1 Validation of six years of SCIAMACHY carbon monoxide observations using

2 MOZAIC CO profile measurements

- 3
- 4 A.T.J. de Laat^{1,2}, R. Dijkstra², H. Schrijver², P. Nédélec³ and I. Aben²
- 5
- 6 ¹Royal Netherlands Meteorological Institute (KNMI), de Bilt, the Netherlands
- 7 ²SRON Netherlands Institute, for Space Research, Utrecht, the Netherlands
- 8 ³Centre National de la Recherche Scientifique (CNRS), Universite Paul Sabatier,
- 9 Laboratoire d'aérologie, Toulouse, France

Deleted: ²Netherlands Organisation Deleted: (SRON) 10 Abstract

11

This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) carbon monoxide (CO) total column measurements from the Iterative Maximum Likelihood Method (IMLM) algorithm using vertically integrated profile aircraft measurements obtained within the MOZAIC project for the six year time period of 2003–2008.

17 Overall we find a good agreement between SCIAMACHY and airborne measurements 18 for both mean values – also on a year-to-year basis - as well as seasonal variations. 19 Several locations show large biases that are attributed to local effects like orography and 20 proximity of large emission sources. Differences were detected for individual years: 21 2003, 2004 and 2006 have larger biases than 2005, 2007 and 2008, which appear to be 22 related to SCIAMACHY instrumental issues but require more research. Results from this 23 study are consistent with, and complementary to, findings from a previous validation 24 study using ground-based measurements [de Laat et al., 2010b]. Despite the presence of 25 some biases, this study provides additional confidence that SCIAMACHY, if individual 26 measurements are of sufficient quality – good signal-to-noise – can be used to determine 27 the spatial distribution and seasonal cycles of CO total columns.

- 28 1. Introduction
- 29

30	The SCIAMACHY instrument (SCanning Imaging Absorption spectroMeter for
31	Atmospheric CHartographY; launched March 2002) onboard of the ENVISAT satellite
32	[Bovensmann et al., 1999] has been proving carbon monoxide (CO) measurements based
33	on reflected sunlight measurements in the short-wave infrared around 2.3 μ m from 2003
34	onwards. As of this moment, from the perspective of instrument characteristics six years
35	of reliable data is available (2003-2008).
36	Initially, several algorithms were developed by different research groups and some
37	initial evaluation was presented, indicating that SCIAMACHY was able to measure CO
38	[Buchwitz et al., 2004, 2006, 2007; Dils et al., 2005; Sussmann and Buchwitz, 2005;
39	Warneke et al., 2005; Gloudemans et al., 2006]. The Iterative Maximum Likelihood
40	Method developed at the Netherlands Institute for Space Research (SRON) has been
41	further improved based on several additional studies [Gloudemans et al., 2008, 2009; de
42	Laat et al., 2010a, 2010b]. More recently, new SCIAMACHY CO total column retrieval
43	algorithms have been introduced [Simeno Garcia et al., 2011; Liu et al., 2011],
44	De Laat et al. [2010b] presented an extensive validation of (IMLM) retrieval
45	algorithm by comparing the SCIAMACHY measurements with ground-based
46	spectrometer (GBS) observations for the five year period 2003-2007. In summary, de
47	Laat et al. [2010b] found that overall there was a good agreement between SCIAMACHY
48	and GBS observations for both mean values as well as seasonal variations. Validation
49	results were robust with regard to the choices of the instrument-noise error filter,

eleted: [Gloudemans et al., 08]

eleted: SCIAMACHY CO tal column measurements from e Iterative Maximum Likelihood ethod

eleted: – developed at the etherlands Institute for Space esearch (SRON) [Gloudemans et , 2006, 2008, 2009]. The lidation was done

eleted: ¶

rmatted: Dutch etherlands)

sampling area, and time averaging required for the validation of SCIAMACHY CO totalcolumn measurements.

However, de Laat et al. [2010b] also noted that validation was hampered by local emissions, station elevation effects and the large instrument-noise errors of individual SCIAMACHY measurements. Furthermore, it was noted that the spatial coverage of the GBS observations available for the validation of the 2003-2007 SCIAMACHY CO columns is sub-optimal for global validation purposes.

57 To further investigate the quality of SCIAMACHY IMLM CO we present a brief 58 validation study using Measurements of OZone, water vapour, carbon monoxide and 59 nitrogen oxides by in-service AIrbus aircraft (MOZAIC) [Marenco et al., 1998]. 60 MOZAIC provides CO vertical profiles at ascends and descends around airports that can 61 be converted to partial CO columns – as the aircrafts do not observed beyond about 12 62 km altitude, and the missing partial column above 12 km can be quantified from model 63 simulations to derive a total CO column that can be compared with the SCIAMACHY 64 measurements. The MOZAIC measurements provide a different independent dataset to 65 compare with, and measurements cover areas not sampled by the GBS network. In addition, most MOZAIC profile measurements used for validation are made close to large 66 67 cities and industrialized regions - both important sources of CO emissions. Validation 68 with MOZAIC data thus provides crucial information on the ability of SCIAMACHY to 69 measure near surface CO, which is important for estimating CO emissions from satellite 70 measurements. The GBS network used in the validation study by de Laat et al. [2010b] is mostly located in scarcely populated regions. The validation period considered in this 71

72	paper is 2003-2008, so compared to de Laat et al. [2010b] the year 2008 is now also	
73	included for which no previous validation study has been performed.	
74	This paper is organized as follows. Section 2 describes the measurement data and	
75	transport model TM5, section three presents the results of the comparison between	
76	SCIAMACHY and MOZAIC measurements which are discussed in section 4. Section 5	
77	ends the paper with some conclusions.	
78		
79	2. Datasets	
80		
81	2.1 SCIAMACHY	
82		
83	For this study we use SCIAMACHY CO total columns retrieved with the IMLM	
84	algorithm version 7.4 in the short-wave infrared wavelength range between 2324.5-	
85	2337.9 nm. The retrieval method described here is based on an Iterative Maximum	
86	Likelihood Method (IMLM). The forward model includes the atmospheric absorption and	
87	the instrument characteristics. The IMLM algorithm fits a model of the expected detector	
88	signal to the measurements by varying the total amounts of the trace gases that play a role	
89	in the selected retrieval window. For more algorithm details we refer to Gloudemans et	Deleted:
90	al. [2008, 2009]. This spectral region is sensitive to the whole column, with almost	Deleted: .,
91	uniform sensitivity from 200 hPa down to the surface [Gloudemans et al., 2008]. In this	
92	paper, we assume that the SCIAMACHY CO total column is the real total column.	
93	Gloudemans et al. [2009] and de Laat et al. [2010a] provide a detailed discussion of	Deleted: De
94	SCIAMACHY averaging kernels and estimated that the effects of the SCIAMACHY CO	Deleted:]

