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Abstract

In this paper, a new Neural Network (NN) algorithm to retrieve the tropospheric ozone
column from Ozone Monitoring Instrument (OMI) Level 1b data is presented. Such
algorithm further develops previous studies in order to improve: (i) the geographical
coverage of the NN, by extending its training set to ozonesonde data from midlati-
tudes, tropics and poles; (ii) the definition of the output product, by using tropopause
pressure information from reanalysis data; and (iii) the retrieval accuracy, by using an-
cillary data to better constrain the tropospheric ozone retrievals from OMI radiances.
The results indicate that the algorithm is able to retrieve the tropospheric ozone col-
umn with a Root Mean Square Error (RMSE) of about 5-6 DU in all the latitude bands.
The design of the new NN algorithm is extensively discussed, validation results against
independent ozone soundings and Chemistry/Transport Model (CTM) simulations are
shown, and other characteristics of the algorithm —i.e. its capability to detect nonclima-
tological tropospheric ozone situations and its sensitivity to the tropopause pressure —
are discussed.

1 Introduction

Ozone is one of the most important trace gases in the Earth’s atmosphere. Ozone
is most abundant in the stratosphere, where it shields the troposphere from harmful
ultraviolet radiation. In the upper troposphere, ozone acts as a precursor of the hydroxyl
(OH) radical, which is able to remove pollutants from the troposphere via oxidation
reactions (Jacob, 1999). Furthermore, ozone is a pollutant itself, since it is harmful
for the biosphere when it reaches high concentrations near the Earth’s surface (Heck
et al., 1982; Lippmann, 1989).

Tropospheric ozone variations may occur over relatively small spatial scales. Con-
centrations of tropospheric ozone are affected by several factors. First, they depend on
the concentrations of its precursors — namely, nitrogen oxides (NO,), carbon monoxide
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(CO) and Volatile Organic Compounds (VOCs) — which are either emitted as a con-
sequence of human activities or due to natural causes (e.g. lightnings, which produce
NO,). Since tropospheric ozone is produced from its precursors via photochemical re-
actions (Chameides and Walker, 1973), the intensity of the solar radiation reaching
the troposphere is another important factor. A further source of tropospheric ozone is
the downward transport of air rich in ozone from the stratosphere, during the so called
Stratosphere-Troposphere Exchange (STE) (Holton et al., 1995). This process is par-
ticularly significant at midlatitudes (see, e.g. Shapiro, 1980). Long-range transport of
tropospheric ozone also affects its spatial distribution (Carmichael et al., 1998; Creilson
et al., 2003).

Monitoring tropospheric ozone using satellite instruments is important in order to
obtain a global picture of its distribution. However, several difficulties are encountered
in inferring tropospheric ozone concentrations from satellite observations. First, the
contribution of tropospheric ozone to the measured radiances is much weaker than the
contribution coming from stratospheric ozone. Second, passive measurements have
usually a reduced sensitivity to lower tropospheric ozone (Eskes and Boersma, 2003).

The first attempts to derive information on tropospheric ozone from satellite obser-
vations date back to the 1980’s. Fishman et al. (1986, 1987) first suggested that total
ozone measurements made from the Total Ozone Mapping Spectrometers (TOMS)
could contain information on cases of enhanced tropospheric ozone. In the first algo-
rithms for quantitative tropospheric ozone retrievals, the information on tropospheric
ozone was obtained by subtracting a stratospheric ozone column measurement from
a co-located total ozone measurement. The stratospheric ozone column was estimated
from limb observations (Fishman and Larsen, 1987; Fishman, 2000, and references
therein) or from ozone column measurements above high convective clouds (Ziemke
et al., 1998, 2001; Ahn et al., 2003; Newchurch et al., 2003; Valks et al., 2003). An
alternative approach, specifically designed for TOMS observations, was to directly in-
fer tropospheric ozone information based on the dependence of TOMS total ozone
columns from the scan angle of the instrument (Kim et al., 1996, 2001, 2004).
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More recently, after the development of new satellite instruments, with hyperspec-
tral measurement capabilities, the direct determination of tropospheric ozone from the
UV/VIS part of the spectrum has become feasible (Munro et al., 1998; Liu et al., 2005,
2006, 2010).

Another possibility to directly retrieve tropospheric ozone from satellite hyperspec-
tral observation is the application of Neural Networks (NNs). NN algorithms for tropo-
spheric ozone retrievals from the Ozone Monitoring Instrument (OMI) and the Scanning
Imaging Absorption spectrometer for Atmospheric Chartography (SCIAMACHY) have
been recently developed (Sellitto et al., 2011, 2012, respectively). In particular, Sellitto
et al. (2011) developed an algorithm to retrieve tropospheric ozone from OMI data at
northern midlatitudes, named the OMI-TOC NN. The algorithm yields daily estimates
of the tropospheric ozone column from surface to 200 hPa at the northern midlatitudes,
by using OMI reflectance spectra, Solar Zenith Angle (SZA) at 19 wavelengths and the
total ozone column from the OMI-TOMS total ozone (OMTOS3) Level 2 product (Bhartia
and Wellemeyer, 2002). The performances of the OMI-TOC NN algorithm were shown
to be comparable with those of the physics-based algorithms of Schoeberl et al. (2007)
and Liu et al. (2010) by means of a validation exercise with ozonesonde measurements
at northern midlatitudes, with Root Mean Square (RMS) errors around 8 DU and cor-
relation coefficients around 0.60 between the actual and the retrieved ozone columns.

The main limitations of the OMI-TOC NN algorithm are its coverage, which is lim-
ited at the northern midlatitudes; and the choice to use the 200 hPa level as upper
integration limit for the retrieved ozone columns, regardless of the actual tropopause
conditions. In particular, this latter feature raises the question of whether it is legitimate
to say that the retrieved ozone columns are “tropospheric”, since even at midlatitudes
the actual tropopause pressure can be very different from 200 hPa (Hoinka, 1998).
In order to overcome this problem, a pre-processed tropopause height can be used
as upper integration limit for the retrieved ozone columns. By doing so, it is possi-
ble to produce estimates that represent the actual “tropospheric” ozone column more
realistically. For this study, the thermal tropopause given by the National Center for
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Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)
Reanalysis (Kalnay et al., 1996) was used.

In this paper, the results of an improved NN algorithm for tropospheric ozone retrieval
are presented. The improvements can be summarized as follows: (i) the geographical
coverage of the algorithm is extended to the entire globe, whereas the OMI-TOC NN
was limited to the northern midlatitudes; (ii) an estimate of the ozone column from the
surface to the NCEP/NCAR tropopause is produced; and (iii) a number of ancillary data
are used as additional inputs for the algorithm in order to better constrain the retrieval
problem. The main differences between the two algorithms are summarized in Table 1.

