Atmos. Meas. Tech. Discuss., 5, 7899–7921, 2012 www.atmos-meas-tech-discuss.net/5/7899/2012/ doi:10.5194/amtd-5-7899-2012 © Author(s) 2012. CC Attribution 3.0 License.

Discussion Paper

Jiscussion Pap

Discussion Paper

Discussion Pape

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

World Calibration Center for SF_6 – supporting the quality system of the global atmosphere observation

J. Lee¹, D. Moon¹, D. Min¹, and W. Yun²

¹Korea Research Institute of Standards and Science (KRISS), Division of Metrology for Quality Life, P.O. Box 102, Yusong, Daejeon, Republic of Korea
²Korea Global Atmosphere Watch Center, Korea Meteorological Administration, Republic of Korea

Received: 6 September 2012 - Accepted: 19 October 2012 - Published: 29 October 2012

Correspondence to: J. Lee (leejs@kriss.re.kr)

Published by Copernicus Publications on behalf of the European Geosciences Union.

AMTD 5, 7899–7921, 2012					
World C Center	World Calibration Center for SF ₆				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	►I				
	•				
Back	Close				
Full Scr	een / Esc				
Printer-frie	Printer-friendly Version				
Interactive Discussion					

Abstract

5

According to the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015 (WMO, 2009a) WMO/GAW pays attention to systematical improvement of the quality of observations at global or regional monitoring sites. To ensure the comparability and compatibility of the measurements worldwide it is essential to maintain a traceability chain to the primary standard in the different

laboratories around the world as well as to establish a quality control system.

Sulfur hexafluoride (SF₆), is reported to be very rare in the atmosphere at the global averaged annual mole fraction of about 7 ppt, it is one of the greenhouse gases regulated by Kyoto protocol and is increasing at a rate of 0.22 ppt yr⁻¹. Development of a working (or transfer) standard with very low concentration of SF₆ requires expert technologies and several knowhow of gas metrology. In order to meet the Data Quality Objective (DQO), the KMA has cooperated with the Korea Research Institute of Standards and Science (KRISS), which is the National Metrology Institute in South Korea.

So long as the Central Calibration Laboratory (CCL) for SF₆ was established, the Korea Meteorological Administration (KMA) is now trying to take another step forward to systematically support GAW stations in improving their traceability and quality system for SF₆, thereby making a contribution to the WMO/GAW. Through hosting the World Calibration Center for SF₆, which is one of GAW facilities, KMA will contribute to harmonization of the global SF₆ observations in the long run.

This work performed to demonstrate some measurement results on SF₆ which complies with the DQOs and is traceable to the WMO mole fraction scale for SF₆. In order to produce a working standard which is traceable to the WMO scale, we developed highly precise method of a Gas Chromatography/Electron Capture Detector (GC/ECD)

calibrated against the five cylinders (from NOAA, 2011) of the WMO scale. For all analysis the measurement repeatability was < 0.02 ppt (standard deviation) and analyzer's stability was controlled within a drift of 0.02 ppt. Finally, a working standard which is

consistent with WMO scale and satisfies the WMO DQOs of ± 0.02 ppt was successfully produced and is ready to be transferred to the GAW stations.

1 Introduction

Greenhouse gases (GHGs) have been known as substances causing the greenhouse effect. Most countries including the industrialized nations exert every effort to limit and reduce the greenhouse gas emissions since the Kyoto Protocol's entry into force 2005, which is an agreement to reduce emissions of six greenhouse gases. Accurate observation data of ambient GHGs are vital for the study of the relationship between the global warming and the climate change, but it is not easy to quantify their mixing ratios

owing to their globally and temporally insignificant variation. World Meteorological Organization (WMO) GAW programme is operating an international network composed by 80 countries, and ~ 400 observatory sites to improve scientific knowledge of climate change.

 SF_6 in the atmosphere, one of the greenhouse gases regulated by Kyoto protocol, is the rarest among known greenhouse gases. SF_6 can stay in the atmosphere for a long time due to its stability, from 600 yr to 3200 yr. It has higher global warming potential than other greenhouse gases. Recently, the amount of SF_6 mole fraction is reported to be around 7 ppt and being increasing at a rate of 0.22 ppt yr⁻¹ (WMO, 2009b). Therefore, SF_6 observation becomes one of the important activities of the GAW Programme

in support of climate change research. According to Global Atmospheric Watch Station Information System (GAWSIS), 37 stations have been observing SF₆. Most of the stations are located in European and American regions.