95	a priori and averaging kernel were of the order of only a few percent which falls well
96	within the estimated precision of SCIAMACHY measurements (~ 10%, see further de
97	Laat et al. [2010a], thereby justifying the assumption that SCIAMACHY CO total
98	columns can be regarded as true total columns.
99	Single SCIAMACHY CO measurements have large instrument-noise errors -
100	typically of the order of 10-100% of the total CO column value [de Laat et al., 2007].
101	Hence, obtaining valuable information about CO from SCIAMACHY requires averaging
102	multiple measurements and weighing them with their corresponding instrument-noise
103	errors. Several studies have shown that reducing the instrument-noise error by averaging
104	multiple measurements yields useful information about CO [de Laat et al., 2006, 2007,
105	2010 <u>a, 2010b;</u> Gloudemans et al., 2006, 2009]. De Laat et al. [2007] estimated the
106	precisions of SCIAMACHY CO averages at approximately 1×10^{17} molecules/cm ² .
107	Similar to Gloudemans et al. [2009] and de Laat et al. [2010a, 2010b], we use
108	SCIAMACHY CO observations over both land and oceans. Over land, only
109	SCIAMACHY observations with cloud fraction < 20% are used. Over oceans,
110	measurements over low altitude clouds between the surface and 800 hPa are used . For
111	both land and oceans only measurements with instrument-noise errors $< 1.5 \times 10^{18}$
112	molecules/cm ² are used. Previous studies did not indicate systematic differences due to
113	cloud fractions < 20% [de Laat et al., 2007]. The effect of aerosols has previously been
114	estimated to be less than 5% [de Laat et al. [2007], and references therein].
115	This greatly improves spatio-temporal coverage as discussed in these papers.
116	However, using measurements over low altitude clouds means that only the partial CO
117	column above the cloud is observed. The missing below-cloud CO partial column is

estimated from TM5 model results and added to the SCIAMACHY measurements where
applicable. This contribution is quantified and summarized for all comparisons, see
further Table 1.

121

122 **2.2 MOZAIC**

123

124 MOZAIC was initiated in 1993 by European scientists, aircraft manufacturers and 125 airlines to better understand the natural variability of the chemical composition of the 126 atmosphere and how it is changing under the influence of human activity, with particular 127 interest in the effects of aircraft. MOZAIC consists of automatic and regular 128 measurements of reactive gases by five long range passenger airliners. A large database 129 of measurements (about 30,000 flights since 1994) allows studies of chemical and 130 physical processes in the atmosphere, validations of global chemistry transport models 131 and satellite retrievals. MOZAIC data provide detailed climatologies of trace gases at 9-132 12 km. MOZAIC data also provide frequent vertical profiles over a large number of 133 airports. These vertical profile measurements of CO will be used to calculate CO total 134 columns (see further section 2.4). Evaluation of MOZAIC CO measurements indicates a 135 precision of \pm 5%, which is sufficiently accurate for validation purposes [Nedelec et al., 136 2003]. For more information about the MOZAIC program see Marenco et al. [1998] or 137 the website found at http://mozaic.aero.obs-mip.fr. 138

139 2.3 Global chemistry-transport model TM5

140

141 We use the TM5 chemistry-transport model for the years 2003 to 2008 to quantify 142 various effects that are important for the comparison of SCIAMACHY and MOZAIC 143 measurements. This model is an update from the TM4 model used in de Laat et al. [2007, 144 2010a, 2010b] and Gloudemans et al. [2009]. A detailed description of the model can be 145 found in Huijnen et al. [2010]. The horizontal resolution of this TM5 version is $3^{\circ} \times 2^{\circ}$ longitude-latitude with 34 vertical levels. Meteorological ECMWF operational analysis 146 147 input fields used in TM5 are pre-processed as described in Bregman et al. [2003]. 148 Biomass burning emissions are taken from the Global Fire Emissions Database, version 2 149 (GFEDv2) 8-day emission inventory [Van der Werf et al., 2006]. The biomass burning 150 emissions are distributed over different altitude ranges, depending on the latitude. The 151 emission heights are similar to those described in Dentener et al. [2006], except the 152 injection height in the tropics is increased to 2 km based on the evidence from recent 153 satellite observations [e.g. Labonne et al., 2007]. Anthropogenic emissions are based on 154 the present-day anthropogenic emissions from the inventory from the RETRO project for 155 the year 2000 [Schultz et al., 2007], while East-Asian anthropogenic emissions are replaced by the REAS inventory [Ohara et al., 2007]. For biogenic emissions 156 157 climatological values are used as derived from GEIA (Global Emissions Inventory 158 Activity [Guenther et al., 1995]).

Validation of TM5 simulated CO against various types of measurements indicates that the model produces realistic seasonal cycles, but tends to underestimate CO in the Northern Hemisphere by 10-20% depending on season with larger differences during winter [Huijnen et al, 2010]. This is consistent with findings of Elguindi et al. [2010] who report that the model tends to underestimate CO. Shindell et al. [2006] report that 164 transport models in general tend to underestimate CO. These discrepancies have been 165 attributed to various causes, including hydrocarbon oxidation, uncertainties in the 166 seasonal cycle of anthropogenic emissions and biomass burning injection heights and 167 vertical redistribution. Elguindi et al. [2010] also suggest that part of the discrepancy 168 might also be related to the fact that model grid boxes are compared to point 169 measurements, particularly near the surface. Given that the model results are only used 170 for quantifying missing subcolumns - either for SCIAMACHY measurements over 171 clouded ocean scenes or for the CO column above the maximum MOZAIC profile 172 altitude - the Northern Hemisphere TM5 model bias can be considered to be only of 173 secondary importance.