Besides these three key points, a number of additional technical issues are ad-
dressed in the pre-processing of OMI radiance and irradiance spectra (namely, several
refinements were introduced in the data quality control and filtering routines). Further-
more a different input dimensionality reduction strategy is adopted, with a simple linear
Principal Component Analysis (PCA) used instead of the Extended Pruning (EP) tech-
nique. The new algorithm will be henceforth referred to as OMITROPOS3-NN.

The paper is organized as follows. In Sect. 2 a general description of NNs is given,
with a particular focus on their use in the context of inverse problems; in Sect. 3 the
generation of the OMITROPOS3-NN dataset is described and all the pre-processing
steps are discussed; in Sect. 4 the choices made in the NN training are explained,;
general validation results are shown in Sect. 5; in Sect. 6 global tropospheric ozone
fields retrieved on two dates during August 2006 are used as examples, in order to
give further insight into some of the characteristics of the OMITROPO3-NN; Sect. 7
presents conclusions and hypotheses for future work.
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2 Neural Networks in satellite retrievals
2.1 Basic concepts and terminology

NNs can be considered as algorithms for nonlinear regression and function approxima-
tion. Although several types of NNs can be devised, they share a number of common
characteristics: (i) the computation is distributed among elementary units (called neu-
rons); (ii) the relationship to be approximated is learned by the NN from a training
dataset.

Mathematically, it can be said that a NN can be used to approximate an unknown
relationship between two quantities x € R” and y € R™ through a nonlinear model

y =y (1)

where W is a set of free parameters to be adjusted from a training dataset. In the case
of supervised training, which is the only relevant case for the purposes of this work,
the training dataset is made of pairs {(x;,y,)} of instances of the relationship to be
approximated. The adjustment of the free parameters is made according to a learning
algorithm, which basically consists of an iterative minimization of an error cost function
of the kind

C=1f(ly; = Pwx)I, (2)

with respect to W. According to the exact definition of the cost function and to the choice
of the iterative method chosen for its minimization, several learning algorithms can be
defined. The reader can refer to Bishop (1995) or Haykin (1999) for more detailed
information.

2.2 Multilayer Perceptrons

The Multilayer Perceptron (MLP) network (Werbos, 1974) is one of the most
widespread NN architectures. Each neuron of a MLP realizes the input-output rela-
tionship
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y=@w'x+Db) (3)

where w and b are the weight vector and the bias of the neuron, respectively, and
are its free parameters to be adjusted, and the function ¢, chosen in advance, is the
activation function of the neuron.

The neurons of a MLP are organized in layers: (i) an input layer, which simply con-
tains the input vector of the MLP; (ii) at least one hidden layer, containing neurons with
nonlinear activation functions; and (iii) an output layer, whose neurons can either have
linear or nonlinear activation functions and yield the output of the MLP. The output of
each layer is the input for the next layer.

One reason for the popularity of MLPs among supervised NN techniques is their uni-
versal approximation capability: several studies have independently shown that, under
rather general conditions, every continuous function on a compact set can be approx-
imated to whatever accuracy by a MLP having only one hidden layer (Cybenko, 1989;
Funahashi, 1989; Hornik et al., 1989). However, it must be pointed out that: (i) the uni-
versal approximation theorems only prescribe the existence of an approximating NN,
but they do not indicate how such NN can be found in practice; and (ii) similar theorems
also hold for other types of NNs, such as the Radial Basis Function (RBF) networks
(Park and Sandberg, 1991).

Since the MLP is the only relevant architecture in the context of this work, the terms
MLP and NN will be used without distinction from here onwards.

The approximation properties of NNs makes them useful in remote sensing applica-
tions, where either forward or inverse problems have to be solved. In particular, NNs
have been successfully used in various applications of satellite atmospheric remote
sensing, such as temperature and humidity profile retrievals from microwave and in-
frared observations (Aires et al., 2001; Blackwell, 2005), ozone retrievals from UV/VIS
radiances (Del Frate et al., 2002, 2005a,b; Muller et al., 2002, 2003; lapaolo et al.,
2007; Sellitto et al., 2011, 2012) and radiative transfer calculations (Chevallier et al.,
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1998, 2000; Schwander et al., 2001; Gottsche and Olesen, 2002; Krasnopolsky and
Schiller, 2003; Krasnopolsky and Chevallier, 2003).

2.3 Neural Networks in retrieval problems

In the context of atmospheric remote sensing, a retrieval problem essentially consists
in recovering the value of an atmospheric quantity (state) x from a set of radiometric
measurements y. Such problems are usually ill-posed, i.e. they cannot be solved by
simply inverting a physical model of the measurements, because the relationship be-
tween x and y is not bijective (Twomey, 1977; Tikhonov and Arsenin, 1977). In other
words, simply solving with respect to x an equation of the kind

y =F(x,b) (4)

where the function F represents the physics of the measurement process and b is
a fixed vector of model parameters (i.e. quantities different from x which affect y),
would not lead to an unique solution for x, even in the case of noise free measure-
ments. Instead, a space of possible solutions for x would be compatible with a sin-
gle measurement vector y. This happens because of two concurrent reasons: (i) the
elements of the measurement vector y are not mutually independent; and (ii) some
components of the state vector x have no effect on y. Furthermore, the existence of
measurement errors usually leads to unstable solutions of the retrieval problem.

Therefore, the aim of a retrieval algorithm is to select, among a set of possible so-
lutions for the state x, an “optimal” solution which is used as an estimator for the true
state x. Two widespread approaches to address this issue are regularization and Opti-
mal Estimation (OE) methods.

Regularization consists in a least mean square estimate, where the difference be-
tween actual measurements y and predicted measurements F(x, b) is minimized with
respect to x with an arbitrary constraint g(x) measuring the degree of “smoothness”
of the solution. Several choices can be made for g(x) — see, e.g. Doicu et al. (2010) —
and the cost function to be minimized has the form
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creg = ”y_ F(x, b)”2 +yq(x), (5)

where y is a multiplicative term which weights the importance of the constraint with
respect to the difference between actual and predicted observations. Of course, setting
y = 0 would mean not to use any constraint, and setting y — oo would be equivalent to
ignoring the measurements. One popular form of the regularization constraint is X Hx,
where H is a smoothing matrix.

