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Abstract

The collection of real-time air quality measurements while in motion (i.e., mobile mon-
itoring) is currently conducted worldwide to evaluate in situ emissions, local air quality
trends, and air pollutant exposure. This measurement strategy pushes the limits of tra-
ditional data analysis with complex second-by-second multipollutant data varying as5

a function of time and location. Data reduction and filtering techniques are often ap-
plied to deduce trends, such as pollutant spatial gradients downwind of a highway.
However, rarely do mobile monitoring studies report the sensitivity of their results to
the chosen data processing approaches. The study being reported here utilized a large
mobile monitoring dataset collected on a roadway network in central North Carolina to10

explore common data processing strategies including time-alignment, short-term emis-
sions event detection, background estimation, and averaging techniques. One-second
time resolution measurements of ultrafine particles≤ 100 nm in diameter (UFPs), black
carbon (BC), particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2),
and nitrogen dioxide (NO2) were collected on twelve unique driving routes that were15

repeatedly sampled. Analyses demonstrate that the multiple emissions event detection
strategies reported produce generally similar results and that utilizing a median (as op-
posed to a mean) as a summary statistic may be sufficient to avoid bias in near-source
spatial trends. Background levels of the pollutants are shown to vary with time, and the
estimated contributions of the background to the mean pollutant concentrations were:20

BC (6 %), PM2.5−10 (12 %), UFPs (19 %), CO (38 %), PM10 (45 %), NO2 (51 %), PM2.5
(56 %), and CO2 (86 %). Lastly, while temporal smoothing (e.g., 5 s averages) results
in weak pair-wise correlation and the blurring of spatial trends, spatial averaging (e.g.,
10 m) is demonstrated to increase correlation and refine spatial trends.
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1 Introduction

Air quality research has been revolutionized in recent years by the development and
application of mobile platforms capable of resolving air pollutant concentrations in real
time. These platforms – including instrumented cars, vans, bicycles, and handheld de-
vices – have been enabled by advancements in air monitoring instrumentation, such5

as higher time resolution and greater portability, as well as improvements in location
resolution using commercially available global positioning systems (GPSs). The mo-
bile measurement strategy has been utilized for a diversity of applications, which can
be loosely categorized as: (1) emissions characterization, (2) near-source assessment,
and (3) general air quality surveying (Table 1).10

Mobile monitoring is often chosen over other methods for its ability to efficiently
obtain data at a high spatial resolution under a variety of different conditions. Emis-
sions estimation can be conducted using a number of methods, including chassis dy-
namometer experiments, tunnel studies, and remote sensing, but mobile monitoring
methods are often selected because they enable researchers to obtain in-use emis-15

sions estimates of individual vehicles under a variety of operating conditions (Park
et al., 2011; Wang et al., 2009, 2011, 2012; Westerdahl et al., 2009).

In near-source environments, pollutant concentrations can vary on the scale of tens
of meters. To characterize this spatial variation, dense networks of stationary monitors
can be deployed, but mobile monitoring is often preferred because of the increased20

spatial flexibility (Baldauf et al., 2008; Choi et al., 2012; Durant et al., 2010; Hagler
et al., 2012; Kozawa et al., 2009; Zwack et al., 2011a; Rooney et al., 2012; Westerdahl
et al., 2005; Drewnick et al., 2012; Massoli et al., 2012). Broader surveys of ambient air
quality are also frequently conducted using mobile monitoring on a scale ranging from
neighborhood to country to characterize regional concentrations or locate previously25

unknown hotspots (Hagler et al., 2012, 2010; Arku et al., 2008; Adams et al., 2012;
Farrell et al., 2013; Drewnick et al., 2012; Van Poppel et al., 2013; Hu et al., 2012).
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A myriad of post-processing strategies have been applied to mobile monitoring data
to answer specific research questions including algorithms fine-tuning temporal align-
ment, temporal or spatial smoothing, local background estimation, and detection of
short-term emissions events (Table 1). Precise alignment of instruments with location
data is universally important for mobile monitoring conducted while moving at rela-5

tively high speeds. If the vehicle is traveling at merely 10 ms−1 (22 mph), a two-second
misalignment between an instrument and the GPS-derived location can introduce ap-
proximately 20 m of error.

After optimal alignment, extracting meaningful information from mobile monitoring
data and developing intuitive visuals often requires further processing steps. For exam-10

ple, ultrafine particle data collected while driving on a roadway network would represent
the temporal variation in local emissions and urban background, with spatial variation
expected as the monitoring platform moves along a route, and evidence of short-term
concentration spikes due to occasional emissions in very close proximity. Depending
on the research question, different data processing steps may be applied to separate15

the component of interest from the other causes of variation (Fig. 1). If a researcher
is interested in general spatial variation attributed to local sources, it may be desirable
to minimize the influence of background variation and short-term concentration spikes
caused by nearby exhaust events.

