saturating, aerosols, which can appear close in fluorescence space

despite having relatively different quantum yields.

Data are assumed to be normally or log-normally distributed. In reality, the distribution of the data

2Manufactured by Polysciences Inc., PA, USA

7

Fig. 3. Cluster analysis results, three-cluster solution. Each cluster indicated by colour. Three
separate groups are resolved.
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Fig. 4. PSL cluster analysis statistics. The 13 cluster solution was chosen due to the concomittant drop in R2

and N , and the rise in RMS.

1 µm 1 µm fl 2µm 3 µm 4.76 µm

FL1 280 89 ± 0.2 14 ± 0.6 377 ± 0.1 860 ± 0.1 2083 ± 0.1

FL2 280 5 ± 1.8 2038 ± 0.1 10 ± 1.2 54 ± 3.7 252 ± 0.2

FL2 370 6 ± 2.2 1543 ± 0.4 9 ± 1.7 121 ± 0.4 241 ± 0.3

DO (µm) 1.18 ± 1.3 1.19 ± 1.3 1.91 ± 1.2 3.49 ± 1.1 5.16 ± 1.1

AF 7.3 ± 1.4 7.1 ± 1.4 3.8 ± 1.6 4.7 ± 1.4 5.8 ± 1.4

Table 2. Average modal centres of PSL data input to cluster analysis algorithm.

N , and the concomittant rise in RMS (Figure 4). Of these 13 clusters, the six major clusters were

retained for subsequent analysis (Table 3). It should be noted that, in this instance, the different PSLs

are likely to be present in concentrations of a similar order of magnitude, meaning that each PSL type

is likely to be resolved as a major cluster. Figure 5 shows the input single particle size measurements

as a function of time, coloured by cluster, and below that, a comparison of cluster concentration time

series generated using the attribution methods described above. Both fuzzy attribution sets used a

significant distance limit (dl) of five, which was set at the minimum value at which most particles

are successfully attributed.

10

Fig. 4. PSL cluster analysis statistics. The 13 cluster solution was chosen due to the concomit-
tant drop in R2 and N, and the rise in RMS.
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Fig. 5. Top plot shows the single particle data input to the cluster analysis routine (∼30% of all the particles that were measured) coloured by their cluster, as defined in Table

3. Particle size and fluorescence for each retrieved cluster are detailed in the legend. Measured PSL optical diameters are detailed in boxes, with the actual PSL physical

diameters in brackets. Below are cluster concentration time series after the remaining particles are attributed to the resolved clusters, using four different attribution algorithms,

detailed on the left. The x-axis is discontinuous between the introduction of different PSLs. The y-axes are inconsistent between subplots.

12

Fig. 5. Top plot shows the single particle data input to the cluster analysis routine (∼30 % of
all the particles that were measured) coloured by their cluster, as defined in Table 3. Particle
size and fluorescence for each retrieved cluster are detailed in the legend. Measured PSL
optical diameters are detailed in boxes, with the actual PSL physical diameters in brackets.
Below are cluster concentration time series after the remaining particles are attributed to the
resolved clusters, using four different attribution algorithms, detailed on the left. The x-axis is
discontinuous between the introduction of different PSLs. The y-axes are inconsistent between
subplots.
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Fig. 6. Ambient WIBS3 data set clustering statistics. Four cluster solution chosen due concomittent drop in R2

and rise in RMS.

A3 B3 C3 D3

FL1 280 25 ± 3.1 1725 ± 6.6 87 ± 1.6 1542 ± 0.5

FL2 280 44 ± 1.4 230 ± 0.5 331 ± 0.4 1475 ± 0.2

FL2 370 90 ± 1.6 136 ± 0.1 1224 ± 0.3 1885 ± 0.1

DO (µm) 1.6 ± 1.6 2.9 ± 1.6 3.1 ± 1.7 4.4 ± 1.6

AF 15.9 ± 1.8 21.2 ± 1.5 17.5 ± 2.2 18.5 ± 1.5

# 9670 456 243 43

Table 4. Cluster averages and relative standard deviations for the WIBS3 data set. Bottom row shows the

number of constituent measurements.