In the OE approach (Rodgers, 2000), assumptions are made about the statistical
properties of the state x to be retrieved and the measurement error e. It is often as-
sumed that both quantities follow Gaussian statistics, with mean values x, and 0, and
covariance matrices S, and S, respectively. A model of the measurement process F is
used to transform the Probability Density Function (PDF) of x into the conditional PDF
Pylx(y|x). Then, an a posteriori PDF ley(x|y) is obtained according to the classical
Bayesian theory, and it is maximized with respect to x to yield a parametric estimator
for x, the term “parametric” being used to indicate that a specific form for the PDFs and
their parameters is assumed for the optimality condition to hold. The general form for
the OE cost function to be minimized, under the assumption of Gaussian statistics, is
(Rodgers, 2000)

COE = _2|npx|y(xly) = [y_ F(X: b)]TS;I[y_ F(X’ b)] + (X - Xa)TSa(X_Xa)- (6)

The subscripts y|x and x|y are used here to distinguish between the functional forms
of the two PDFs. Given that F is a nonlinear function in most of the practical cases, its
minimization is usually performed through iterative methods, such as Gauss-Newton
or Levenberg-Marquardt.

NN retrievals can be regarded as a nonparametric alternative to OE. The training set
for a NN to be used in a retrieval algorithm consists of pairs {(y}; x,)}, where the vector
yj- includes the measurements y; and any other parameter that is used as an input
for the algorithm (e.g. geometrical parameters, ancillary data), and the x; includes the
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quantities to be retrieved. The training set can be seen as a set of samples drawn from
the PDF P(x]y’). These samples are used to adjust the parameters of a model of the
same kind as Eq. (1), minimizing a cost function similar to Eq. (2). Once the training is
complete, a global retrieval model

X =Dy.(y), (7)

is constructed, where W™ is the value of W determined at the end of the training pro-
cess. This retrieval model yields a nonparametric estimator for x, meaning that no
assumptions about the statistical distribution of x are made to specify the model. The
“global” adjective refers to the fact that, once the training phase is complete, the result-
ing function ®,. can be applied to every observation in order to obtain the retrieval.
This is a difference between NNs and the aforementioned retrieval techniques, where
the cost function has to be minimized for each observation.

NN retrieval algorithms have a number of advantages over other methods: (i) when
the training set consists of real data, the absence of explicit modeling makes the re-
trieval insensitive to an incomplete knowledge of the measurement physics; (ii) the
absence of assumptions about the statistical distribution of the quantity to be retrieved
makes NNs robust to non-Gaussianity of the modeled processes (Blackwell and Chen,
2009); and (iii) NN retrieval schemes are fast and relatively easy to implement. How-
ever, NNs have also some disadvantages: (i) when they are trained on real data, the
quality of such data is critical for the learning process; (ii) they are good interpola-
tors, but may yield unpredictable results when forced to extrapolate (Krasnopolsky and
Schiller, 2003); and (iii) NNs are not optimal estimators, the training process depends
on random initialization of the NN parameters and may be trapped in local minima
of the cost function to be minimized. Nevertheless, these shortcomings can often be
handled with proper design and data quality control procedures.

7684

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

L

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2.4 Neural Network design principles

NN models have a relatively large number of free parameters. Some of these param-
eters — i.e. weights and biases — are determined during the training process, others
— i.e. the activation functions, the number of hidden layers and neurons, the learning
algorithm and its internal parameters — must be chosen by the designer. While it would
be impossible to discuss every aspect of the design of a NN inside this paper (the
interested reader is again referred to Bishop (1995) or Haykin (1999) for a compre-
hensive discussion of the heuristics that can be followed), it might be worthwhile to
discuss some of the most important design aspects, as this should clarify the reasons
for some of the choices that were made during the development of the tropospheric
ozone retrieval algorithm which is the main subject of this work.

The most critical design issues to be addressed during the development of a NN are
the choice number of hidden layers and neurons to be used, and the choice of when to
stop the training process.

As for the number of hidden layers and units, there are no universally valid rules, but
heuristic methods must be used. Such methods basically consist in comparing different
NN architectures on a common reference dataset, and selecting the architecture which
achieves the best score in terms of some performance metric. The most elementary
metric that may be used is simply the Mean Squared Error (MSE) over the reference
set. Other metrics, like the Akaike Information Criterion (AIC) (Akaike, 1973), combine
the MSE with penalty terms for an excessive number of hidden neurons.

One or two hidden layers are often enough for a good NN model (Kecman, 2001).
A thumb rule that can be kept in mind in the selection of the number of hidden units
is the bias-variance dilemma (Geman et al., 1992). According to this rule, NNs with
too few hidden nodes tend to have poor approximation capabilities (large bias, or un-
derfitting), whereas NNs with too many hidden nodes are prone to bad generalization,
i.e. poor performances on data which were not seen during the training process (large
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variance, or overfitting). Therefore, the right choice for the number of hidden units must
result from a trade-off between these two extremes.

Another crucial point is to decide when to stop the training of a NN. Although common
sense criteria can be easily formulated to decide whether a learning algorithm has
converged on a given training set (a typical approach is to fix a certain threshold on
the decrease in MSE between two successive iterations of the algorithm, and to decide
that the algorithm has converged if such decrease remains below the threshold for
a certain number of iterations), it is often not advisable to continue the training process
until a convergence criterion is met. In fact, as long as the training proceeds, there is
the danger that the NN ends up memorizing the training data, reaching extremely low
values of the MSE on the training data but producing very poor results over data which
are not included in the training set (Haykin, 1999). This condition is named overtraining,
or overfitting. In order to prevent this, the performances of the NN over an independent
set should always be monitored during the training process, and the training should
be stopped when a significant degradation in the NN performances over this set is
observed. This method is called early stopping cross-validation.

3 Preparation of the OMITROPO3-NN dataset
3.1 Definition of the input vector

The list of the input quantities used in the design of the OMITROPO3-NN is shown in
Table 1. The OMITROPO3-NN retrieves tropospheric ozone columns from reflectance
spectra measured in the range 310-315 nm, covered by the OMI UV-2 channel (Levelt
et al., 2006). Furthermore, the observation geometry was taken into account by includ-
ing the Solar Zenith Angle (SZA), the View Zenith Angle (VZA) and the terrain height
in the input vector. The Relative Azimuth Angle (RAA) was not used in the final spec-
ification of the algorithm, because preliminary experimental work showed that its use
does not seem to improve the retrieval performances.
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Since the ozone absorption cross sections in the considered spectral range — which
covers the ozone Huggins bands — are temperature dependent, the temperature profile
from the NCEP/NCAR Reanalysis was used as an additional input.