174

175 **2.4 Post processing and selection criteria**

176

For comparing SCIAMACHY and MOZAIC measurements we use the following procedure, which is based on the methodology presented in de Laat et al. [2010b].

179 MOZAIC profiles must be converted to partial columns. In order to ensure that the 180 MOZAIC profile measurements are representative for a significant part of the 181 troposphere we only select profiles that start below 800 hPa and measure at least up to 182 300 hPa. The missing partial column above the highest altitude where MOZAIC 183 measures is estimated from TM5 model results. For each MOZAIC CO profile the 184 collocated model column above the maximum altitude of the MOZAIC profile is calculated, shown in Fig. 1. For more than 95% (99%) of the CO profiles this subcolumn 185 186 contributes less than 20% (30%) of the total column.. Considering that TM5 model biases

Deleted: contains

Deleted:, with mean and median values of 9.4 and 8.0 %, respectively, for the modeled subcolumn as fraction of the total column. Assuming

Deleted: %,

- 187 in upper atmospheric CO are not larger than 10<u>-20% [Huijnen et al., 2010]</u>, biases in the
- 188 total columns for the combination of MOZAIC and TM5 data that can be attributed to
- 189 biases in TM5 <u>cannot be</u> larger than <u>a few percent</u>.

Note that rather than adding the model estimate of the missing column to the MOZAIC partial column it is also possible to scale the MOZAIC partial column with the modeled ratio of the total column over the modeled partial column. However, an evaluation of results from both methods yielded very similar total column estimates, indicating that results are robust with regard to the choice of correcting for the "missing" part in the MOZAIC profiles.

196 The comparison between SCIAMACHY and MOZAIC is hampered by the limited 197 number of true collocations because of the SCIAMACHY spatial resolution and cloud 198 cover and by the large instrument errors of individual SCIAMACHY measurements. De 199 Laat et al. [2010b] introduced an averaging method in which for a given spatial area all 200 SCIAMACHY measurements within a certain time interval were averaged. The length of 201 the time interval was chosen such that instrument-noise error of the average SCIAMACHY CO columns was 1×10^{17} molecules/cm² or smaller, which is an estimate 202 203 of the measurement accuracy based on both retrieval algorithm sensitivity studies as well 204 as a detailed comparison of SCIAMACHY measurements with chemistry-transport model 205 results [de Laat et al., 2007], MOZAIC measurements falling within this spatio-temporal 206 "area" are simply averaged. De Laat et al. [2010b] studied the effect of area size on the 207 comparison between ground-based measurements. There are two competing trade-offs: 208 the larger the area, the more SCIAMACHY measurements available for averaging and 209 thus the beter the temporal resolution. On the other hand, the larger the area, the less

Deleted: are not
Deleted: 2-3%

Deleted: The value of 1×10^{17} molecules/cm² was derived from synthetic tests with the retrieval algorithm for quantifying noninstrument-noise errors and systematic biases.

Deleted: Based on the results from de

210)	<u>representative the</u>	e averages for the	hat area for a s	ingle location. B	y varying	g the area size and	d
								_

Deleted: [2010] we start with

211 comparing statical measures like correlations and root-mean-square difference, de Laat et

212 al. [2010b] found that beyond an 8°×8° grid there is no gain. Hence, we compare

213 SCIAMACHY CO with MOZAIC within an 8°×8° grid.

214 Because MOZAIC flights are intermittent, the frequency of visits to airports by 215 aircrafts that take part in MOZAIC varies considerably. Fig. 2 provides a geographical 216 overview of where 8°×8° grids in which MOZAIC data was sampled. Indicated are also 217 the FTIR locations used in de Laat et al. [2010b]. Note that several FTIR stations fall 218 outside of the area shown here: Ny Alesund (Spitsbergen), Kiruna (northern Sweden), 219 Lauder (New Zealand) and Arrival Heights (Antarctica). Clearly the GBS and MOZAIC 220 networks complement each other. Table 2 provides a list of most frequently visited 221 airports within the grid boxes shown in Fig. 2. 222 Biases that might be introduced by the area averaging methodology and effects of 223 different grid comparison areas will be discussed later in this paper. 224

225 **3. Results**

226

3.1 Time series

228

Fig. 3A-C present the comparison of MOZAIC and SCIAMACHY CO total column

230 time series for the $8^{\circ} \times 8^{\circ}$ grid boxes in Fig. 2.

In general there is a reasonable to good agreement between both. We will discuss all

232 grid box comparison, grouped according to geographical region.

The eastern USA boxes [1,2,3] all show a good agreement. The seasonal cycle of location 1 (Los Angeles, San Francisco) is well reproduced by SCIAMACHY. Although there are fewer observations for region 3, IMLM still shows seasonal variations. Note that for in particular location 1 most SCIAMACHY observations are from above oceanic low clouds (table 1), which are very persistent in this region.

238 For the central and eastern USA boxes [4-9] there is also a reasonable to good 239 agreement. Seasonal cycles are reproduced. The comparison for locations 4, 5, 7 and 8 240 shows that during 2004 and 2006 SCIAMACHY is considerably lower than MOZAIC. 241 This phenomenon was also reported in de Laat et al. [2010b] for the comparison with the 242 FTIR measurements, and might point to some unresolved SCIAMACHY calibration 243 issues. Also note that the year 2008 – which was not covered in de Laat et al. [2010b] 244 looks as good as any other year, suggesting that SCIAMACHY data for 2008 is of similar 245 quality as the other years.

Location 10 represents a tropical location (Caracas, Venezuela). Although SCIAMACHY measurements are comparable to MOZAIC measurements, this region shows not much seasonal variation in CO total columns, and the measurement sample is not very large. Also here SCIAMACHY appears to underestimate CO in 2006. Note that all SCIAMACHY measurements come from observations over low altitude ocean clouds (table 1), as the surface reflectance of the densely vegetated surrounding land – and thereby the signal-to-noise of the SCIAMACHY measurements – is small.