A variety of algorithms for emissions event detection and background standardiza-20

tion have been employed and published in the past several years (Table 2). Event
detection is important both for studies that seek to estimate emission factors but also
to minimize the impact of sporadic proximate exhaust when determining near-source
spatial trends. Background estimation is important for extracting local-scale influences
from regional background, and standardization of background is important for general25

air quality surveying studies which may have unique sampling routes measured over
different days. Regional influences such as meteorology can cause background con-
centrations to vary both diurnally and daily. Without background standardization, the
variable background may be erroneously attributed to spatial variation. Background

10446

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10443–10480, 2013

Mobile air monitoring
data processing

strategies and effects

H. L. Brantley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

standardization becomes particularly important for pollutants with high background rel-
ative to the total concentration. One method of background standardization is to keep
the length of the sampling run short enough that temporal variation due to regional
influences can be assumed to be minimal. Another approach is to complete several
laps of the same route on each sampling day (e.g., Van Poppel et al., 2013), ensuring5

that each location measured along the route has the same representation of average
background over the multiple sampling days. However, when a route completion ex-
ceeds the timeframe within which the regional background changes or comparisons
are being made of multiple routes measured on different days, temporal variation of
the background is an important consideration.10

As a final data processing step, temporal or spatial smoothing is often applied either
to reduce noise in the data or more effectively display trends (Westerdahl et al., 2005;
Weijers et al., 2004; Pirjola et al., 2012). Applying a rolling median or mean can be
used to maintain the high temporal resolution while reducing the amount of noise and
influence of extreme outliers. Aggregating the data to a longer time window can also15

be used to reduce the influence of noise or to reduce the degree of autocorrelation
among the measurements. Types of spatial smoothing include calculating median or
mean values along fixed length intervals of the route or within a fixed radius of locations
of interest.

Recently, efforts have been made to study the mobile monitoring approach. For ex-20

ample, Van Poppel et al. (2013) evaluated how many sampling route repeats were
required to develop a representative data set. However, a rigorous examination of mo-
bile monitoring data processing steps and the implications for the derived results is
needed. This study utilizes a robust multipollutant mobile monitoring data set collected
on a roadway network in North Carolina, USA to evaluate common data-processing25

methods, including time alignment optimization, emissions event detection, background
standardization, and spatial and temporal smoothing.
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2 Methods

2.1 Experimental data

An intensive mobile monitoring campaign was conducted in the Research Triangle Area
of North Carolina in the summer of 2012 as part of the Research Triangle Area Mobile
Source Emission Study (RAMSES). Measurements were collected using a converted5

all-electric PT Cruiser, described in Hagler et al. (2010). Six instruments were securely
installed on board the vehicle: an engine exhaust particle sizer (EEPS) (Model 3090,
TSI, Shoreview, MN, USA) which provided size-resolved ultrafine and accumulation
mode particle counts, an aerodynamic particle sizer (APS) (Model 3321, TSI, Shore-
view, MN, USA) for size-resolved particle counts in fine to coarse mode, a portable10

aethalometer (AE42, Magee Scientific, Berkeley, CA, USA) that measured black car-
bon (BC), a dual quantum cascade laser (QCL) (Aerodyne Research, Inc., Billerica,
MA, USA) that measured carbon monoxide (CO), a non-dispersive infrared (NDIR) gas
analyzer that measured carbon dioxide (CO2) (Li-COR 820, LiCOR Biosciences, Lin-
coln, NE, USA), and a cavity attenuated phase shift (CAPS) monitor that measured15

nitrogen dioxide (NO2) (Aerodyne Research, Inc., Billerica, MA, USA). All instruments
used had a sampling rate of one second.

The campaign included 12 routes within Wake, Durham, and Orange counties, North
Carolina. The routes covered areas that had previously been classified using modeled
traffic data as areas of traffic delay, high traffic volume, transit routes, high signal light20

density, and urban area. Mobile monitoring was conducted during morning rush hour
(07:00–10:30 a.m. LT) on 24 weekdays between 23 August and 11 October 2012, with
each run consisting of three or more laps and each route covered on two sampling
days. The routes ranged from 5.2–18.1 km in length.
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2.2 Data processing methods

Mobile monitoring data were processed and displayed using MATLAB (2012), ArcGIS
(ESRI, 2011) and R version 2.15.1 (R Core Team, 2012) along with the R packages
scatterplot3d (Ligges and Mächler, 2003), openair (Carslaw and Ropkins, 2012), and
mcgv (Wood, 2003). A noise-reduction algorithm was applied to black carbon concen-5

trations to reduce the frequency of negative values (Hagler et al., 2011). Examples
of emissions quantification, near-source air quality gradients, and general air quality
surveying were selected to illustrate the implications of the following data processing
steps: fine-tuning time alignment of multipollutant data, background standardization,
emissions event detection, spatial smoothing and temporal smoothing.10