The KMA has observed greenhouse gases since 1998 and contributed the GAW programme as a regional GAW station. Currently, we are monitoring CO₂, CH₄, N₂O, SF₆, and three types of CFCs, namely CFC-11, CFC-12, CFC-113 on a regular basis. This data are being reported to the World Data Center for Greenhouse Gases (WD-CGG) in Japan. In order to meet the GAW Data Quality Objective (DQO), the KMA

has cooperated with the Korea Research Institute of Standards and Science (KRISS), which is the National Metrology Institute in South Korea and with the Japan Meteorological Administration (JMA), which is the World Calibration Center for CH_4 . Recently, the KMA and KRISS participated in the WMO Round Robin Exercise or Test (RRT) for

⁵ five greenhouse species. So long as the Central Calibration Laboratory (CCL) for SF₆ was established, the Korea Meteorological Administration (KMA) is now trying to take another step forward to systematically support GAW stations in improving their trace-ability and quality system for SF₆, thereby making a contribution to the WMO/GAW. The KMA proposed to take on the responsibility as World Calibration Center (WCC) for SF₆ within the GAW Programme.

Establishment and application of a standard scale requires expert technologies and several knowhow of gas metrology. As a member of Consultative Committee for Amount of Substance (CCQM) Gas Analysis Working Group (GAWG), KRISS has participated in several international comparison programs since the last 10 yr. In the international comparison CCQM-P41, which was carried out in 2004, the mole fraction

- scales for carbon dioxide (CO_2) were well agreed between WMO and NMIs (van der Veen et al., 2007; Wessel et al., 2008). In the case of methane (CH_4) , the WMO scale was 1.4 % lower than the NMIs' scale. As the result, WMO changed their official scale to 1.3 % higher against gravimetric scale (Dlugokencky et al., 2005). Recent international
- ²⁰ comparison of CCQM-K68 had been performed to compare the mole fraction scales for nitrous oxide (N₂O). The NMIs' average scale was well agreed to WMO scale for N₂O (Lee et al., 2011). Based on the experience of standard and science, KRISS, NMI of Korea, would like to contribute to the GAW programme by maintaining and distributing the WMO scale of SF₆ to support SF₆ quality.

25 **2 Scope**

15

Activities of the WCC will involve maintenance of laboratory standards which are traceable to the WMO SF_6 mole fraction scale and audits of GAW sites to ensure the

observations traceability to the WMO mole fraction scale for SF_6 . According to the strategic plan of the WMO/GAW, in order to implement the GAW QA system WCC is required to conduct regular assessments of stations and apply standard operating procedures. Regular assessments consist of a system audit and a performance audit. The

- former is to check whether a station complies with the GAW QA system. It involves an assessment of station siting, infrastructures, organizations, operation, etc. The latter is to assess whether the measurement of SF₆ is being carried out in accordance with the GAW DQOs and to check the observation traceability toward the WMO mole fraction scales. The WCC, as one of GAW facilities undertakes the activities for their implementor tation by cooperating with other GAW facilities and contributes to harmonization of the
- measurement scale globally and spatially in the long run.

3 WCC and the WMO SF₆ mole fraction scale

Traditionally, SF₆ mole fraction scales are being provided by three laboratories, National Oceanic and Atmospheric Administration (NOAA), University of Heidelberg and
 Scripps Institution of Oceanography (SIO). The comparability between these three scales is known as generally good (WMO, 2009b). A need to compare among the SF₆ observation data produced from various GAW stations required one official scale. The scale was developed by NOAA in 2000 and has been prepared by a static gravimetric dilution method from 2006 and maintained up to now. Since 2009, NOAA plays
 a key role as a SF₆ Central Calibration Laboratory (CCL).

3.1 WCC tasks

The WCC's tasks are described in "a WCC in Box 7 of the GAW report no. 172" and implemented by shaping the terms of reference in detail as follows;

1. Assist Members operating GAW stations to link their observations to the GAW primary standard.

25

The KMA shall provide appropriate assistance for GAW stations under the WMO so that they can produce SF_6 observation results which have traceability to the WMO mole fraction scale which is kept by the CCL, the NOAA/ESRL (Earth System Research Laboratory). Accordingly the KMA shall possess a set of the WMO SF_6 mole fraction scale to ensure their linkage to CCL, to distribute the WMO scale to the GAW stations, and to perform sites audits. For the purpose of the linkage, the KMA obtained from NOAA the WMO mole fraction scale for SF_6 , such as cylinders in the range of 4–15 pmol mol⁻¹ in November 2010.