The tropopause pressure from the NCEP/NCAR Reanalysis was also included in
the input vector, in order to signal the upper integration limit for the ozone column to be
retrieved. Furthermore, the significant positive correlation between tropopause height
and the tropospheric ozone column outside the Tropics (de Laat et al., 2005) can be
exploited in order to regularize the retrieval. The radiative cloud fraction was used to
account for the enhanced UV radiances which are measured at the longer wavelengths
of the considered spectral interval because of the presence of clouds around the Field
Of View (FQOV) of the instrument.

The choice of using a tropospheric ozone climatological value as an input for the
algorithm is worth a discussion. The retrieval of tropospheric ozone from UV satellite
measurements is strongly ill-posed, because it is difficult to separate variations in the
measured UV spectra caused by ozone variations in the troposphere from variations
which are related to changes in stratospheric ozone. Therefore, the information content
of radiometric measurements and parameters of the forward problem (i.e. observation
geometry, temperature profile, etc.) may be not enough to perform the retrieval. lll-
posed problems are usually addressed by complementing the satellite measurements
with ancillary data, a priori information about the retrieved state and/or regularization
constraints (Twomey, 1977; Rodgers, 2000; Doicu et al., 2010). These quantities are
used in retrieval algorithms in order to discard solutions of the inverse problem which
are extremely unlikely and/or unphysical. As any other retrieval technique, even a neu-
ral algorithm can benefit from this kind of information, when available. In the context of
neural algorithms, this role is partly played by the target outputs given in the training
set, as they allow an implicit regularization of the inverse problem, by “teaching” the
NN to map the radiometric observations into physically meaningful solutions.

However, using this constraint alone may not be enough to account for the local
and seasonal variability of the retrieved quantity. This issue can be addressed either by
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training different NNs, one for each season and/or wide geographical area (e.g. latitude
band), or by introducing an input quantity that gives the NN relevant climatological
information. The latter approach was preferred in this work, because it leads to a global
NN model, flexible enough to perform reasonably well in a broad set of situations. On
the contrary, the former approach would have led to specialized NNs, each trained
with a reduced number of examples. This would have been especially true for tropics
and southern midlatitudes, where the spatial coverage provided by the ozonesonde
networks is much sparser than for northern midlatitudes and poles.

In the literature about the NN based algorithms for satellite retrievals, several ways
to include a priori or first guess information in the input vector have been proposed. For
instance, Aires et al. (2001) proposed the use of a first guess in NNs for atmospheric
retrievals from microwave observations, while Miller et al. (2003) simply used the lati-
tude as a climatological indicator in their Neural Network Ozone Profile Retrieval Sys-
tem (NNORSY) applied to Global Ozone Monitoring Experiment (GOME) data. In the
present work, the monthly mean tropospheric ozone column — taken from the Ziemke
et al. (2011) OMI-MLS tropospheric ozone climatology — was used as additional input
for the retrieval algorithm. This climatology was preferred to other climatologies — such
as Fortuin and Kelder (1998) or Logan (1998) — because it represents the tropospheric
ozone variations with longitude in a finer detail.

When a priori information is used in a retrieval algorithm, the risk of biasing the
retrievals towards the a priori should be monitored. This issue is discussed in Sect. 5.3.

3.2 Geographical coverage and co-location procedure

A comprehensive dataset of co-locations between OMI data and ozone soundings was
created in order to train the NN and to assess its performances.

The dataset covers the time period from 2004 to 2011, and consists of ozone sound-
ings taken from several sources; the archives of the World Ozone and Ultraviolet Data
Center (WOUDC), Southern Hemisphere Additional Ozonesondes (SHADOZ) network
(Thompson et al., 2003) and the Network for the Detection of Atmospheric Composition
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Change (NDACC), data from the Intercontinental Chemical Transport Experiment-
B (INTEX-B) Ozonesonde Network Study 2006 (IONS06) and the Arctic Intensive
Ozonesonde Network Study (ARCIONS) campaigns, performed during 2006 and 2008
respectively (Tarasick et al., 2010), and data from ozone soundings performed over
Italy, provided by the Center for Integration of remote sensing techniques and numer-
ical modeling for the prediction of severe weather (CETEMPS) of LAquila University,
the Institute of Atmospheric Sciences and Climate (ISAC) of the ltalian National Re-
search Council (CNR) and the Italian Air Force Centre of Aeronautical Meteorological
Experimentation (ReSMA).

The geographical distribution of the ozonesonde stations whose data were used to
create the dataset is shown in Fig. 1.

The ozone soundings were co-located with OML1BRUG data according to the over-
pass info provided by the Aura Validation Data Center (AVDC) for the OMTO3 Level 2
product. The following procedure was followed in performing the co-locations:

1. For each ozone sounding, the OML1BRUG files corresponding to the overpass
orbits indicated in the AVDC info were selected;

2. For each OML1BRUG file, the OMI pixel having its center closest to the
ozonesonde station was selected as a candidate for the co-location;

3. The candidate pixel was discarded if its center and the station coordinates were
more than 1° apart, in latitude or longitude.

Such co-location criteria were adopted in order to be reasonably sure that the tro-
pospheric air volumes sampled by OMI were representative of the volume actually
covered by the corresponding ozone soundings.

3.3 Pre-processing of OMI spectral measurements

The OML1BRUG radiance spectra were converted in Top Of Atmosphere (TOA) re-
flectance spectra by normalization to OML1BIRR irradiance spectra and cosine of the
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Solar Zenith Angle (SZA). A natural logarithm was then applied to the computed re-
flectances. The following pre-processing steps were applied in order to compute the
TOA reflectance spectra:

1. The quality of each radiance and irradiance spectral pixel was checked with re-
spect to the OMI L1B quality flags, according to the guidelines given in van den
Oord and Veefkind (2002). The spectral pixels that failed the quality test were
discarded from the subsequent computations.

2. The spectra whose number of discarded wavelengths exceeded the 5% of the
total were discarded, and were not used in the co-location procedure.

3. The radiance and irradiance spectra which survived this screening procedure
were linearly interpolated on a 0.1 nm wide common spectral grid.

4. The TOA reflectance spectra were computed using the interpolated radiance and
irradiance spectra, and the natural logarithm of the resulting values was com-
puted.