Location 11 represents the region around Lagos, Nigeria. This is a region with a strong seasonal cycle and high CO concentrations during the winter months [Redelsperger et al., 2006; Hopkins et al., 2009]. Although for some years no MOZAIC 257 columns than the SCIAMACHY measurements. A possible explanation might be that 258 regional pollution – either anthropogenic or biomass burning – which is not represented 259 by the SCIAMACHY averaging over the 8°×8° grid box - affects the MOZAIC 260 measurements. TM5 results indeed indicate enhanced CO when averaging over a smaller 261 area around Lagos.

262 Location 12 (Windhoek, Namibia) is in the Southern Hemisphere in a region that is 263 strongly affected by seasonal biomass burning. Furthermore, the high surface reflectance 264 of this area ensures a good signal-to-noise ratio for the SCIAMACHY measurements and 265 thus many comparisons. Clearly SCIAMACHY data show a very similar seasonal cycle 266 and similar CO total columns, also in 2008. Overall, the agreement is very good.

267 Locations 13-15 are all located over Europe, a region that was already covered by the 268 comparison between SCIAMACHY and FTIR [de Laat et al., 2010b]. Similar to the 269 FTIR results, there is a good agreement between SCIAMACHY and MOZAIC in terms 270 of both the average total columns as well as the seasonal cycle, although especially for 271 2004 and 2006 there appears to be a bias in SCIAMACHY. The comparison for 2008 is 272 similar to other years.

273 Locations 16-21 cover the Middle East region. Here, although there are fewer 274 MOZAIC measurement, signal-to-noise of the SCIAMACHY measurements is as high as 275 it can get due to the high reflectivity of the dry (semi) desert surface. Overall, there is a 276 reasonable agreement between SCIAMACHY and MOZAIC, although the seasonal 277 cycles in this region are not very large. Furthermore, for several grid boxes, CO total 278 columns from MOZAIC are larger than SCIAMACHY. This might be related to local

Deleted: As with Lagos, Nigeria, this

13

Deleted: local

256 measurements were made, the MOZAIC measurements show consistently larger CO

279	pollution that is not represented by the SCIAMACHY averages and model results, the
280	latter regardless of the area chosen over which to average down to $3^{\circ} \times 2^{\circ}$.
281	Locations 22-24 are all over eastern China. Temporal coverage is limited, but
282	concentrations for location 22 (~ Hong Kong) and 23 (Shanghai) are similar, and the
283	large variations in CO total columns from one measurement to the next are also observed
284	with SCIAMACHY. For location 24 - Beijing - MOZAIC show much larger columns
285	than SCIAMACHY. It is very likely that the particular local geographical conditions of
286	Beijing can explain these differences, similar to Teheran, as TM5 (3°×2°) results also do
287	not indicate enhanced CO columns, Beijing borders a mountainous area which is much
288	less densely populated and industrialized region, which is relevant given the 8°×8° grid
289	box averaging of SCIAMACHY. Furthermore, this local geography enhances the buildup
290	of pollution in the boundary layer around Beijing. Finally, the buildup of pollution and
291	formation of a well known boundary layer haze over Beijing [Chan and Yao, 2008], in
292	combination with dust storms from the interior of the continent [Eck et al., 2005] may
293	limit the sensitivity of the SCIAMACHY measurements to the polluted boundary layer,
294	as SCIAMACHY observes CO from reflected solar radiation around 2.3 micron and thus
295	depends on light passing through CO pollution [M. Krijger, SRON, personal
296	communication].
297	Locations 25 and 26 are located over India. For location 25 over central Indian
298	SCIAMACHY and MOZAIC are comparable and show similar seasonal cycles and the
299	year 2008 is similar to other years. For location 26 in Northern India SCIAMACHY is
300	smaller than MOZAIC, which in part may be related to again local pollution not

301 represented by the SCIAMACHY averaging over 8°×8° grid boxes.

Deleted: . On the one hand,

Deleted: On the other hand, the

Deleted:]. In

Deleted: this

Locations 27 and 28 in southeastern Asia – Bangkok - show limited temporal coverage. Summertime CO total columns are similar, but SCIAMACHY misses some enhanced CO during the winter 2005-2006, although for years without MOZAIC measurements the SCIAMACHY measurements clearly show similar wintertime enhancement, suggesting that maybe collocation issues like cloud contamination may have hampered SCIAMACHY observing the wintertime enhancement.

Finally, locations 29 and 30 over Japan show similar seasonal cycles. De Laat et al.
[2010b] showed that for two FTIR stations in northern Japan results were good, and this
comparison confirms those findings.

311

312 **3.2 Statistics**

313

314 Fig. 4A shows a scatter plot of the 2003-2008 average CO total columns for 315 SCIAMACHY and MOZAIC comparisons presented in Fig. 3 and table 1. The 316 comparison shows a very good agreement between SCIAMACHY and MOZAIC, apart 317 from three outliers who were already identified in section 3.1 (Lagos, Teheran and 318 Beijing). Disregarding these three locations by removing points for which the bias is larger than the arbitrary value of 1.0×10^{18} molecules/cm², we find a correlation of 0.92 319 320 for the comparison. However, there is a small CO total column bias between SCIAMACHY and MOZAIC of approximately 0.3×10^{18} molecules/cm² (~ 15%). 321

Fig. 4B shows the same comparison as in Fig. 4A but for all years separately. Similar to Fig. 4A, there is a good agreement between SCIAMACHY and MOZAIC if we disregard the three locations discussed above as well as location 6 (year 2008) and location 23 (year 2004). Disregarding these stations results in a correlation of 0.75.

Fig. 4C shows the comparison for all individual years. Disregarding the outliers discussed above results in correlation coefficients between 0.54 and 0.93. Comparing year to year we note that the years 2003, 2004 and 2006 have relatively large biases (0.3- 0.5×10^{18} molecules/cm²; ~10-25%), which was already noted in the discussion of the time series. The years 2005, 2007 and 2008 have smaller biases (0.1-0.2×10¹⁸ molecules/cm²; ~3-10%).

Note that the year 2008 - not evaluated in de Laat et al. [2010b] - appears similar to the other years, although some locations with high CO total columns did not provide observations in 2008. However, removing stations with CO total columns larger than 2.5×10^{18} molecules/cm² for the years 2003-2007 yielded lower correlations similar to the 2008 correlation (R = 0.54-0.77), indicating that also the correlation for 2008 could be considered similar to the other years.