5

10

15

20

2. Develop quality control procedures following the recommendations by the scientific advisory groups (SAGs), support the QA of specific measurements and ensure the traceability of these measurements to the corresponding primary standard.

The KMA shall develop procedures to control the quality as recommended by the SAG to support the QA of measurements for SF_6 and ensure the traceability of these measurements within a year after being designated as WCC. Finally, the KMA is willing to cooperate with the NOAA in future for implementation of GAW quality system in measurement of SF_6 .

Because currently the KMA is observing SF_6 with GC/ECD (Gas Chromatograph/Electron Capture Detector), the KMA has an expertise of SF_6 measurement. The analyzing system has been calibrated by the primary standards provided by the KRISS in the past and will be changed into WMO scale from now on. For precise calibration of SF_6 analyzing system, the primary standards with at least 5 different concentration levels are required due to the non-linear characteristics of ECD.

25 3. Maintain laboratory and transfer standard that are traceable to the primary standard.

In order to maintain laboratory and transfer standards with the traceability to the WMO SF_6 mole fraction scale, the KMA shall establish a system to produce the

laboratory standards based on the WMO SF₆ mole fraction scale of the CCL, such as an analysis system as well as a system to collect and compress dry air. The laboratory standards will be used to calibrate an analysis system, to measure SF₆ in the atmosphere and to produce the transfer or other laboratory standards of various amounts of SF₆ mole fraction which are to be prepared by sampling naturally (or filling artificially) SF₆ sparser or denser air. The laboratory and transfer standard are maintained by calibration against the WMO SF₆ mole fraction scale on a regular basis.

5

10

15

25

Meantime, compression equipment for dry air, a large number of 301 and 61 aluminum cylinders are also necessary. To produce the laboratory standards, the KWA set up a vacuum system with the heating apparatus and a turbo-pump that is able to lower the inside pressure of the cylinder down to less than 10⁻³ mbar. To produce a better laboratory standard KMA will technically cooperate with CCL.

4. Perform regular calibration and performance audits at GAW sites using transfer standards.

The KMA shall carry out basically calibration and audits every 3 yr using SF₆ transfer standards. To do so, RRT and corrective actions will be conducted. Intervals and methods of the performance audits of the stations could be changed if there is any request from the SAG.

²⁰ 5. Provide, in co-operation with the QA/SACs, training and long-term technical help for stations.

The KMA shall establish systems and facilities to provide stations with long-term training and technical support regarding QA/QC and measurement in cooperation with the QA/SAC. In particular, the KMA will set up GC/ECD for SF_6 to use it for training within 3 yr after being designated as WCC.

AMTD					
5, 7899–7921, 2012					
World Calibration Center for SF ₆					
J. Lee	et al.				
Title	Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	۶I				
•	•				
Back	Close				
Full Scre	en / Esc				
Printer-frier	dly Version				
Interactive	Discussion				
œ	BY				
	AM 5, 7899–7 World Ca Center J. Lee Title Abstract Conclusions Tables I Back Full Scree Printer-frien Interactive				

3.2 Analysis method

A highly repeatable GC method for comparing gas mixtures of SF₆ in air was developed for this study. The comparison analysis is carried out by gas chromatography equipped with μ ECD (an Agilent 6890N) using an activated alumina-F1 column (2 m × 2 ea, ID

⁵ 2.0 mm, 80–100 mesh) and a 7 ml volume loop. P-5 (CH₄ 5 % in Ar) gas is used as a carrier gas. The carrier gas was introduced with a flow of ~ 28 ml min⁻¹ depending on the analyzer condition. Samples passes through a Multi Position Valve (MPV) directly connected to each cylinder, then through a mass flow controller (6890N GC/ECD, Agilent, USA) to be finally introduced in the sample loop. A sample flow is optimized to be introduced at a rate of 200 ml min⁻¹ into a loop volume of 7 ml.