For the WIBS4 data set, the ten cluster solution was selected based on the drop in R2 and con-

comitant rise in RMS distance (Figure 7). The six most populous of these clusters were retained for

attribution, with the discarded clusters comprising five measurements or fewer. Note that the three

cluster solution is also statistically significant, but that it was considered likely that it was conflating

particle types.

A4 B4 C4 D4 E4 F4

FL1 280 5 ± 3.8 30 ± 2.1 2087 ± 0.0 1124 ± 0.6 86 ± 1.5 2110 ± 0.0

FL2 280 98 ± 1.4 702 ± 0.5 1486 ± 0.3 518 ± 0.5 1849 ± 0.2 2055 ± 0.0

FL2 370 80 ± 1.3 620 ± 0.5 492 ± 0.6 119 ± 0.9 1893 ± 0.1 1822 ± 0.1

DO (µm) 1.6 ± 1.6 2.1 ± 2.0 3.5 ± 1.4 2.4 ± 1.5 2.8 ± 1.8 4.9 ± 1.4

AF 8.6 ± 2.0 9.5 ± 2.3 20.6 ± 1.8 15.6 ± 1.9 12.3 ± 3.5 26.8 ± 1.8

# 7934 384 138 92 91 27

Table 5. Cluster averages and standard deviations for the WIBS4 data set. Bottom row shows the number of

constituent measurements.

14

Fig. 6. Ambient WIBS3 data set clustering statistics. Four cluster solution chosen due con-
comittent drop in R2 and rise in RMS.
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Fig. 7. Ambient WIBS4 data set clustering statistics. Ten cluster solution chosen due concomittent drop in R2

and rise in RMS.

There is a paucity of published work characterising the measurement response of the WIBS to

different aerosol types under controlled laboratory conditions. Tentative physical interpretations are

presented here based on the existing literature, however, interpretation of the results of this clustering

technique will be facilitated by further characterisation work.

The refinements made between WIBS models are likely to make certain quantitative comparisons

of measurements impossible: the FL1 and FL2 measurement regimes have changed between in-

struments (Table 1) which could potentially lead to measurements of slightly different fluorescence

properties of the same aerosol population; the reduced instrument noise in the WIBS4 should gen-

erally lead to smaller standard deviation values; and the improved fluorescence detection has led to

lower fluorescence baselines, particularly in the FL2 280 channel. However, the clustering solutions

of the two WIBS models are qualitatively similar. The clustering statistics indicate that cluster anal-

ysis has resolved a larger number of clusters using the WIBS4 data set than that of the WIBS3. This

may be due to the greater precision of the WIBS4 allowing the resolution of particle groups that are

conflated in analysis of the WIBS3 data. Inspection of the WIBS4 clustering solutions shows that

clusters A4 and B4 are agglomerated in the nine cluster solution, and clusters C4 and D4 are agglom-

erated in the six cluster solution (with intervening solutions agglomerating discarded clusters). This

suggests that these clusters are the most statistically similar of the six retained clusters, and, as such,

their concentrations may need to be summed for comparison to the WIBS3 solution.

Clusters A3, A4 and B4 are likely to represent the tail end of the ambient accumulation mode,

being relatively abundant, small in diameter and non-fluorescent. As such, it is likely to comprise

several different non-PBAP sources.

Clusters B3, C4 and D4 show high fluorescence in FL1 280. The bacteria P. syrengae and P.

fluorescens have previously been shown to fluoresce strongly in FL1 280 using the WIBS3 (Gabey,

15

Fig. 7. Ambient WIBS4 data set clustering statistics. Ten cluster solution chosen due concomit-
tent drop in R2 and rise in RMS.
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Fig. 8. Comparison of cluster time series over an exemplary period. WIBS3 time series shown
by red points and WIBS4 time series shown by blue bars. Cluster names and their physical
interpretation detailed in labels. A4 (dark blue) and B4 (light blue) are stacked from comparison
to A3, and C4 (dark blue) and D4 (light blue) are stacked for comparison to B3. WIBS4 mea-
surements from all profile heights are displayed. Rainfall (mean as a function of height) at the
profile tower site is displayed at the bottom (log scale).
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