338

339 **4. Discussion**

340

The results from the comparison of SCIAMACHY with MOZAIC data are fully consistent with what was reported in de Laat et al. [2010b]. Overall, there is a good agreement between the satellite and in situ measurements. There are locations for which both observational records diverge. These differences are attributed to local effects and multiple explanations have been proposed although this was not investigated in more detail. 347 The comparison for 2003, 2004 and 2006 show larger biases than for the other years, 348 a finding also noted in de Laat et al. [2010b]. For the years 2003 and 2004 the most 349 obvious explanation is the frequent "decontaminations" that took place. The 350 SCIAMACHY channel 8 detectors are hampered by the buildup of a microscopic ice 351 layer, which reduces signal-to-noise and increases scattering effects. During 2003 and 352 2004 the detector was frequently heated to evaporate the ice in the hope that the vapor 353 would escape the spacecraft. After 2005, the frequent decontaminations were stopped and 354 after an initial buildup the ice layer would remain stable. Hence, decontaminations cannot 355 explain the bias observed for 2006. Another possible explanation might be a change in 356 the available detector pixels. SCIAMACHY channel 8 suffers from radiation damage, 357 which results in a steady reduction in the number of functioning detector pixels. The 358 pixels used for the IMLM retrieval algorithm have to be actively varied to take this effect 359 into account. This leads - over time - to different sets of pixels being used for the 360 retrieval which might lead to different retrieval results. However, it is unclear as to 361 whether the varying pixel mask can explain why for 2007 and 2008 the bias is smaller.

362

363 **5. Conclusions**

364

The validation of SCIAMACHY CO total columns with integrated *in situ* CO profile measurements from the MOZAIC campaign shows a good to very good agreement. A few location show large biases, likely related to local effects. If SCIAMACHY measurements are of sufficient quality – good signal-to-noise – then seasonal cycles can according to the second strength and the seco

The comparison for individual years shows that the years 2003, 2004 and 2006 have larger biases than 2005, 2007 and 2008. For this study we extended the SCIAMACHY measurements with the year 2008. The validation with GBS measurements presented in de Laat et al. [2010b] only covered the years 2003-2007, and from this study we conclude that for 2008 SCIAMACHY provides good quality CO total column measurements as well.

Finally, we conclude that the MOZAIC network provides additional and crucial information for the validation of SCIAMACHY CO total columns. The network nicely complements the GBS network with a certain overlap – in particular in Europe and Japan - but also provides measurements at locations not covered by the GBS network – Middle East, south and southeast Asia, western USA, South Africa. Note that the GBS network covers some areas not visited by MOZAIC – high latitudes, Australia and New Zealand. Hence, both networks are mutually complementary.

384

385 Acknowledgements. We thank both referees for their valuable comments and help to

386 <u>improve the paper.</u>

387

Formatted: Indent: First line:

0 cm

\mathbf{a}	\mathbf{O}	
-	×	
- 1	α	7
	• •	

390	Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V. V.,
391	Chance, K. V., and Goede, A. H. P. (1999): SCIAMACHY - Mission Objectives and
392	Measurement Modes, J. Atmos. Sci., 56, 127-150.
393	
394	Bregman, B., Segers, A., Krol, M., Meijer, E., and van Velthoven, P. (2003): On the use
395	of mass-conserving wind fields in chemistry-transport models, Atmos. Chem. Phys.,
396	3, 447–457, doi:10.5194/acp-3-447-2003.
397	
398	Buchwitz, M., R. de Beek, K. Bramstedt, S. Noël, H. Bovensmann, and J.P. Burrows,
399	Global carbon monoxide as retrieved from SCIAMACHY by WFM-DOAS, Atmos.
400	<u>Chem. Phys., 4, 1945-1960, 2004.</u>
401	
402	Buchwitz, M., R. de Beek, S. Noël, J. P. Burrows, H. Bovensmann, O. Schneising, I.
403	Khlystova, M. Bruns, H. Bremer, P. Bergamaschi, S. Körner, and M. Heimann
404	(2006), Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS:
405	version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval,
406	Atmos. Chem. Phys., 6, 2727-2751, doi:10.5194/acp-6-2727-2006.
407	
408	Buchwitz, M., I. Khlystova, H. Bovensmann, and J.P. Burrows, Three years of global
409	carbon monoxide from SCIAMACHYL comparison with MOPITT and first results

410	related to the detection of enhanced CO over cities, Atmos. Chem. Phys., 7, 2399-	
411	<u>2411, 2007.</u>	
412		
413	Chan, C.K., and X. Yao (2008), Air pollution in mega cities in China, Atmos. Environ.,	
414	42, 1-042, doi:10.1016/j.atmosenv.2007.09.003.	
415		
416	Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P.,	
417	Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, JP., Textor,	
418	C., Schulz, M., van der Werf, G. R., and Wilson, J. (2006), Emissions of primary	
419	aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for	
420	AeroCom, Atmos. Chem. Phys., 6, 4321-4344, doi:10.5194/acp-6-4321-2006.	
421		
422	Dils, B., M. De Mazière, T. Blumenstock, M. Buchwitz, R. de Beek, P. Demoulin,	
423	P. Duchatelet, H. Fast, C. Frankenberg, A. Gloudemans, D. Griffith, N. Jones,	
424	T. Kerzenmacher, I. Kramer, E. Mahieu, J. Mellqvist, R.L. Mittermeier, J. Notholt,	
425	C.P. Rinsland, H. Schrijver, D. Smale, A. Strandberg, A.G. Straume, W. Stremme,	
426	K. Strong, R. Sussmann, J. Taylor, M. van den Broek, T. Wagner, T. Warneke,	
427	A. Wiacek, and S. Wood, Comparisons between SCIAMACHY and ground-based	
428	FTIR data for total columns of CO, CH ₄ , CO ₂ and N ₂ O, Atmos. Chem. Phys., 6, 1953-	
429	<u>1976, 2006.</u>	
430	Deleted:	
431	Eck, T.F., B.N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H.B. Chen, B. Chatenet, L.	_
432	Gomes, XY. Zhang, SC. Tsay, Q. Ji, D.M. Giles, and I. Slutsker (2005), Columnar	-