Generally two columns, such as propak Q column and Alumina F-1, can separate SF_6 . For this study in order to select an adequate column two different columns were tested. Figure 2 shows two chromatograms by two different columns. In Fig. 2 it is shown that Activated Alumina F-1 column (Restek, USA) separates more effectively

- ¹⁵ SF₆ from oxygen (O₂), nitrous oxide (N₂O) and other gases. It is found that the SF₆ peak from an Alumina F-1 column can be distinguished from others. A propak Q column looks suitable for analyzing N₂O in air. Therefore for the separation of SF₆ peaks from any others, alumina-F1 column was selected. When we used total 4 m of column, oven temperature 35° and carrier gas flow 28 ml min⁻¹, we separated SF₆ clearly from other ²⁰ components in air under the analytical condition even though matrix of the WMO scale
 - was compressed air.

To have a good analytical precision, response of gas chromatogram was examined. Table 1 shows a series of 11 measurement results of two different cylinders of a sample (S) and a reference (R) alternately. For production of one data point from a cylinder

at least three injections were carried out and total 30 min analysis run elapsed. One data point comprised of the three repeats has a standard deviation (1σ) of ~ 0.20% (relative). Each response ratio was obtained by dividing sample's peak area by average of both references (before and after sample analysis) to compensate any analyzer

drift during analysis. The drift of the analyzer was within 0.3% (relative) whose contribution was included in the value of response ratio. The results of the comparison analysis (ISO, 2001b) of sample and reference cylinders are shown in Table 1. The standard deviation of the mean of the results of the 5 ratios (each of which consists of

⁵ 5 independent comparisons) is 0.22 % (relative) with the maximum deviation of 0.26 %, which comply with the WMO/GAW recommendation on SF_6 . On the basis of this data set and many other similar sets we estimate the standard uncertainty of SF_6 analysis to be 0.3 % (relative).

3.3 Calibration to the WMO scale

20

¹⁰ We received the WMO scale (5 cylinders) from the CCL for SF₆ (NOAA), and analyzed them to calibrate a GC/ECD. The SF₆ measurement results are shown in Table 2 and Fig. 4. The calibration curve obtained from NOAA cylinders fit well with secondary polynomial function of $R^2 \sim 0.99998$. Measured mole fractions agree with NOAA's reported values within the standard deviation of each cylinder, which indicates that the analytical ability by KRISS satisfies with WMO recommendation level, ±0.02 ppt.

In Table 2 the differences between the WMO scale and the calibrated value are within ~ 0.02 ppt of the repeatability uncertainty. Finally, the analyzer calibrated against the cylinders from CCL, because the calibrated results were consistent within DQOs. During the analysis the standard deviation of one data point obtained from 3 or 4 repeats were within 0.02 ppt.

3.4 Preparation of working standard – traceable to the WMO scale

In order to maintain laboratory and transfer standards with the traceability to the WMO SF_6 mole fraction scale, the WCC should produce a laboratory standards based on the WMO SF_6 mole fraction scale.

²⁵ Both systems for analyzing SF_6 (ISO, 2001b) and for sampling a compressed dry air are required to produce a laboratory standard. As an example, of standard production

of laboratory or transfer, a sampled air (CC315007) was prepared as a working standard first. Usually for air sampling an oil free pump (RIX co.) is used. To remove moisture in air, a chemical trap was connected with air flow line in the front of the pump. Mainly, 29.51 aluminum cylinder is used for sampling. After preparation of sampled 5 cylinder, a mole fraction of a laboratory or transfer standard is assigned by an analyzer calibrated by the WMO SF₆ mole fraction scale on a regular basis.

To satisfy the WMO DQOs analyzing system should be optimized for the analysis of SF₆. Figure 4 shows the chromatogram of air sample cylinder (CC315007) for a working standard overlaid with the WMO SF₆ mole fraction scale. As a result of analysis the amount of SF₆ mole fraction was calculated to be 7.52 ± 0.02 ppt on the calibration curve (in Fig. 5) and 7.52 ± 0.02 ppt when using two point calibrations (near bracketing), where their uncertainty considered only repeatability. They agreed with each other well

10

20

within their repeatability uncertainty.