As for the quality flag based filtering, particular care was taken in order to exclude pixels
affected by row anomaly from the dataset. According to the information available from
the Royal Dutch Meteorological Institute (KNMI), the row anomaly started to appear
on 25 June 2007, affecting the rows 53-54 (0 based) in the OMI across-track direc-
tion. After about one year, it expanded to the rows 37-44, and began to assume an
erratic behaviour after 24 January 2009, randomly affecting subsets of the rows 24-59.
Additional information about the row anomaly effect in OMI can be found at the web-
page http://www.knmi.nl/omi/research/product/rowanomaly-background.php. Accord-
ing to this information, the flagging of row anomaly events in the OMI Level 1B products
has not been complete until 1 February 2010. Therefore, it was decided to exclude from
the dataset all the OMI measurements over the rows 24-59 starting from 24 January
2009, in order to be reasonably sure that the test statistics were not compromised by
contaminated pixels.
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Apart from the filtering based on the quality flags, other screening actions were per-
formed in order to strengthen the quality of the dataset. Specifically, pixels having cloud
fractions larger than 0.3 were discarded. The choice of 0.3 as a threshold for the cloud
fraction was made to establish a trade-off between the need of excluding pixels which
are excessively affected by clouds and the need of ensuring an adequate number of
samples to train the NN and assess its performances in a wide range of situations.

The spectral interpolation procedure led to log-reflectances computed at 351 wave-
lengths. As pointed out by several studies, the spectral features of UV radiances or re-
flectances usually exhibit a considerable correlation, and a spectral resolution of 0.1 nm
is more than necessary for ozone retrievals (Chance et al., 1997; Richter and Wag-
ner, 2011). Therefore, the information content of the computed log-reflectance spectra
can be considerably compressed through a data dimensionality reduction technique.
In this work, a simple linear Principal Component Analysis (PCA) was used. In order to
choose an appropriate value for the number of Principal Components (PCs) to retain
after the PCA procedure, the error in the reconstruction of the log-reflectance spectra
from the compressed spectra was monitored as a function of the number of retained
PCs. This procedure led to retain 20 PCs, since adding further PCs did not improve the
reconstruction significantly.

4 Design of the Neural Network
4.1 Training, validation and test subsets

The co-location procedure described in the previous section has led to the generation
of 10 017 input-output pairs. Such pairs were used to train the NN algorithm and assess
its performances with data not used during the training phase. The network was trained
using only co-locations which cover the period from 2004 to 2008. This choice was
made in order to set aside enough data to test the NN behaviour outside the training
period. The dataset was split into four subsets: (i) 5489 pairs were used to train the
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NN; (ii) 1737 pairs were used to determine when to stop the training process via early
stopping cross-validation (see Sect. 2.4); (iii) 2071 pairs were used to evaluate the
generalization of the trained NN during the training period; (iv) 720 pairs were used to
evaluate the trained NN generalization outside the training period.

From now on, these four datasets will be referred to as Dy, Dyaiid> Prestt @3N Digstio
respectively. The union between D,y and Dy Will be indicated as Digg;.

In order to ensure the independence between the datasets, without affecting their
comprehensiveness, the data were assigned to each set based on the ozonesonde
station they referred to. Stations used in the training dataset were not used for the test
and validation datasets. A significant number of co-locations pertaining to the different
latitudinal bands were present in each subset.

4.2 Input pre-processing

The input vector of the OMITROPOS3-NN consists of 43 inputs: 20 PCs of the re-
flectance spectra, SZA, VZA, terrain height, NCEP/NCAR temperature profiles at
17 pressure levels, NCEP/NCAR tropopause pressure, radiative cloud fraction and
monthly mean TCO. A logistic activation function was chosen for the hidden and the
output layers of the NN.

Before proceeding with the NN training, a further pre-processing step was applied
to the input and target data in order to make them compatible with the mathematical
properties of the logistic function. Specifically, since the output of the logistic function
lies between 0 and 1, a linear scaling between these values was applied to the TCO
data. Similarly, all the input data were linearly scaled between -1 and 1, in order to
avoid the saturation of the hidden neurons after the initialization of the NN weights.

4.3 Training and architecture selection

The NN was trained using the Scaled Conjugate Gradient (SCG) learning algorithm
(Mgaller, 1993). An heuristic procedure, as described in Sect. 2.4, was adopted to select
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the number of hidden layers and neurons. The selected NN architecture has one hidden
layer with 5 neurons inside. For this architecture, the training was stopped after about
1000 cycles, using early stopping cross-validation.

5 Results

The results obtained over the whole D, set are shown in Fig. 2, where the per-
formances of the algorithm are summarized through the mean bias, the Root Mean
Square Error (RMSE) and the Pearson correlation coefficient between the reference
values of TCO and those retrieved by the NN. A more detailed insight on the error
distribution is given in Fig. 3, where the histograms of the absolute and the relative dif-
ferences between the retrieved and the “true” TCOs, respectively, are shown, together
with some of the relevant statistical parameter. It can be seen that the retrievals have
a small bias (0.31 DU), and that the error histograms are fairly symmetrical (skewness
of —0.41 for the absolute differences and 1.38 for the relative differences).

5.1 Generalization during and after the training period

It is important to understand whether there are any differences in the performances of
the algorithm between the years covered by the training set and those not covered by it,
as this may provide an indication on the degree of robustness of the NN with respect to
changes of the instrumental response. Separate error statistics were computed for the
Diesty» CONtaining examples pertaining to the period between 2004 and 2008 and the
Diesto Sets, consisting of examples acquired after 2008. The results are summarized in
Table 2.

The statistics of the comparison between the NN results and the sonde observations
are similar to the results for the training period (bias smaller than 1 DU, RMSE smaller
than 6 DU, correlation coefficient larger than 0.8). These results indicate that applying
the NN to OMI data acquired after the period covered by the training set should not
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result in a significant performance degradation of the algorithm. This is consistent with
the very good radiometric stability displayed by OMI throughout its operational lifetime.
Details about the OMI calibration status can be found at the webpage http://www.knmi.
nl/omi/research/calibration/instrument_status_v3/perf_plots/index.html.

5.2 Geographical features in the retrieval algorithm

The performances of the algorithm were evaluated after stratifying the D, set by
latitude zone. Five zones were defined: Antarctica (latitude between 90° S and 60°S),
southern midlatitudes (60°S to 30°S), tropics (30° S to 30° N), northern midlatitudes
(30° N to 60° N) and Arctic (60° N to 90° N).

Maps of mean biases, Pearson correlation coefficients and RMSEs found over the
ozonesonde stations having at least 35 data included in the test dataset are shown in
Fig. 4.

The performances of the algorithm, in terms of mean bias, RMSE and Pearson coef-
ficient, are comparable for four of the five zones. Only for the Arctic region the bias was
larger. The causes of this bias are currently under study. The results are summarized
in Table 3.