Two methods of time alignment were compared: the engineering process and the
cross-correlation method (Choi et al., 2012). The engineering process typically used
in mobile monitoring campaigns consists of applying a concentration change (high ef-
ficiency particulate air filter for particle instruments, gas standard for gas instruments)
at the inlet and noting the instrument response time. The cross-correlation method can15

be used as a fine-tuning step when multiple pollutants produced by a single source are
measured and involves calculating the correlation coefficient between two co-emitted
pollutants at various time lags. Because the pollutants are co-emitted, the best esti-
mate of the difference in response times between the instruments can be assumed to
correspond with the lag time that produces the maximum correlation coefficient (Choi20

et al., 2012). As an illustration of the impact precise time alignment can have on anal-
ysis results, emissions factors were calculated using the method described by Park
et al. (2011) for a single emissions event identified using the test vehicle’s webcam
footage (Fig. 2). Fuel-based emissions factors for BC, CO, and ultrafine particles (di-
ameter≤ 100 nm, UFPs) were expressed in terms of pollutant mass or particle num-25

ber emitted per kilogram of fuel burned by normalizing the integrated change in pol-
lutant concentration to total carbon concentration change. Volatile organic compounds
(VOCs) were not measured, but for the purpose of this illustration the fraction of carbon
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converted to VOCs during combustion was assumed to be negligible compared to the
proportion emitted as CO2. The emissions factors (EFp) were calculated using the fol-
lowing equation:

EFp =
∆[P ]

(∆[CO2]+∆[CO])
·0.85 (1)

5

Where ∆[P ] is the integrated change in pollutant concentration above roadway con-
centrations for the duration of the plume capture. Similarly, ∆[CO2] and ∆[CO] are the
integrated changes in the respective CO2 and CO concentrations above the roadway
concentrations. The target vehicle, identified on the monitoring vehicle’s webcam and
used to establish the aforementioned emission factor, was a light-duty gasoline vehicle,10

so 0.85 was used as the carbon weight fraction (Park et al., 2011). The roadway con-
centrations were calculated by fitting a straight line from the last measurement before
the emissions event to the first measurement after the emissions event (Fig. 2). The
roadway concentrations were subtracted from the measured concentrations, and the
integrated change was calculated using a spline function in combination with integra-15

tion to calculate a numerical integral. Emissions factors were calculated for both the
1 s measurements and 10 s averages (discrete windows), as well as with and without
adjusting the temporal alignment using the cross-correlation method.

Three emissions event removal methods were compared: the running coefficient of
variation (COV) method used by Hagler et al. (2012), the standard deviation of the20

background method used by Drewnick et al. (2012), and the rolling 25th percentile
method used by Choi et al. (2012). Measurements of local exhaust tend to be both
higher and more variable than measurements of well-mixed air. Both the COV method
and the standard deviation of the background method rely on the high variability as
well as the magnitude of measurements of local exhaust while the rolling 25th per-25

centile relies solely on the magnitude. The running COV method (Hagler et al., 2012)
was developed using UFP concentrations and consists of calculating the rolling 5 s
standard deviation (2 s before and after the center data point) and dividing it by the
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mean concentration of the sampling run. The 99th percentile of the calculated COV
is used as a threshold (in Hagler et al., 2012, the threshold COV for UFPs was 2)
and any data points with a COV above this threshold are flagged for removal along
with the data points 2 s before and after. In the standard deviation of the background
method, the standard deviation of measurements (UFP or CO2) below the median is5

calculated (σb). Any measurement more than 3σb greater than the previous measure-
ment is flagged. Subsequently, all measurements with concentration Ci that meets the
following criteria are flagged:

Ci > Cuf +3σb +
√
n×σb (2)

10

Where Cuf is the concentration of the last unflagged measurement and n is the num-
ber of measurements between Cuf and Ci . The rolling 25th percentile method involves
calculating the 25th percentile of various time windows. Choi et al. (2012) used 53 s
(26 s before and after the center data point) when the distance from a freeway was
farther than 1 km, 31 s (15 s before and after) for distances between 300 m and 1 km,15

and 3 s (1 s before and after) within 300 m of a freeway. Because the majority of the
data used in this comparison was between 300 m and 1 km, a 31 s window was used
for the entire dataset to simplify the calculation. One final method of reducing the effect
of local emissions is to use outlier resistant statistics such as the median instead of the
mean.20