For two points calibration to assign the value and its total uncertainty for an unknown cylinder following equation can be used;

$$C_{\text{unknown}} = \left(\frac{R_{\text{unknown}} - R_{\text{ref1}}}{R_{\text{ref2}} - R_{\text{ref1}}}\right) \left(C_{\text{ref2}} - C_{\text{ref1}}\right) + C_{\text{ref1}},\tag{1}$$

where C is an amount of the mole fraction, R is response area of the analyzer, "ref" is reference or standard scale for calibration. From the Eq. (1) uncertainty of $C_{unknown}$ can be calculated as:

$$u(C_{\text{unknown}})^{2} = \begin{bmatrix} \left| \left(\frac{R_{\text{unknown}} - R_{\text{ref1}}}{R_{\text{ref2}} - R_{\text{ref1}}} \right) (C_{\text{ref2}} - C_{\text{ref1}}) \right| \cdot \\ \text{sqrt} \sqrt{\left(\frac{u(R_{\text{unknown}} - R_{\text{ref1}})}{R_{\text{unknown}} - R_{\text{ref1}}} \right)^{2} + \left(\frac{u(R_{\text{ref2}} - R_{\text{ref1}})}{R_{\text{ref2}} - R_{\text{ref1}}} \right)^{2} + \left(\frac{u(C_{\text{ref2}} - C_{\text{ref1}})}{C_{\text{ref2}} - C_{\text{ref1}}} \right)^{2}} \end{bmatrix}^{2} + u(C_{\text{ref1}})^{2},$$

$$(2)$$

where a $u(R_i - R_j)$ means sqrt $\sqrt{u(R_i)^2 + u(R_j)^2}$. By the above equations finally assigned value can be 7.52 ± 0.05 ppt. Table 3. shows the uncertainty budget and combined uncertainty of the assigned value.

Discussion Paper AMTD 5, 7899-7921, 2012 **World Calibration** Center for SF₆ **Discussion** Paper J. Lee et al. **Title Page** Abstract Conclusions **Discussion** Paper Tables 1) Back Full Screen / Esc **Discussion** Paper Printer-friendly Version Interactive Discussion

Introduction

References

Figures

Close

3.5 Comparison of the scales between WMO and KRISS

We analyzed three NOAA cylinders together with two KRISS cylinders. KRISS cylinders were prepared by gravimetric method (ISO, 2001a) in nitrogen balance. Because the cylinders were prepared with gravimetric method a possible existence of SF_6 in the

⁵ nitrogen, because it is the main balance gas, is very critical. So a pure nitrogen gas (Deokyang Energen Inc., Korea) was analyzed to check whether SF₆ as an impurity exist. As a measurement result, the amount of SF₆ in pure nitrogen is to be less than 0.01 ppt, when compared to the 6 ppt SF₆ mixture which is prepared in KRISS. In the chromatogram of Fig. 6, blue line is SF₆ of 6 ppt prepared in KRISS and green, pink, and red lines are nitrogen gases used.

As shown in Table 4 and Fig. 6, KRISS scale agreed with the WMO scale within 1.5%. To reduce the analytical error caused by different matrices (KRISS standard is SF_6 in nitrogen balance and the WMO scale is in air), we put a lot of effort to inject same amount of sample gas into GC/ECD by controlling an injection flow and vent.

As reported in 2009 (Min et al., 2009) gas flow rate can be changed when gases with different matrices pass through one thermal mass flow controller, which influences measurement value. We are in preparation of this work.

After all, we found that there is some deviation between two scales which is more than their analysis uncertainties. Therefore we prepare gravimetrically (ISO, 2001a) gas standard mixtures with the almost same balance composition with air such as, 0.78 mol mol⁻¹ N₂, 0.21 mol mol⁻¹ O₂ and 0.01 mol mol⁻¹ Ar, for more precise and accurate comparison with the WMO scale.

4 Conclusions

This paper describes the task of the proposed World Calibration Center for SF_6 to ²⁵ implement quality assurance system for SF_6 observations at ambient level which are traceable to WMO scale and satisfies WMO DQO. For the analysis a Gas

Chromatography/Electron Capture Detector (GC/ECD) was used and calibrated against the WMO scales (five cylinders from the CCL, NOAA, 2011), and consequently a working cylinder which is traceable to the WMO scale was produced. As a result of analysis their uncertainties were < 0.02 ppt for measurement repeatability standard ⁵ deviation and < 0.02 ppt for analyzer drift. Finally the working standard was consistent

with WMO scale within the combined uncertainty of repeatability and drift.

In addition, we found that there is some deviation between two scales of KRISS and WMO. When measured with the same amount injection technique, the WMO scale was 1.5% higher than that of KRISS. It is regarded that the difference is mainly from differ-

ent matrix of two mixtures. Accordingly we prepare gravimetrically gas mixtures of the almost same balance composition with air for more precise and accurate comparison with the WMO scale. The results of a production of standard mixture in artificial air will be reported in future paper.