Table 4 presents a summary of the comparison statistics for each of the stations with
at least 20 measurements included in the D, set. The stations are sorted in order of
increasing latitude. For most stations the NN results agree quite well with the sonde ob-
servations (correlations between 0.72 and 0.88, biases between -3 and 2 DU). The lat-
est 5 entries in Table 4 are the Arctic stations. It can be noticed that the OMITROPOS3-
NN has a negative bias over all these stations. Such bias is particularly significant at
Sodankyla (—3.68 DU). Its causes are currently under investigation. A possible reason
may lie in the difficult discrimination between clouds and ice or snow with UV/VIS mea-
surements (Vasilkov et al., 2010; Krijger et al., 2011), that might cause, e.g. missed
detections of cloudy pixels.

Scatter plots and time series of the “true” and retrieved TCO as a function of the Day
Of Year (DOY) for the stations Broadmeadows (Australia) and Goose Bay (Canada)
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are shown in Figs. 5 and 6 as examples. Similar plots for other stations can be found
in the Supplement.

5.3 Non-climatological features

An important question is to what extent is the algorithm capable of recognize anoma-
lous events, i.e. cases of large departures of the actual TCO from its climatological
value used as an a priori for the retrieval. In order to investigate this aspect, a TCO
relative anomaly was defined as the percent difference between the actual TCO and
its climatological value taken from the Ziemke climatology, and the difference between
the retrieved and the actual TCO anomalies were analyzed. The results on the D, set
are plotted in Fig. 7. The correlation coefficient between the actual and the retrieved
TCO anomalies is smaller than the correlation found between the TCO absolute values.
Nevertheless, there still exists a reasonable agreement between the actual and the re-
trieved anomalies, as correlations decreased only from 0.83 to 0.72, indicating that the
algorithm uses information other than the a priori in order to perform its retrievals. Such
information comes from the satellite measurements as well as from the reanalysis data
provided as inputs for the NN. The NN performs a nonlinear combination of these two
sources of information, which makes it difficult to quantify their separate contributions
to the retrievals.

The geographical dependence of the algorithm performances with TCO anomalies is
shown in Fig. 8, where a map of the Pearson correlation coefficient between actual and
retrieved TCO anomalies, over the ozonesonde stations having at least 35 measure-
ments included in the test set, is shown. The map indicates that the anomaly detection
capability of the NN at Tropics is worse than at mid- and polar latitudes. This could be
related to the limited availability of training data in the tropics.
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6 Examples: 17 and 26 August 2006
6.1 Global retrievals

Besides carrying out a validation against ozonesondes, it is important to see how rea-
sonable are the TCO spatial patterns obtained by applying the OMITROPO3-NN to an
extended area (e.g. an OMI orbit, or the entire globe). In this section, two examples of
global TCO retrievals are discussed.

In Fig. 9, global TCO fields retrieved by the OMITROPO3-NN algorithm on 17 (top)
and 26 (bottom) August 2006 — expressed in Dobson Units — are shown. The grey
areas — where no retrieval is provided — are either non-sunlit areas, areas where the
cloud fraction exceeded the 30 % threshold, or areas over which the quality criteria
imposed on the OMI spectra (Sect. 3.3) were not satisfied. Apart from a striping effect
that can be noticed in the along-track direction, a visual inspection of the results in-
dicates that reasonable synoptic patterns can be identified. It is likely that the stripes
are caused by several types of noise in the irradiance data, and that the effect can be
mitigated by replacing standard irradiance products with composite products, as ex-
plained by Veihelmann and Kleipool (2006). Another feature that sometimes appears
is represented by some abrupt meridional gradients in the retrieved TCOs (see, e.g.
the northern edge of the “red” region in the Central Asia on 17 August 2006, above
panel in Fig. 9). This might be due to the coarse resolution of either the tropopause or
the a priori fields used as inputs in the OMITROPO3-NN.

6.2 Comparisons with the TM5 Chemistry and Transport Model

In order to have a more quantitative assessment, the TCO fields retrieved on 17 and 26
August 2006 were compared to TCO fields simulated using the Chemistry and Trans-
port Model (CTM) TM5 (Krol et al., 2005; Williams et al., 2012). The model provided
simulated ozone fields at 34 pressure levels, on a grid of 3° in longitude by 2° in lati-
tude. In order to perform the comparison, both the NCEP tropopause pressure and the

7696

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

Title Page

L

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

TCO fields retrieved by the OMITROPOS3-NN were mapped on the same grid, using
a nearest neighbour resampling. The NCEP tropopause pressure was used as upper
integration limit for the TM5 simulated ozone profiles.

The TCO fields simulated using TM5 for the two dates are shown in Fig. 10, and
scatter plots of modeled versus retrieved TCOs are shown in Fig. 11. Such statistics
show that the OMITROPOS3-NN has a positive bias of about 4 DU with respect to TM5.
The Pearson correlation coefficient between the TCO fields is slightly larger than 0.80
for both the dates.

The structure of the differences between the OMITROPOS3-NN and the TM5 es-
timates is shown with more detail in Figs. 12 and 13, where the histograms of the
absolute and the relative differences are depicted, respectively.

Figure 14 shows a map of the NN - TM5 absolute differences for the two dates under
study.

It can be noticed that spatial patterns in the differences between OMITROPOS3-NN
and TM5 exist. In particular, higher TCO values than TM5 are regularly retrieved by
the OMITROPOS3-NN over the southern midlatitudes. The underestimations are mostly
concentrated between the Tropics and, to a lesser extent, over central Europe and
eastern United States. Large underestimations occur over Southeastern Asia.

6.3 Retrieval sensitivity to tropopause pressure

Whenever a retrieval algorithm is developed, it is important to assess its sensitivity to
its input quantities. In the case of NNs, a powerful way to do this is represented by
the analysis of the NN input Jacobians, i.e. the derivatives of the NN model ®d,. with
respect to its inputs x. An important property of single hidden layer NNs is that their
input Jacobians can be written analytically (Blackwell and Chen, 2009).

Since NN mappings are nonlinear, a difficulty in using their Jacobians for sensitivity
analyses lies in the fact that they are input dependent. One method to overcome this
difficulty is to use the Jacobian to define a NN Sensitivity Factor (SF) of an output y;
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with respect to an input x; as the ratio between the fractional change of y; with respect
to its actual value, and the corresponding fractional change of x;:

dy;/y; x; 9y,

SF(x)= L= 2T
j( I) dX//X/ yj dXi

(8)

As an example of the application of the NN Jacobians to the OMITROPO3-NN, its
derivative with respect to the tropopause pressure was derived. It can be expected that
the tropopause information plays an important role in the tropospheric ozone retrieval,
especially outside the Tropics, given the appreciable degree of correlation between the
tropopause height and the TCO (de Laat et al., 2005). Thus, it is interesting to assess
whether this kind of knowledge is well incorporated in the OMITROPOS3-NN.

