

Authors' answer to the interactive comments of anonymous referee #2 on paper Heymann et al., Atmos. Meas. Tech. Discuss., 5, 2887-2931, 2012

First of all we would like to thank the referee for the helpful comments and questions. Below we give answers and clarifications to all comments and questions made by the referee.

Referee: *“Whilst important, this does lead to the main analysis section being somewhat short and the information largely confined to several tables, with only 2 regions being discussed and neither in great detail. A more detailed discussion of the results (e.g. in Table 5) would likely prove interesting.”*

Authors: We agree with the referee comment and will add a more detailed discussion in the revised version of the manuscript. The analysis results section will be extended in the following way (changes are shown in bold):

The results of the temporal and spatial correlation analysis for China are shown in Fig. 11. The amplitude of the seasonal cycle is larger for SCIAMACHY compared to CarbonTracker. To a minor extent ($r^2 = 9.2\%$), the difference may be due to retrieval errors caused by thin clouds. The spatial analysis shows that in autumn 33 % of the variability of $\Delta\text{XCO}_2^{\text{S}^*-\text{C}}$ may be explained by eCOD, i.e. clouds related retrieval errors. The AOD over China is the highest of all investigated regions, therefore one would expect to find also the largest correlation. However, this analysis only shows low temporal and spatial correlations with aerosols. This may indicate that aerosols are not a significant problem for the WFMDv2.1 algorithm in this region. On the other hand it needs to be considered that CarbonTracker is not perfect. For example, there are indications that the underlying CASA (Carnegie-Ames Stanford Approach) biosphere model underestimates the net ecosystem exchange (NEE) between the atmosphere and the biosphere (Yang et al., 2007; Schneising et al., 2011; Keppel-Aleks et al., 2012; Messerschmidt et al., 2012). **In order to investigate the impact of this underestimation on the results, we have performed the same analysis with a 40 % scaled CarbonTracker amplitude for all regions. We found that the correlations are similar for most regions and the conclusions are the same as for the unscaled CarbonTracker amplitude.**

Figure 12 shows the corresponding results for Southern Africa. As can be seen, the amplitude of the difference is about 4 ppm. Neither a “U-shape”, as mentioned by Schneising et al. (2008) for the seasonal cycle of the southern hemispheric WFMDv1.0 XCO_2 , nor an evident phase shift between the seasonal cycle of $\text{XCO}_2^{\text{S}^*}$ and XCO_2^{C} can be seen in this region. However, Fig. 12 shows that 31 % of the temporal variability of $\Delta\text{XCO}_2^{\text{S}^*-\text{C}}$ may be explained by thin clouds. **A larger temporal correlation ($r^2 = 55\%$) has been found for the time period 2007 – 2008**

(the cloud statistics are based on CALIPSO measurements from these years). The temporal correlation of $\Delta\text{XCO}_2^{S^*-C}$ with aerosols is statistically not significant in this region. The spatial correlation analysis shows that there are some correlations between $\Delta\text{XCO}_2^{S^*-C}$ and eCOD and also with AOD. The largest influence of clouds and aerosols on the difference is during spring (MAM).

The corresponding results of the spatial and temporal correlation analysis for all regions investigated are summarised in Table 5. Many regions over the Northern Hemisphere show low spatial correlations ($r^2 < 25\%$). Due to high aerosol loads not only in China, as can be seen by the yellow to red areas in Fig. 4, e.g., over Africa, Southern Africa, Arabia and India, one would expect high spatial and temporal correlations over these regions. However, the only regions, where large spatial correlations can be found are Arabia (35 % during summer), Africa (26 % during summer) and Southern Africa (34 % during spring). A large temporal correlation with aerosol can only be found for India (54 %). Large spatial correlations with thin clouds are more rarely expected than temporal correlations, e.g., due to the significant spatial smoothing of the CALIPSO data. In addition, the smoothed cloud data is based only on CALIPSO observations from the years 2007 – 2008. However, large spatial correlations with thin clouds are found over the Northern Hemisphere, e.g., for Africa during spring (MAM). For the Southern Hemisphere, the spatial correlations with thin clouds often exceed 25 %. The largest spatial correlation is found for Australia (48 % during DJF) indicating that a large part of the spatial variability of the XCO₂ difference in this season can be explained by thin clouds.

Temporal correlations with eCOD are typically large for several regions over the Southern Hemisphere and typically low over the Northern Hemisphere with the exception of India. Figure 5 shows that thin clouds often occur in the tropics. Therefore, one would expect the largest impact of thin clouds on the XCO₂ difference over tropical regions. This is confirmed by the correlations over India and especially over the Southern Hemisphere (most of the landmasses of the Southern Hemisphere are in the tropics). The results also corroborate the assumption of Schneising et al. (2011) that the differences between SCIAMACHY WMFDv2.1 and CarbonTracker XCO₂ over the Southern Hemisphere are likely due to unaccounted thin clouds. The low temporal and spatial correlations with aerosols for many regions show that aerosols likely only marginally contribute to the observed difference to CarbonTracker.

Referee: “As already mentioned by my fellow reviewer, there does appear to be a strong seasonality in the correction and some discussion of this should be provided.”