Acknowledgements. This work was supported by Korea Research Council of Fundamental Sci ence and Technology (KRCF) through National Agenda Project of "Development of measurement technology solving climate change" and by KMA through the project of "Establishment of foundation research to meet WMO WCC-SF₆". The authors thank KRISS and KMA colleagues for continuing cooperation and discussion.

References

25

²⁰ Dlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A., Crotwell, A. M., Thoning, K. W., Hall, B. D., Elkins, J. W., and Steele, L. P.: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res., 110, D18306, doi:10.1029/2005JD006035, 2005.

International Standard (ISO): Gas analysis-Preparation of calibration gas mixture-Gravimetric method, 6142, 2001a.

International Standard (ISO): Gas analysis – comparison methods for determining and checking the composition of calibration mixtures, 6143, 2001b.

- Lee, J., Lee, J., Moon, D., Kim, J. S., Wessel, R., Aoki, N., Kato, K., Guenther, F., Rhoderick, G., Konopelko, L. A., Han, Q., and Hall, B.: Final report on international comparison CCQM-K68: Nitrous oxide in synthetic air, Metrologia, 48, 08004, doi:10.1088/0026-1394/48/1A/08004, 2011.
- ⁵ Min, D., Kang, N., Moon, D., Lee, J. B., Lee, D. S., and Kim, J. S.: Effect of variation in argon content of calibration gases on determination of atmospheric carbon dioxide, Talanta, 80, 422–427, 2009.

van der Veen, A. M. H., Brinkmann, F. N. C., Amautovic, M., Besley, L., Heine, H. J., Lopez Esteban, T., Sega, M., Kato, K., Kim, J. S., Perez Castorena, A., Rakowska, A., Milton, M. J.

- ¹⁰ T., Guenther, F. R., Francey, R., and Dlugokencky, E.: International comparison CCQM-P41 greenhouse gases. 1. Measurement capability, Metrologia, 44, 08002, doi:10.1088/0026-1394/44/1A/08003, 2007.
 - Wessel, R. M., van der Veen, A. M. H., Ziel, P. R., Steele, P., Langenfelds, R., van der Schoot, M., Smeulders, D., Besley, L., Smarçao da Cunha, V., Zhou, Z., Qiao, H., Heine, H. J., Martin,
- B., Macé, T., Gupta, P. K., Amico di Meane, E., Sega, M., Rolle, F., Maruyama, M., Kato, K., Matsumoto, N., Kim, J. S., Moon, D., Lee, J. B., Rangel Murillo, F., Ramírez Nambo, C., Serrano Caballero, V. M., de Jesús Avila Salas, M., Pérez Castorena, A., Konopelko, L. A., Kustikov, Y. A., Kolobova, A. V., Pankratov, V. V., Efremova, O. V., Musil, S., Chromek, F., Valkova, M., Milton, M. J. T., Vargha, G., Guenther, F., Miller, W. R., Botha, A., Tshilongo, J.,
- Mokgoro, I. S., and Leshabane, N.: International Comparison CCQM K52 Carbon dioxide in Synthetic Air, Metrologia, 45, 08011, doi:10.1088/0026-1394/45/1A/08011, 2008.
 WMO: Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015, GAW Report No. 172, 2009a.

WMO: 14th WMO/IAEA Meeting of Exerts on Carbon Dioxide, Other Greenhouse Gases and

Related Tracers Measurement Techniques, GAW Report, No. 186, 2009b.

	AM 5, 7899–79	AMTD 5, 7899–7921, 2012						
-	World Ca Center f	World Calibration Center for SF ₆						
	J. Lee	et al.						
5	Title P	age						
	Abstract	Introduction						
_	Conclusions	References						
	Tables	Figures						
	I	۲I						
		► E						
5	Back	Close						
-	Full Scree	en / Esc						
	Printer-friend	dly Version						
))))	Interactive D	Discussion						
	œ	D BY						

Number of		Ratio value	Deviation	Drift
measurement	Area	$S_i \cdot 2/(R_i + R_{i+1})$	[%]	[%]
R1	473.04			
S1	541.89	1.1454	0.00	
R2	473.17			+ 0.03
S2	541.80	1.1439	-0.13	
R3	474.10			- 0.20
S3	541.31	1.1427	-0.23	
R4	473.29			-0.20
S4	541.72	1.1465	0.10	
R5	471.70			-0.33
S5	541.99	1.1483	0.26	
R6	472.27			+0.12
Average		1.1454		
Std. dev.		0.0022		

 Table 1. Comparison data from GC analyzer; one area is from 3 successive analysis.