A single run conducted on 11 October 2012, was chosen to compare these meth-
ods because of the large number of laps conducted (11) and favorable wind condi-
tions (from the highway towards the transect). The route included a section of highway
(AADT 109 000), a transect running at an angle to the highway with moderate traffic
(AADT 32 000) and a low traffic road. As an illustration, gradients of CO, UFP, BC,25

and NO2 along the highway transect were used to compare the effect of the emissions
event removal methods on the 50 m mean concentrations and with the 50 m median
concentration of the unfiltered data.
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A new method of estimating the time-varying contribution of the regional background
was developed and compared with the use of a low percentile (Bukowiecki et al., 2002).
This method could not be compared with averaging measurements by fixed monitor-
ing sites (Arku et al., 2008) or designating a background area (Hagler et al., 2012;
Van Poppel et al., 2013) because no stationary monitoring was conducted concurrently5

with the mobile monitoring and the same background zone was not covered on each
sampling run. Zwack et al. (2011a, b) also used a time-varying background estimation,
but instead of estimating background concentrations separately, a smooth function of
time over each sampling run was included as a term in the linear regression used to
determine concentration differences.10

Ultimately, the results of spatial and temporal smoothing were compared. The aver-
age speed of the monitoring vehicle on the route used to compare temporal and spatial
smoothing was approximately 10 ms−1. The smoothing intervals chosen for compari-
son were a 5 s and 10 s window, and 10 m, 50 m, and 100 m segments. The same route
chosen to compare emissions event detection was used to compare smoothing meth-15

ods. For this comparison, data from sampling runs conducted on 11 October 2012 and
21 September 2012 were used and Spearman correlation coefficients were calculated
for CO, BC, UFPs, NO2, PM2.5 and CO2.

3 Results and discussion

The results described in this paper focus on the data from a few of the routes and the20

implications of various data processing steps. The complexity of the pre-processing
and analysis of mobile monitoring data precludes a detailed assessment of all study
results in this paper.
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3.1 Data alignment

For the current instrument setup, the time between a concentration change at the inlet
and visual inspection of instrument response ranged from 0 s to 5 s for both real-time
gas and particle instruments (Fig. 3). Using the engineering method, the response time
of the QCL (CO) and APS (particle count in fine to coarse range) was less than 1 s, the5

CAPS (NO2) and aethalometer (BC) was 4 s, and the Li-COR (CO2) and EEPS (UFP)
was 5 s.

After applying the lags determined using the engineering method, the cross-
correlation method was used to fine-tune the alignment. CO was chosen as the ref-
erence measurement because the quantum cascade laser was the most sensitive in-10

strument with the fastest response time. Because the primary source of CO and BC
in the study area was vehicle exhaust, it was assumed that the maximum correlation
would occur when the measurements were perfectly aligned. Using the cross correla-
tion method, the measured BC concentration was found to lag the CO concentration by
3 s (Fig. 4). The other particle instruments were also found to lag the CO measurement15

by 3 s. The CO2 measurement was found to lead the CO measurement by 4 s. The only
pollutant measured that was not strongly correlated with CO at a specific lag time was
NO2; however, NO2 was strongly correlated with UFPs at a lag of 0 s, so the lag used
for UFPs (3 s) was also applied to NO2.

Emissions factors for a specific vehicle and specific driving condition were calculated20

for CO, UFPs, and BC using the data aligned by the engineering tests and the data with
the lag times adjusted to maximize correlations. A 10 s average was also calculated to
compare the effect of the time-base on the emissions factor calculation and temporal
alignment. Using 10 s measurements resulted in higher estimates of emissions and
greater differences between the data adjusted using the cross-correlation method and25

the un-adjusted data (Table 3). Using the 1 s data, the alignment adjustment changed
the emissions factors by 0.5 %, 7 %, and 25 % for UFPs, CO, and BC respectively;
while for the 10 s data alignment adjustment changed the emissions factors by 26 %,
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12 %, and 61 %, respectively. In this example, the correct values are not known, but
this illustration demonstrates the relative effect of a shift in alignment by a few seconds
on the resulting emissions factors.

3.2 Comparison of methods of filtering emissions events

Three emissions event filtering methods and their effect on the shape of the pollutant5

gradient were compared using the data collected on 11 October 2012: the running
COV method used by Hagler et al. (2012), the standard deviation of the background
method used by Drewnick et al. (2012), and the rolling 25th percentile used by Choi
et al. (2012). Using the COV method, several emissions events were identified on the
transect over the course of the run (Fig. 5).10

For near-source air monitoring studies, a common analysis is to consider concentra-
tions as a function of distance from the source of interest (e.g., edge of road) (Karner
et al., 2010). Similar to previous studies, elevated concentrations of mobile source pol-
lutants were observed on the highway (boxplots in Fig. 6), and measured concentra-
tions decreased with increased distance from the highway (Fig. 6). However, the mean15

50 m concentrations along the transect are clearly affected by emissions events, as
is evidenced by the mean concentrations of UFP, BC, NO2 and CO at 250 m (Fig. 6).
Using any of the emissions event filters or the median values substantially reduces
the influence of these events. The 25th percentile filter results in the lowest estimates
of concentrations along the transect because it affects all of the measurements, not20

just those influenced by local exhaust. The 25th percentile filter also results in the
smoothest estimate of the gradient along the transect (Fig. 6).