Two maps of the algorithm SF with respect to the tropopause pressure — for 17 and
26 August 2006 — are shown in Fig. 15. It can be seen that the SF always assumes neg-
ative values. This result is reasonable, because it indicates that the negative correlation
between tropopause pressure and TCO is captured by the NN model. Furthermore, the
SF absolute values tend to increase going from Tropics toward Poles. An increase of
|SF| indicates a larger sensitivity of the retrieved TCO to the tropopause pressure. The
increase in |SF| is not symmetric with respect to the Equator, being more abrupt in the
Southern Hemisphere. This could be an indication that the retrievals at midlatitudes
are more sensitive to the tropopause pressure during winter.

7 Conclusions

A new Neural Network algorithm to retrieve tropospheric ozone from OMI data at global
scale — named OMITROPO3-NN — has been presented. The OMITROPO3-NN inher-
its from previous work and adds novel characteristics like the global coverage, the use
of tropopause information to better demarcate the actual troposphere, and the incor-
poration of ancillary data and a priori information into the NN input vector, in order to
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improve the retrieval accuracy. As a result, the OMITROPO3-NN provides daily global
estimates of the tropospheric ozone column.

The algorithm has been validated against ozonesondes and CTM simulations, and
encouraging results have been obtained. Overall, the NN appears to be capable of
determining the spatial and temporal TCO variability.

The OMITROPOS3-NN retrievals were first compared to ozonesonde measurements
collected in several geographical locations around the globe, both during and after the
time period covered by the training set. As for the latter point, it was found that the
OMITROPOS-NN performs reasonably well also after the training period, even though
a slight increase in the global retrieval bias seems to be present.

Over all the latitude bands except the Arctic, a relatively low bias against the
ozonesonde measurements was noticed. The correlation coefficients between re-
trieved and measured tropospheric ozone columns range approximately between 0.75
and 0.85, and the RMS errors are between 5 and 6 DU. On the other hand, over the
Arctic a larger negative bias was detected, whose cause is a topic of ongoing research.

The ozonesonde data were also used in order to assess the capability of the
OMITROPOBS3-NN to detect and estimate departures of the tropospheric ozone columns
from their climatological values. A global correlation coefficient of about 0.70 was found
between the actual and the retrieved relative anomalies. A geographical analysis of this
correlation coefficient seems to suggest that the anomaly estimation capability of the
OMITROPOBS3-NN over the Tropics is worse than at other latitudes. This may indicate
that an insufficient training was obtained in this latitude band, due to the relatively
low number of available ozonesonde data. Future versions of the algorithm will have
to address this problem properly. A possible approach may consist in complement-
ing ozonesonde data with radiative transfer simulations in tropical scenarios. Another
alternative is the relaxation of co-location criteria over the Tropics.

After the comparison with ozonesonde data, examples of operational use of the
OMITROPOS3-NN were provided. The tropospheric ozone fields retrieved by the
OMITROPO3-NN in two dates during August 2006 were compared with simulations

7699

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

L

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

made with the TM5 CTM. Such comparisons suggest that the OMITROPOS3-NN has
a bias of about 4 DU with respect to TM5. However, the differences between retrieved
and simulated tropospheric ozone fields exhibit a peculiar geographic pattern, with the
OMITROPOS3-NN that overestimates TM5 simulations over southern midlatitudes and
underestimates between the Tropics. Despite this, the simulated global spatial patterns
are fairly well reproduced by the OMITROPOS-NN, as shown by the correlation coeffi-
cients, which are higher than 0.80.

In addition to providing daily fields of the tropospheric ozone column, the
OMITROPO3-NN product also stores the input Jacobians of the neural model, which
can be useful to evaluate its sensitivity to the input variables, as well as to assess how
well the NN is incorporating the knowledge of the relationships between the input and
output variables. Examples of the retrieval derivative with respect to the tropopause
pressure show that the OMITROPO3-NN seems to capture the tropospheric ozone
sensitivity to the tropopause pressure in a physically meaningful way. A similar proce-
dure can be applied to evaluate the NN sensitivity to all the input quantities for every
retrieval.

A possible critical aspect of the current version of the OMITROPO3-NN is the mas-
sive use of ancillary information to complement the OMI radiometric measurements.
This was done in order to constrain the retrieval problem properly, as UV measure-
ments may not have enough sensitivity to directly retrieve tropospheric ozone without
any a priori constraint. Future analyses will aim at assessing the relative contribution of
satellite measurements and ancillary data on the NN retrievals in a systematic way, and
possibly at reducing the amount of external information without affecting the retrieval
accuracy too severely.

Supplementary material related to this article is available online at:
http://www.atmos-meas-tech-discuss.net/5/7675/2012/
amtd-5-7675-2012-supplement.zip.
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Table 1. Differences between the OMITROPO3-NN and the OMI-TOC NN algorithms.

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

OMI-TOC NN OMITROPOS-NN

Output product O; column from surfaceto  O4 column from surface to NCEP
200 hPa tropopause

Input data UV1/UV2 reflectances, UV2 reflectance PCs, SZA, VZA,
SZA, total O4 terrain height, NCEP tropopause

pressure & temperature profile,
cloud fraction, monthly mean TCO
from climatology

Coverage Northern midlatitudes Global

Nadir nominal resol. 13 x 48km? 13 x 24km?
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Table 2. Retrieval results during and after the period covered by the training set. The training

set covers the period from 2004 to 2008.

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

Period Mean Bias (DU) RMSE (DU) Pearson coeff. N. data
2004-2008 0.08 5.26 0.82 2071
2009-2011 0.96 5.93 0.86 720
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Table 3. Retrieval results on the test set, stratified by latitude band.

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

Latitude band Mean bias (DU) RMSE (DU) Pearson coeff. N. data
90°S-60°S 1.99 5.63 0.86 271
60°S-30°S 1.45 5.22 0.76 181
30°S-30°N 0.59 5.65 0.80 611
30°N-60°N 0.52 5.28 0.82 1357
60°N-90° N -2.69 5.66 0.54 371
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Table 4. Retrieval results divided by station, sorted by increasing latitude. Only stations with at AMTD
least 20 measurements included in the D, set were considered.
5, 76757727, 2012

Station name Lat. Lon. Bias (DU) RMSE (DU) Pearson N.data

Amundsen (South Pole) -89.98 0.00 0.48 2.24 0.94 26 .
Syowa -69.00 3958 ~0.28 5.35 0.90 41 OMINN trop9spherlc
Davis -68.58 77.97 1.93 5.16 0.87 169 ozone retrievals
Broadmeadows -37.69 144.95 1.30 4.96 0.75 154