433	aerosol optical properties at AERONET sites in central eastern Asia and aerosol
434	transport to the tropical mid-Pacific, J. Geophys. Res., 110, D06202,
435	doi:10.1029/2004JD005274.
436	
437	Elguindi, N., H. Clark, C. Ordóñez, V. Thouret, J. Flemming, O. Stein, V. Huijnen, P.
438	Moinat, A. Inness, VH. Peuch, A. Stohl, S. Turquety, G. Athier, JP. Cammas, and
439	M. Schultz (2010), Current status of the ability of the GEMS/MACC models to
440	reproduce the tropospheric CO vertical distribution as measured by MOZAIC,
441	Geosci. Model Dev., 3, 501-518, doi:10.5194/gmd-3-501-2010.
442	
443	Gimeno García, S., F. Schreier, G. Lichtenberg and S. Slijkhuis (2011), Near infrared
444	nadir retrieval of vertical column densities: methodology and application to
445	SCIAMACHY, Atmos. Meas. Tech., 4, 2633-2657, doi:10.5194/amt-4-2633-2011.
446	
447	Gloudemans, A.M.S., M.C. Krol, J.F. Meirink, A.T.J. de Laat, G.R. van der Werf, H.
448	Schrijver, M.M.P. van den Broek and I. Aben (2006), Evidence for long-range
449	transport of carbon monoxide in the Southern Hemisphere from SCIAMACHY
450	observations, Geophys. Res. Lett., 33, L16807, doi: 2006GL026804.
451	
452	Gloudemans, A.M.S., H. Schrijver, O.P. Hasekamp and I. Aben (2008), Error analysis of
453	CO and CH ₄ total column retrievals from SCIAMACHY 2.3 µm spectra, Atmos.
454	Chem. Phys., 8, 3999-4017.
455	

456	Gloudemans, A.M.S., A.T.J. de Laat, H. Schrijver, I. Aben, J.F. Meirink and G.R. van der
457	Werf (2009), SCIAMACHY CO over the oceans: 2003-2007 interannual variability,
458	Atmos. Chem. Phys., 9, 3799-3813.
459	
460	Guenther, A., <u>C.N.</u> Hewitt, <u>D</u> , Erickson, <u>R. Fall, C. Geron, T. Graedel, P. Harley, L.</u>
461	Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R.
462	Tallamraju, J. Taylor, and P. Zimmerman, (1995): A global model of natural volatile
463	organic compound emissions, J. Geophys. Res., 100, 8873-8892.
464	
465	Hopkins, J.R., M.J. Evans, J.D. Lee, A.C.H. Lewis, J. Marsham, J.B. McQuaid, D.J.
466	Parker, D.J. Stewart, C.E. Reeves, and R.M. Purvis (2009), Direct estimates of
467	emissions from the megacity of Lagos, Atmos. Chem. Phys., 9, 8471-8477,
468	doi:10.5194/acp-9-8471-2009, 2009.
469	
470	Huijnen, V., J. Williams, M. van Weele, T. van Noije, M. Krol, F. Dentener, A. Segers,
471	S. Houweling, W. Peters, J. de Laat, F. Boersma, P. Bergamaschi, P. van Velthoven,
472	P. Le Sager, H. Eskes, F. Alkemade, R. Scheele, P. Nédélec, and HW. Pätz (2010),
473	The global chemistry transport model TM5: description and evaluation of the
474	tropospheric chemistry version 3.0, Geosci. Model Dev., 3, 445-473,
475	doi:10.5194/gmd-3-445-2010.
476	
477	de Laat, A.T.J., A.M.S. Gloudemans, H. Schrijver, M.M.P. van den Broek, J.F. Meirink,
478	I. Aben and M. Krol (2006), Quantitative analysis of SCIAMACHY carbon

479	monoxide total column measurements, Geophys. Res. Lett., 33, L07807,
480	doi:10.1029/2005GL025530.
481	
482	de Laat, A.T.J., A.M.S. Gloudemans, I. Aben, M. Krol, G. van der Werf, J.F. Meirink and
483	H. Schrijver (2007), SCIAMACHY Carbon Monoxide total columns: Statistical
484	evaluation and comparison with CTM results, J. Geophys. Res., 112, D12310,
485	doi:10.1029/2006JD008256.
486	
487	de Laat, A.T.J., A.M.S. Gloudemans, I. Aben, H. Schrijver (2010a), Global evaluation of
488	SCIAMACHY and MOPITT carbon monoxide column differences for 2004-2005, J.
489	<u>Geophys. Res., 115, doi:10.1029/2009JD012698.</u>
490	
491	de Laat, A.T.J., A.M.S. Gloudemans, H. Schrijver, I. Aben, Y. Nagahama, K. Suzuki, E.
492	Mahieu, N.B. Jones, C. Paton-Walsh, N.M. Deutscher, D.W.T. Griffith, M. De
493	Mazière, R. Mittelmeier, H. Fast, J. Notholt, M. Palm, T. Hawat, T. Blumenstock, C.
494	Rinsland, A.V. Dzhola, E.I. Grechko, A.M. Poberovskii, M.V. Makarova, J.
495	Mellqvist, A. Strandberg, R. Sussmann, T. Borsdorff, and M. Rettinge (2010b),
496	Validation of five years (2003-2007) of SCIAMACHY CO total column
497	measurements using Ground-Based Spectrometer observations, Atmos. Meas. Tech.,
498	3, 1457-1471, doi:10.5194/amt-3-1457-2010.
499	