Another important consideration is that different exhaust plumes contain different
pollutant mixtures. For example, the plume that was encountered at 250 m caused
spikes in all four exhaust indicators, while the plume encountered at 800 m caused25

increases in CO and UFPs but not in BC or NO2 (Fig. 6). The measurements used as
indicators of local exhaust must be chosen carefully to adequately remove the spikes

10454

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10443–10480, 2013

Mobile air monitoring
data processing

strategies and effects

H. L. Brantley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

while retaining the majority of the data. For this run, by using both CO and UFP as
indicators, the spikes in NO2 and BC were successfully removed.

3.3 Comparison of background standardization methods

One method of accounting for background variation is to calculate a single value for
each sampling run to use to normalize the concentrations. This value can be a fixed5

concentration such as the 1st or 10th percentile of the measurements (Bukowiecki
et al., 2002) or can be added into a model as a random effect. However, in the present
study over the course of a two hour sampling period, the baseline of the CO time
series decreased from 400 ppb to 200 ppb (Fig. 7). Depending on the research question
and the pollutant of interest, using a single value to normalize the data may introduce10

unnecessary error. A rolling minimum did not appear to be a good alternative. A 60 s
rolling minimum is a better descriptor of variation in local concentrations than variation
in urban background (Fig. 7b). A 300 s rolling minimum results in a more drastic stair-
step pattern which is not descriptive of the change in background over time which
generally changes very gradually.15

In many studies, the sampling routes include a designated area that is considered
background (Hagler et al., 2012; Van Poppel et al., 2013). The measurements made in
this area over time can be separated out and used to normalize the rest of the mea-
surements. This method may require additional analysis and for some routes, it may
be difficult to determine which areas should be considered background. To estimate20

a temporally variable background over the course of a sampling run without specific
designation of a background area, a 5–15 min minimum can be used (Fig. 7c). In this
case, a rolling 11 s median was used to smooth the time series and then the minimum
was calculated for each 5 min or 15 min discrete interval. A smooth curve was fit to the
minima using a thin plate regression spline (Wood, 2003). Using a fixed temporal win-25

dow relies on the assumption that the measurement platform will pass through an area
of “clean” air within each interval. The route used for this analysis was so short that this
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assumption is not a problem. However, this assumption may not be appropriate with
longer routes that do not frequently encounter areas representative of background.

To calculate the temporal variation of the background without making assumptions
about specific time intervals, a flexible window baseline algorithm was developed. This
algorithm relies on the fact that background variation occurs over a larger time scale5

than spatial variation. The algorithm essentially looks for local minima along the time
series, but restricts the baseline to change only gradually over time. The full algorithm
description is available in Appendix A.

Background standardization will have the greatest effect on measurements of pol-
lutants that have a high regional background concentration relative to the concentra-10

tions emitted by the source of interest. Of the mobile source pollutants measured in
this study, PM2.5, PM10, NO2, and CO2 all fall into the category of co-emitted pollu-
tants with high regional background concentrations (≥ 50 % of the mean measured
concentrations, Table 4). In contrast, CO, BC, and UFPs can all be classified as co-
emitted pollutants with low regional background concentrations (Table 4). To compare15

the variation in background concentrations, the mean background value for each run
was calculated and the between-run standard deviation (SD) was determined from the
resulting 24 mean background values. Additionally, the within-run SD was calculated
by first calculating the SD for each run and then taking the range of those values. The
large differences in within-run SD are likely due to variations in the stability of meteoro-20

logical conditions. For this reason, the range is given instead of the mean (Table 4). For
CO and NO2, the between-run SD was greater than all of the within-run SDs (Table 4),
indicating that the daily variation of these pollutants was greater than the hourly varia-
tion. For the rest of the pollutants measured, the between-run SD fell within the range
of the within-run SD. Kimbrough et al. (2013) also found that the background contri-25

bution of NO2 to the total concentration was higher than the background contribution
of CO and BC, with measured upwind concentrations approximately 69 %, 63 %, and
44 % of downwind concentrations for NO2, CO, and BC, respectively. The background
contributions measured by Kimbrough et al. (2013) are higher than those calculated
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for the current study, likely because the downwind measurements were collected 20 m
from the road, while many of the measurements in the current study were collected
on the highway or on roads with high traffic volume causing the total concentrations
to be higher and the fraction attributable to regional background to be lower. Upwind
concentrations of UFPs measured by Hagler et al. (2009) were roughly 30 % of the5

nearest downwind site and about 50 % of the levels observed at 100 m from the road.
Before background standardization, the regional background variation obscured the

spatial variation in PM2.5 (Fig. 8a). Before background removal, PM2.5 concentrations
measured on Route B on a highway with an AADT of 109 000 were below the 50th
percentile when compared with all of the measurements made over the course of the10

field campaign, while measurements collected on Route A on a road with an AADT
of 18 000 and Route C on a road with an AADT of 17 000 were all above the 50th
percentile (Fig. 8a). After the influence of the regional background was removed, the
spatial trends become much more evident. The majority of the measurements collected
on highways (AADT≥ 100 000) fall in the higher percentiles, and measurements made15

on roads with less traffic fall in the lower percentiles of the dataset (Fig. 8b).