Authors: A similar question has been raised by referee #1. Therefore, we here give a similar answer:

As shown by the correlations between $\Delta\text{XCO}_2^{*-\text{C}}$ and $\Delta\text{XCO}_2^{\text{S}-\text{C}}$ in Tab. 3, the scan-angle-correction does not change the phase of the seasonality of the SCIAMACHY and CarbonTracker difference. Only the amplitude of the seasonality is reduced in most regions as shown by the smaller standard deviations of $\Delta\text{XCO}_2^{*-\text{C}}$ compared to the standard deviations of $\Delta\text{XCO}_2^{\text{S}-\text{C}}$.

The strong anti-correlation between $\Delta\text{XCO}_2^{*-\text{S}}$ and $\Delta\text{XCO}_2^{\text{S}-\text{C}}$ in most regions shows that the scan-angle-correction can be responsible for a large part of the difference between SCIAMACHY and CarbonTracker (also shown by the reduced standard deviations).

A discussion about the seasonality of $\Delta\text{XCO}_2^{*-\text{S}}$ will be added to the revised version of the paper in the following way: The seasonality of the scan-angle-bias correction in Southern Africa, as shown by the time series of $\Delta\text{XCO}_2^{*-\text{S}}$ can be explained by the following: The scan-angle-bias correction depends only on the viewing zenith angle (VZA) (see Eq. 2). This means, that a seasonality of the scan-angle-bias correction is due to a seasonality of the VZA, which originates from the quality filtering. In the winter months (large SZA), more measurements under “large” VZA conditions are filtered out than in summer (small SZA). This may be related to a higher sensitivity under “large” SZA and “large” VZA conditions (longer light path) to scattering by aerosols and clouds and/or larger noise of the spectra. Together with the VZA asymmetry of the scan-angle-bias correction (Eq. 2 and Fig. 6), this can result in the observed seasonality.

Referee: “I agree that it would also prove interesting to compare against TCCON but that this may be beyond the scope of this manuscript.”

Authors: Here, we also give a similar answer as to a comment of referee #1:

The SCIAMACHY XCO₂ data set covers the years 2003 – 2009. In this period only 4 – 8 TCCON stations can be used for our analysis (the TCCON stations used by Schneising et al. (2012)). These stations are not representative for all regions of the globe (e.g., measurements over Africa, South America and Asia are missing). For this reason and for the reason that we want to compare SCIAMACHY with CarbonTracker XCO₂ (which needs significant averaging to minimise the statistical error), we decided to use larger regions.

Figure 1 of Schneising et al. (2012) also shows that the difference between the FTS measurements and CarbonTracker are not as large as the difference to the SCIAMACHY measurements (shown, e.g., for Park Falls and Darwin).

References

Keppel-Aleks, G., Wennberg, P. O., Washenfelder, R. A., Wunch, D., Schneider, T., Toon, G. C., Andres, R. J., Blavier, J.-F., Connor, B., Davis, K. J., Desai, A. R., Messerschmidt, J., Notholt, J., Roehl, C. M., Sherlock, V., Stephens, B. B., Vay, S. A., and Wofsy, S. C.: The imprint of

surface fluxes and transport on variations in total column carbon dioxide, *Biogeosciences*, 9, 875–891, doi:10.5194/bg-9-875-2012, 2012.

Messerschmidt, J., Parazoo, N., Deutscher, N. M., Roehl, C., Warneke, T., Wennberg, P. O., and Wunch, D.: Evaluation of atmosphere-biosphere exchange estimations with TCCON measurements, *Atmos. Chem. Phys. Discuss.*, 12, 12 759–12 800, doi:10.5194/acpd-12-12759-2012, 2012.

Schneising, O., Buchwitz, M., Burrows, J. P., Bovensmann, H., Reuter, M., Notholt, J., Macatangay, R., and Warneke, T.: Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite - Part 1: Carbon dioxide, *Atmos. Chem. Phys.*, 8, 3827–3853, 2008.

Schneising, O., Buchwitz, M., Reuter, M., Heymann, J., Bovensmann, H., and Burrows, J. P.: Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY, *Atmos. Chem. Phys.*, 11, 2863–2880, doi:10.5194/acp-11-2863-2011, 2011.

Schneising, O., Bergamaschi, P., Bovensmann, H., Buchwitz, M., Burrows, J. P., Deutscher, N. M., Griffith, D. W. T., Heymann, J., Macatangay, R., Messerschmidt, J., Notholt, J., Rettinger, M., Reuter, M., Sussmann, R., Velazco, V. A., Warneke, T., Wennberg, T. O., and Wunch, D.: Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results, *Atmos. Chem. Phys.*, 12, 1527–1540, doi:10.5194/acp-12-1527-2012, 2012.

Yang, Z., Washenfelder, R. A., Keppel-Aleks, G., Krakauer, N. Y., Randerson, J. T., Tans, P. P., Sweeney, C., and Wennberg, P. O.: New constraints on Northern Hemisphere growing season net flux, *Geophys. Res. Lett.*, 34, L12 807, doi:10.1029/2007GL029742, 2007.