		CWAR and	Standard deviation ^a	Peak	$C_{\text{calibrated}}$	Differe	ence ^b
Scale	Cyl. No.	[ppt]	(u) [ppt]	area	[ppt]	[ppt]	[%]
	FB03441	3.946	0.015	174.12	3.937	-0.009	-0.23
	FB03443	5.920	0.017	260.51	5.941	+0.021	+0.36
	FB03444	7.972	0.023	346.38	7.964	-0.008	-0.10
Scale	FB03447	9.595	0.018	414.28	9.585	-0.010	-0.10
	FB03450	11.887	0.020	509.43	11.893	+0.006	+0.05

Table 2. Analytical result for SF₆ CRMs from NOAA and KRISS.

^a Standard deviation as a value reported by NOAA. ^b Difference = $C_{calibrated} - C_{WMO-scale}$.

AN	AMTD					
5, 7899–7	5, 7899–7921, 2012					
World C Center	World Calibration Center for SF ₆					
J. Lee	e et al.					
Title	Page					
Abstract	Introduction					
Conclusions	Conclusions References					
Tables	Figures					
I	▶1					
•	•					
Back	Back Close					
Full Scr	Full Screen / Esc					
Printer-frie	Printer-friendly Version					
Interactive	Interactive Discussion					
CC O						

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

AMTD					
5, 7899–7	5, 7899–7921, 2012				
World C Center J. Lee	World Calibration Center for SF ₆				
Title	Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
I4	►I				
•					
Back	Close				
Full Scre	Full Screen / Esc				
Printer-frie	Printer-friendly Version				
Interactive	Interactive Discussion				

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 3. Total uncertainty budget of the working standard	(CC315007) of C _{unknown} .
---	--------------------------------------

Uncertainty factor (from Eq. 1)	Measured value	Standard deviation (<i>u</i>)	Measured value	Note
R _{unknown}	327.65	u(R _{unknown})	1.01	for 3 repeats
R _{ref1}	260.51	$u(R_{ref1})$	0.19	for 3 repeats
R _{ref2}	346.38	$u(R_{ref2})$	1.49	for 3 repeats
C _{ref1}	5.920 ppt	$u(C_{ref1})$	0.017	reported
$C_{\rm ref2}$	7.970 ppt	$u(C_{ref2})$	0.023	reported
C _{unknown} (CC315007)	7.524 ppt (obtained from Eq. 1)	u(C _{unknown})	0.047 (obtained from Eq. 2)	Combined uncertainty

Scale	Cyl. No.	C _{WMO-scale} [ppt]	Standard deviation (<i>u</i>) [ppt]	Peak area	C _{calibrated} [ppt]	Diffe (C _{calibrated} - [ppt]	erence - C _{WMO-scale}) [%]
The WMO scale	FB03443 FB03444 FB03447	5.920 7.972 9.595	0.017 0.023 0.018	221.92 295.93 353.90	5.917 7.918 9.592	-0.003 +0.006 -0.003	-0.04 +0.07 -0.03
The KRISS scale	ME5591 ME5499	7.237 8.999	0.02 0.02	272.81 337.23	7.334 9.128	+0.097 +0.129	+1.34 +1.43

 Table 4. Measurement result between two scales.

Fig. 1. Traceability of SF_6 from the CCI to GAW stations (modified from WCC-N₂O).

Fig. 2. Chromatograms depending on column selection installed at the GC/ μ ECD (x-axis: retention time, minites; y-axis: amount of response, arbitrary).

Fig. 3. Calibration curve for NOAA cylinders.

Fig. 4. Chromatogram of air sample cylinder (CC315007) for a working standard overlaid on the FB03443. (x-axis: retention time, minites; y-axis: amount of response, arbitrary).

Fig. 5. Working standard (CC315007) on the Calibration curve with WMO scale.

Fig. 6. Chromatograms of SF_6 in pure nitrogen gases and prepared SF_6 6 ppt standard (x-axis: retention time, minites; y-axis: amount of response, arbitrary).