3.4 Temporal and spatial smoothing methods

The influence of temporal and spatial smoothing on the calculation of the concentra-
tion gradient along the highway transect analyzed in Sect. 4.2 was compared. The data
shown were collected during two sampling runs conducted on 21 September 2012 and20

11 October 2012 and were filtered using the running COV method. When compared to
the raw data (Fig. 9a), spatial smoothing alone clarifies the trend (Fig. 9b). In contrast,
although temporal smoothing results in fewer data points, the trend is still obscured
(Fig. 9c). Furthermore, while spatial smoothing alone results in a fairly smooth gradi-
ent and the degree of spatial smoothing does not have a significant effect on the fitted25

curve (Fig. 9b), aggregating the data to a larger time scale before applying spatial
smoothing introduces additional noise (Fig. 9d). This noise is due to the error intro-
duced into the estimation of location by using a longer time scale. The slight increase
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in concentrations at 500 m is due to a busy intersection at this location. The model
NO2 =m× log(distance)+b was fit for each smoothing case because previous studies
have found that pollutant concentrations tend to decrease exponentially with distance
from a major source Karner et al. (2010).

Spatial and temporal smoothing also causes pollutant concentrations to become5

more correlated as measured by the Spearman correlation coefficients. The average
speed of the car on this route was approximately 10 ms−1. The Spearman correlation
coefficients were calculated for BC, CO, CO2, NO2, PM2.5 and UFPs after applying the
COV filter and after calculating 5 s and 10 s averages (discrete windows) and divid-
ing the route into 5 m, 50 m, and 100 m segments and calculating the average of the10

measurements in each segment. Spatial smoothing resulted in much stronger corre-
lations compared to temporal smoothing (Table 5). NO2 and CO2 were slightly nega-
tively correlated before smoothing. After temporal smoothing the correlation coefficient
remained negative, but after spatial smoothing the correlation coefficient rose to 0.80.
After 10 m averaging, all of the pollutants were correlated with coefficients greater than15

0.7. After 50 m averaging all of the correlation coefficients were greater than 0.8, but
increasing the averaging interval to 100 m did not change any coefficients by more than
0.02.

4 Conclusions

The recent increase in the number of studies that employ mobile monitoring and the20

variety of applications demonstrate both the utility and versatility of mobile monitoring.
As air monitoring instumentation continues to advance toward greater portability, higher
time resolution, greater capacity for operating autonomously, and lower costs, it is likely
that these types of studies will become even more ubiquitous (Snyder et al., 2013).
The greater temporal and geographic coverage of air pollution measurements can in25

turn lead to better protection of health and the environment. However, as was shown
in this study, this new wealth of data requires the implementation of innovative data
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proccessing techniques to extract meaningful information and develop intuitive visuals.
This study investigated the sensitivity of final analysis results to the data processing
steps chosen.

A variety of research questions and the corresponding data processing strategies
were discussed, and a framework for deciding which strategies to apply was presented.5

Precise time alignment of instruments with each other and location data is particularly
important for mobile platforms traveling at high speeds and emissions factor calcula-
tions. Removal of local emissions events can substantially change a near-source gradi-
ent, but the various methods of emissions event removal that were compared resulted
in similar results. Background standardization was particularly important for pollutants10

with a high background concentration relative to the total concentration, and estimated
background concentrations were shown to vary with time. Spatial averaging (50 m)
resulted in smoother concentration gradients and stronger correlations than temporal
averaging (5 s).

The results demonstrate the vast amount of information contained in datasets col-15

lected using mobile monitoring and the myriad of research questions that can be an-
swered using these data, as well as the sensitivity of the conclusions to the data pro-
cessing approach utilized.

Appendix A

Flexible window baseline algorithm20

In this study, a new algorithm was developed to determine the background concen-
tration as a function of time using a time series of concentrations (Ct) collected using
a mobile monitoring vehicle, without using a fixed time interval. The algorithm consists
of three phases: first, potential baseline points in the time series are identified, then the
number of baseline points is thinned so that there is no more than one baseline point25

in each 5 min window, and finally a smooth function is fitted to the remaining baseline

10459

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10443–10480, 2013

Mobile air monitoring
data processing

strategies and effects

H. L. Brantley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

points. Given a time series Ct that starts at t0, the time of the first baseline point tb,1
and the concentration of the first baseline point Ctb,1

are determined by calculating the
minimum of the first 15 min of data so that

(Ctb,1
) = minimum(Ct)

where : t = [t0,t0 +15min]
(A1)