500	Labonne, M., Breon, FM., and Chevallier, F. (2007) Injection heights of biomass
501	burning aerosols as seen from a space borne lidar, Geophys. Res. Lett., 34, L11806,
502	doi:10.1029/2007GL029311.
503	
504	Liu, C., Beirle, S., Butler, T., Liu, J., Hoor, P., Jöckel, P., Penning de Vries, M., Pozzer,
505	A., Frankenberg, C., Lawrence, M. G., Lelieveld, J., Platt, U., and T. Wagner (2011):
506	Application of SCIAMACHY and MOPITT CO total column measurements to
507	evaluate model results over biomass burning regions and Eastern China, Atmos.
508	Chem. Phys., 11, 6083-6114, doi:10.5194/acp-11-6083-2011.
509	
510	Marenco, A., Thouret, V., Nedelec, P., Smit, H., Helten, M., Kley, D., Karcher, F.,
511	Simon, P., Law, K., Pyle, J., Poschmann, G., Wrede, R. V., Hume, C., and Cook, T.
512	(1998) Measurements of ozone and water vapour by Airbus in-service aircraft: The
513	MOZAIC airborne program, An overview, J. Geophys. Res., 103, 25631-25642.
514	
515	Nedelec, P., Cammas, JP., Thouret, V., Athier, G., Cousin, JM., Legrand, C., Abonnel,
516	C., Lecoeur, F., Cayez, G., and Marizy, C. (2003) An improved infrared carbon
517	monoxide analyser for routine measurements aboard commercial Airbus aircraft:
518	technical validation and first scientific results of the MOZAIC III programme, Atmos.
519	Chem. Phys., 3, 1551-1564, doi:10.5194/acp-3-1551-2003.
520	
521	Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.

522 (2007), An Asian emission inventory of anthropogenic emission sources for the

523	period 1980-2020, Atmos. Chem. Phys., 7, 4419-4444, doi:10.5194/acp-7-4419-
524	2007.
525	
526	Redelsperger, JL., C.D. Thorncroft, A. Diedhiou, T. Lebel, D.J. Parker, and J. Polcher,
527	(2006), African Monsoon Multidisciplinary Analysis: An International Research
528	Project and Field Campaign, Bull. Am. Met. Soc. 87, 1739-1746.
529	
530	Schultz, M. G., L. Backman, Y. Balkanski, S. Bjoerndalsaeter, R. Brand, J.P. Burrows, S.
531	Dalsoeren, M. de Vasconcelos, B. Grodtmann, D.A. Hauglustaine, A. Heil, J.J.
532	Hoelzemann, I.S.A. Isaksen, J. Kaurola, W. Knorr, A. Ladstaetter-Weißenmayer, B.
533	Mota, D. Oom, J. Pacyna, D. Panasiuk, J.M.C. Pereira, T. Pulles, J. Pyle, S. Rast, A.
534	Richter, N. Savage, C. Schnadt, M. Schulz, A. Spessa, J. Staehelin, J.K. Sundet, S.
535	Szopa, K. Thonicke, M. van het Bolscher, T. van Noije, P. van Velthoven, A.F. Vik,
536	and F. Wittrock (2007), REanalysis of the TROpospheric chemical composition over
537	the past 40 years (RETRO) - A long-term global modeling study of tropospheric
538	chemistry, Final Report, Julich/Hamburg, Germany, 2007 (Published as report no.
539	48/2007 in the series "Reports on Earth System Science" of the Max Planck Institute
540	for Meteorology, Hamburg, ISSN 1614-1199).
541	
542	Shindell, D.T., G. Faluvegi, D. S. Stevenson, M. C. Krol, L. K. Emmons, JF. Lamarque
543	G. Pétron, F. J. Dentener, K. Ellingsen, M. G. Schultz, O. Wild, M. Amann, C. S.
544	Atherton and D. J. Bergmann, I. Bey, T. Butler, J. Cofala, W. J. Collins, R. G.

545 Derwent, R. M. Doherty, J. Drevet, H. J. Eskes, A. M. Fiore, M. Gauss, D. A.

546	Hauglustaine, L. W. Horowitz, I. S. A. Isaksen, M. G. Lawrence, V. Montanaro, JF.
547	Müller, G. Pitari, M. J. Prather, J. A. Pyle, S. Rast, J. M. Rodriguez, M. G. Sanderson,
548	N. H. Savage, S. E. Strahan, K. Sudo, S. Szopa, N. Unger, T. P. C. van Noije and G.
549	Zeng (2006), Multimodel simulations of carbon monoxide: Comparison with
550	observations and projected near-future changes, J. Geophys. Res., 111,
551	doi:10.1029/2006JD007100.
552	
553	Sussmann, R., and M. Buchwitz, Initial validation of ENVISAT/SCIAMACHY columnar
554	CO by FTIR profile retrievals at the Ground-Truthing Station Zugspitze, Atmos.
555	<u>Chem. Phys., 5, 1497-1503, 2005.</u>
556	
557	Warneke, T., R. de Beek, M. Buchwitz, J. Notholt, A. Schultz, V. Velazco and O.
558	Schrems, Shipborne solar absorption measurements of CO2, CH4, N2O and CO and
559	comparison with SCIAMACHY WFM-DOAS retrievals, Atmos. Chem. Phys., 5,
560	<u>2029-2034, 2005.</u>
561	
562	van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and
563	Arellano Jr., A. F. (2006): Interannual variability in global biomass burning emissions
564	from 1997 to 2004, Atmos. Chem. Phys., 6, 3423-3441, doi:10.5194/acp-6-3423-

565 2006.