La Réunion -21.08 55.48 -2.66 6.71 0.80 64 A. Di Noia et al.
Suva (Fiji) -18.13 178.32 0.70 4.98 0.59 28

Ascension Island -7.98 -14.42 0.86 5.54 0.72 144

Watukosek (Java) -7.57 112.65 1.09 4.58 0.74 37

Maxaranguape (Natal) -5.45  -35.33 0.66 5.37 0.74 121 Title Page ‘
Nairobi -1.27 36.80 2.30 4.17 0.76 23

San Cristobal ~092 -89.60 1.79 4.82 0.73 44
Barbados 13.16 -59.43 1.77 5.81 0.38 21 -
Hong Kong Observatory ~ 22.31  114.16 0.94 6.29 0.67 21
Naha 26.20 127.68 1.00 6.06 0.75 28 =
Huntsville 3472 -86.64 -2.69 6.07 0.83 143
Tateno-Tsukuba 36.06 140.10 0.59 7.36 0.88 24 N .
Madrid (Barajas) 40.46 -3.65 2.09 5.46 0.80 33

LAquila 4238 13.31 0.94 5.30 0.81 35 g g
Sapporo 42.56 141.33 2.21 5.94 0.87 130

Haute Provence 43.93 5.70 1.66 6.70 0.73 146 g g
Egbert 44.23 -79.78 0.50 4.89 0.83 136

Payerne 46.49 6.57 -0.66 5.42 0.71 60
Hohenpeissenberg 47.80 11.02 212 4.79 0.71 52 I RIS
Regina (Bratt’s Lake) 50.21 -104.71 0.86 4.24 0.78 212
Valentia Observatory 5193 -10.25 -2.35 3.94 0.89 22 ———————————.
Lindenberg 52.16 14.12 -1.68 4.47 0.57 22

Goose Bay 5330 —6036 096 480 077 234 Pr|nter.fr|end|y Version ‘
Whitehorse 60.70 -135.07 -3.27 6.66 0.37 34 _—
Yellowknife 62.50 -114.48 -1.90 413 0.67 21
Salekhard 66.50 66.70 -0.28 4.46 0.47 84 -
Sodankyla 67.34 26.51 -3.68 6.03 0.61 207

Scoresbysund 7049  -21.98 -2.50 5.67 0.58 25
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Fig. 1. Spatial distribution of the ozonesonde stations used to construct the dataset to train and

test the NN.
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Sonde TCO (DU)

Fig. 2. Overall validation results, obtained both during and after the time period covered by the

training set.
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Fig. 3. Histograms of the absolute (top panel) and relative (bottom panel) differences between

NN — sonde relative difference (%)

the retrieved and the target tropospheric ozone columns.
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Fig. 4. Mean bias (top panel), Pearson correlation coefficient (middle panel) and RMS differ-
ence (botto panel) between ozonesonde measurements and retrievals for all the measurement
stations having at least 35 measurements in the test dataset.
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Fig. 5. Scatter plot (top panel) and time series (bottom panel) of retrieved and ozonesonde
TCO at Broadmeadows (Australia).

Jaded uoissnasiqg

Jaded uoissnasig

Jaded uoissnasiqg

Jaded uoissnasiqg

©)
do

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

Sonde TCO (DU)

TCO (DU)

60

»
o

20

80

GOOSE BAY
T T T T

| Mean bias: 0.96 DU .

RMSE: 4.80 DU
I Pearson coeff.: 0.77 21

Regression Hne:zy:O.EA*qul.DS e
[ N. data points: 23 - 1
L -7 4

-
- + e |
-
L * - 4
. -
-
i A 1
- PN [P e id 4
-
- ;““ [ -
L e Py o -
> W
L R ST ]
+ A Y
F h 4
_ L ]
S S
L 2 4
-
-
L . B
-

-

L 4
1 1 1 1
0 20 40 60 80
Retrieved TCO (DU)
GOOSE BAY

T T T T T T T T
| RMS diff:  4.80 DU

Bias:  0.96 DU G—=H8 Sonde
 Pearson: 77.327% /- = = —ARetrieved

234

N. data:

2005
Jan 29

2005
Aug 17

2006
Mar 05

2006
Sep 21

2007
Apr 09

2007
Oct 26

2008
May 13

2008
Nov 29

Fig. 6. Scatter plot (top panel) and time series (bottom panel) of retrieved and ozonesonde
TCO at Goose Bay (Canada).
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Fig. 7. Comparison between actual and estimated TCO anomaly.
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Fig. 8. Pearson correlation coefficient between actual and estimated TCO anomalies for all the
measurement stations having at least 35 data included in the test set.

7720

AMTD
5, 76757727, 2012

OMI NN tropospheric
ozone retrievals

A. Di Noia et al.

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©)
do


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-print.pdf
http://www.atmos-meas-tech-discuss.net/5/7675/2012/amtd-5-7675-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

OMITROPO3 — TROPOSPHERIC 03 COLUMN — 17 AUG 2006 DU

AMTD
5, 7675-7727, 2012

Jaded uoissnasiqg

OMI NN tropospheric
,, ozone retrievals

A. Di Noia et al.

Title Page

Abstract Introduction

Jaded uoissnasiq

o Conclusions References

Tables

Figures

Jaded uoissnasiq

Back Close

»
13

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

Fig. 9. Global tropospheric ozone fields retrieved by the OMITROPO3-NN algorithm on 17
(top panel) and 26 (bottom panel) August 2006. No retrieval is performed on pixels with cloud
fraction larger than 30 %.
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Fig. 11. Scatter plots of the OMITROPOS3-NN retrievals versus the TM5 TCO simulations on
17 (top panel) and 26 August (bottom panel), 2006. The OMITROPOS3-NN TCO fields are

remapped on the TM5 grid.
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Fig. 12. Histograms of the absolute differences between the OMITROPO3-NN retrievals
and the TM5 TCO simulations on 17 (top panel) and 26 August (bottom panel), 2006. The
OMITROPO3-NN TCO fields were remapped on the TM5 grid.
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Fig. 13. Histograms of the relative differences between the OMITROPO3-NN retrievals and
the TM5 TCO simulations on 17 (top panel) and 26 August (bottom panel), 2006. The
OMITROPOS-NN TCO fields are remapped on the TM5 grid.
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Fig. 14. Maps of the absolute differences between OMITROPOS3-NN and TM5 TCO fields on
17 (top panel) and 26 August (bottom panel), 2006. The OMITROPOS3-NN TCO fields are
remapped on the TM5 grid.
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Fig. 15. Global fields of the tropopause sensitivity factor computed for the OMITROPOS3-NN
algorithm on 17 (top panel) and 26 August (bottom panel), 2006.
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