5

Then a 15 min window [tb,1,tb,1 +15min] is used to locate the next baseline point
(tb,2), which (if available) is the first occurrence where Ct ≤ Ctb,1

. If Ct > Ctb,1
for all

t = [tb,1,tb,1 +15min], then tb,2 is the first occurrence where:

Ct ≤ Ctb,1
+θ

where: t = [tb,1,tb,1 +15min]
(A2)

10

with the threshold, θ, equal to the twice the standard deviation of the lowest 10 % of the
measured concentrations. The 15 min window is then shifted to [tb,2,tb,2 +15min] and
the algorithm repeats. If Ct > Ctb,1

+θ for all t = [tb,1,tb,1+15min], then it is assumed that
the mobile platform did not pass through an area of background in that window and the
window is shifted forward another 15 min so that t = [tb,1 +15min,tb,1 +30min] and the15

algorithm repeats. At the completion of this first pass, extraneous baseline points are
removed by taking the minimum of the baseline points in each 5 min discrete window.
A smooth thin plate regression spline is fitted to the remaining points (Fig. A1).
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Table 1. Mobile monitoring example applications.

Category Example Investigations Measurement Platform Data Processing Steps Applied References

Emissions
Quantification

Determine and compare emissions
factors from vehicles under various
driving conditions

Electric vehicle Emissions event detection, temporal
smoothing

Park et al. (2011)

Evaluate change in emissions factors
after traffic intervention

Vehicle Emissions event detection, background
standardization, temporal smoothing

Wang et al. (2009)

Hydrocarbon emissions characteriza-
tion

Vehicle Emissions event detection Pétron et al. (2012)

Near-source air
quality gradients

Roadside barrier impacts Electric vehicle Emissions event detection, background
standardization, spatial smoothing

Hagler et al. (2012)

and mitigation
strategy evaluation

Near-road gradients Electric vehicle Time alignment optimization, emissions
event detection, background standardiza-
tion, spatial smoothing

Kozawa et al. (2009);
Choi et al. (2012)

Assess contribution of traffic in street
canyons to concentration above back-
ground

Backpack Background standardization, spatial
smoothing

Zwack et al. (2011a, b)

Characterize spatial and temporal vari-
ation of near-road gradients

Recreational Vehicle Temporal and spatial smoothing Padró-Martínez et al. (2012)

General air quality
surveying

Change in air quality in City of Hamil-
ton, 2005–2010

Van Background standardization, temporal
smoothing

Adams et al. (2012);
Wallace et al. (2009)

Characterizing pollution in low-income
neighborhoods in Ghana

Handheld Background standardization, spatial
smoothing

Arku et al. (2008);
Dionisio et al. (2010)

Spatial variability of urban air quality Bicycle Background standardization, spatial
smoothing

Van Poppel et al. (2013)

Characterize exposure zones Electric vehicle Emissions event detection Hu et al. (2012)
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Table 2. Mobile data processing methods.

Category Method Description References

Background Estimation Designation of background zone Hagler et al. (2012); Van Poppel et al. (2013)
Average of fixed monitoring sites Arku et al. (2008); Dionisio et al. (2010)
1 min or 5 min 5th percentile Bukowiecki et al. (2002)
Assume all of the measurements lower than the most fre-
quent measurement are background

Kolb et al. (2004)

Include a smooth function of time over each sampling shift
as a term in a linear regression

Zwack et al. (2011b, a)

Emissions Event Detection Calculate standard deviation of measurements below the
median (σb). Flag any measurement more than 3σb greater
than the previous measurement. Flag all measurements
> 3σb +

√
n×σb from the last non-flagged measurement,

where n is the number of points since the last non-flagged
measurement (UFPsa and COb

2)

Drewnick et al. (2012)

Modified 5 s running coefficient of variance, with maximum
value of 2 (UFPa)

Hagler et al. (2012)

Smoothed rolling minimum (COb
2, NOc) Kolb et al. (2004)

Rolling 25th percentile (UFPsa, NOc, PB−PAHd, COf,
PMg

2.5)
Choi et al. (2012)

Video records were checked at times when pollution con-
centrations peaked at greater than twice the observed
background concentrations (BCe, NOc, UFPa, PB−PAHd)

Kozawa et al. (2009)

aUltrafine particles (≤ 100 nm), bcarbon dioxide, cnitrogen monoxide, dparticle-bound polycyclic aromatic hydrocarbon, eblack carbon, fcarbon monoxide, gparticulate
matter (≤ 2.5 µm).

10467

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10443–10480, 2013

Mobile air monitoring
data processing

strategies and effects

H. L. Brantley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Emissions factors before and after temporal alignment using cross-correlation.