•	$\mathbf{N}^{\mathbf{o}}$	Lon	Lat	Δ	Δ	σ [10 ¹⁷]	σ [0/]	R	Ν	OCE	OCE	PIX	UTLS	Z
				[10]]	[%]	[10]]	[%0]			[10]]	[%0]	[%]	[%]	լայ
	1	-120	34	-3.7	-17	4.1	19	0.61	75	1.6	8	94	6	407
	2	-120	42	-4.1	-18	3.3	15	0.70	20	0.2	1	39	5	1165
	3	-120	50	-3.2	-15	4.1	19	0.47	46	< 0.1	<1	1	5	954
	4	-96	34	-3.0	-14	4.5	21	0.41	90	< 0.1	<1	1	9	263
	5	-80	34	-1.5	-7	4.7	21	0.37	108	1.5	7	95	8	150
	6	-88	42	-3.3	-14	3.6	15	0.54	35	0.0	0	0	7	228
	7	-80	42	-3.0	-13	4.4	19	0.38	66	0.0	0	0	8	249
	8	-72	42	-3.0	-12	3.5	14	0.50	143	3.7	15	99	9	127
	9	-72	50	-1.1	-5	5.9	27	-0.11	22	0.0	0	3	5	400
	10	-64	10	-4.3	-19	5.5	25	0.07	42	1.0	5	100	10	116
	11	0	10	-11.2	-36	9.5	31	0.12	26	< 0.1	<1	18	9	230
	12	16	-22	-1.1	-7	4.1	27	0.56	211	0.2	1	59	10	917
	13	0	50	-2.4	-11	3.5	16	0.53	76	2.6	12	96	9	81
	14	8	50	-1.4	-6	4.3	20	0.48	114	1.2	6	77	6	362
	15	16	50	-0.7	-3	4.4	21	0.44	96	< 0.1	<1	6	5	314
	16	32	18	-5.4	-25	5.2	24	0.08	14	0.0	0	0	10	429
	17	32	26	-5.3	-24	3.8	17	0.17	20	<0.1	<1	8	8	300
	18	32	34	-5.2	-24	3.6	16	0.41	62	0.4	2	56	11	326
	19	48	26	-2.6	-13	4.2	21	0.02	31	<0.1	<1	14	10	346
	20	56	26	-3.5	-17	3.2	15	0.42	68	0.1	<1	39	12	520
	21	48	34	-11.7	-40	12.0	41	-0.07	68	<0.1	<1	26	5	1119
	22	112	26	-0.2	0	8.3	27	0.22	21	1.7	6	91	9	363
	23	120	34	-3.0	-9	9.1	27	0.35	30	3.9	12	98	12	56
	24	112	42	-21.5	-57	16.4	43	0.02	54	0.0	0	0	3	1132
	25	80	18	-0.7	-3	5.4	25	0.31	75	0.1	<1	42	10	311
	26	80	26	-3.9	-16	4.7	20	0.05	53	0.0	0	0	10	648
	27	104	10	-2.6	-11	3.1	13	0.46	8	1.8	8	100	11	65
	28	96	18	-4.3	-17	7.8	31	-0.52	15	0.7	3	72	9	360
	29	136	34	-3.2	-11	5.9	22	0.38	105	4.2	16	100	6	112
	30	144	34	-3.7	-14	5.2	19	0.35	57	3.5	13	100	5	9

567

568 **Table 1.**

569	Δ is the mean difference between SCIAMACHY and MOZAIC CO total columns
570	$(10^{17} \text{ molecules/cm}^2 \text{ and percentage})$. σ is the mean root-mean-square difference between
571	SCIAMACHY and MOZAIC CO total columns (10 ¹⁷ molecules/cm ² and percentage). R
572	is the Pearson's correlation coefficient for the comparison between SCIAMACHY and
573	MOZAIC CO total columns. N is the total number of SCIAMACHY-MOZAIC
574	comparison values. OCE is the estimated below cloud partial CO column for
575	SCIAMACHY CO total column measurements over low altitude clouds over oceans (10 ¹⁷

576 molecules/cm² and percentage). Note that for many grids SCIAMACHY averages are 577 based on both land and ocean measurements (see also PIX OCE). PIX OCE is the 578 fractional part of SCIAMACHY measurements taken over low altitude ocean clouds for 579 that particular grid box. UTLS is the TM5 estimated CO column above the maximum 580 height of the MOZAIC profile (percentage of the MOZAIC total column). Z = mean 581 elevation with 8°×8° comparison grid (meters). 582

Nº	Cities
1	Vancouver
2	Portland
3	San Francisco, Los Angeles
4	Houston, Dallas
5	Atlanta, Miami
6	Chicago,
7	Cincinatti, Detroit, Washington
8	Philadelphia, New York, Boston
9	Montreal, Toronto
10	Caracas
11	Lagos
12	Windhoek
13	London, Paris, Brussels
14	Munchen, Frankfurt
15	Vienna
16	Khartoum
17	Cairo
18	Tel Aviv
19	Riyadh, Kuwait
20	Dubai, Abu Dabi
21	Teheran
22	Hong Kong
23	Shanghai
24	Beijing
25	Madras, Hyderabad
26	Delhi
27	Bangkok David al #
28 20	Bangkok
29 20	Usaka
30	Гокуо

583

584	Table S1.	Most	frequently	visited	airports	for which	ascending	of descending	MOZAIC
504	Table 51.	withst	nequentry	visiteu	anpons	ior which	ascending	of descending	SMOLAIC

585 | flights fall within the 8°×8° grid box. [#]Depending on the airport location the direction \underline{or}_{\bullet}

586 descending or ascending MOZAIC flights can fall within different grid boxes, as is the

Deleted: of

⁵⁸⁷ case for Bangkok.

589

590

Figure 1. Probability distribution of the partial CO column "missed" by MOZAIC due to the maximum altitude of MOZAIC CO profiles based on collocated TM5 simulated CO profiles. The "missing" partial column is expressed as fraction of the total column. Indicated are also cumulative counts, the mean and median values (solid lines) and the 5% and 95/97/99 % occurrence intervals (dashed lines).

Figure 2. Grid areas of 8°×8° with at least 25 MOZAIC comparison values for the period
2003-2008 (see section 2 for explanation of how the comparison is devised). Grids are
numbered from south to north and west to east for use in other figures. The black dots
denote FTIR locations used for validation of SCIAMACHY CO in de Laat et al. [2010b].

Figure 3A

Figure 3B

Figure 3C

Figure 3A-C. Comparison of SCIAMACHY and MOZAIC time series for the period 2003-2008 for the 8°×8° grid boxes shown in, and numbered according to, Fig. 2. The small map in the lower right corner of the panels denotes the grid box for orientation. The coordinates in the panel titles is the central longitude-latitude of the grid box. SCIAMACHY CO is denoted by the open circles, with the blue circles denoting measurements that have corresponding MOZAIC measurements. The filled red markers are the MOZAIC measurements.

617 Figure 4. (A) Scatter plot of SCIAMACHY and MOZAIC 2003-2008 mean CO total 618 columns for the locations shown in Fig. 2 and Fig. 3. Stations are numbered according to 619 Fig.2 and table 1. Red colored numbers indicate locations where the absolute differences between SCIAMACHY and MOZAIC are larger than 1×10¹⁸ molecules/cm². The 620 621 correlation values correspond to the correlation for all locations (red value) and 622 correlation with locations where absolute differences between SCIAMACHY and MOZAIC is larger than 1×10^{18} molecules/cm² removed (black value). (B) Similar to (A) 623 but for all annual means for the period 2003-2008. 624