BC (g kg−1) UFP (# kg−1) CO (g kg−1)

No alignment adjustment (1 s) 0.024 2.17×1015 0.016
With alignment adjustment (1 s) 0.032 2.16×1015 0.015
No alignment adjustment, temporal smoothing (10 s) 0.066 3.07×1015 0.019
With alignment adjustment and temporal smoothing (10 s) 0.042 2.43×1015 0.017
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Table 4. Summary comparison of pollutant background concentration and variation.

Contribution of
Mean of Within Between Background

Background Run SDa,b Run SDc to Totald

BC (µgm−3) 0.19 0.01–0.48 0.16 6 %
PM2.5–10 (µgm−3) 0.5 0.0–0.7 0.51 12 %
UFP (cm−3) 3800 20–2150 1600 19 %
CO (ppb) 278 1–38 74 38 %
PM10 (µgm−3) 4.5 0.0–2.9 1.9 45 %
NO2 (ppb) 8.0 0.2–2.2 2.4 51 %
PM2.5 (µgm−3) 3.1 0.1–2.1 1.5 56 %
CO2 (ppm) 435 1–69 37 86 %

aStandard deviation, bcalculated by first calculating the SD of the estimated background for
each run and then taking the range of those values, ccalculated by determining the mean
background value for each run and determining the standard deviation of the resulting 24 mean
background values, dmean of estimated background for all 24 runs divided by mean measured
concentration of all runs multiplied by 100.
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Table 5. Effect of temporal and spatial smoothing on pollutant Spearman correlation coeffi-
cients.

Temporal Smoothing Spatial Smoothing
Filtered Raw Data 5 s 10 s 10 m 50 m 100 m

N = 8386 N = 1801 N = 921 N = 529 N = 105 N = 52
NO2 (ppb) and CO2 (ppm) −0.21 −0.19 −0.19 0.71 0.80 0.80
NO2 (ppb) and PM2.5 (µgm−3) 0.07 0.10 0.12 0.77 0.85 0.86
NO2 (ppb) and BC (µgm−3) 0.11 0.12 0.12 0.76 0.81 0.80
CO (ppb) and NO2 (ppb) 0.16 0.18 0.18 0.81 0.85 0.85
UFP (cm−3) and CO2 (ppm) 0.36 0.39 0.40 0.82 0.90 0.91
UFP (cm−3) and PM2.5 (µgm−3) 0.41 0.53 0.57 0.83 0.89 0.89
UFP (cm−3) and BC (µgm−3) 0.47 0.53 0.58 0.80 0.85 0.86
BC (µgm−3) and PM2.5 (µgm−3) 0.54 0.69 0.74 0.77 0.82 0.84
NO2 (ppb) and UFP (cm−3) 0.56 0.60 0.62 0.88 0.87 0.87
CO (ppb) and UFP (cm−3) 0.58 0.63 0.65 0.88 0.92 0.92
PM2.5 (µgm−3) and CO2 (ppm) 0.60 0.72 0.75 0.80 0.84 0.86
CO (ppb) and PM2.5 (µgm−3) 0.61 0.73 0.76 0.84 0.86 0.86
BC (µgm−3) and CO2 (ppm) 0.68 0.73 0.76 0.82 0.87 0.88
CO (ppb) and BC (µgm−3) 0.69 0.74 0.76 0.81 0.85 0.87
CO (ppb) and CO2 (ppm) 0.78 0.78 0.79 0.87 0.92 0.92

10470

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10443–10480, 2013

Mobile air monitoring
data processing

strategies and effects

H. L. Brantley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 1. Mobile data processing steps.
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Fig. 2. Emissions factor calculation using peak from local emissions event. Dashed lines rep-
resent 10 s averages. Purple lines represent emissions event. Black lines represent roadway
concentrations.
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Fig. 3. Quality control check on PM instruments: UFPs (a), BC (b), and PM10 (c).
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Fig. 4. Cross correlation between CO and BC before lag time adjustment (a) and after lag time
adjustment (b).

10474

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10443/2013/amtd-6-10443-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10443–10480, 2013

Mobile air monitoring
data processing

strategies and effects

H. L. Brantley et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. Map of route (a) wind rose (b) and measured UFP concentration (cm−3) on three laps
(c–e). Green lines represent emissions events identified using the modified COV filter (Hagler
et al., 2012).
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Fig. 6. Comparison of filtering methods on transect gradients of CO (a), UFP (b), BC (c), and
NO2 (d). Lines represent 50 m averages of measurements from the entire run (9 laps). Boxplots
represent unfiltered concentrations measured on the highway.
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Fig. 7. Background removal methods and new algorithm for time varying background: (a) ex-
ample time series; (b) running minimum, 1st percentile and 10th percentile; (c) flexible window
algorithm, 5 min minimum, and 15 min minimum.
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Fig. 8. Spatial distribution of PM2.5 before (a) and after (b) background standardization. Points
represent median 50 m values from 8 sampling runs with each route measured on 2 days.
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Fig. 9. Comparison of temporal and spatial smoothing.
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Fig. A1. Illustration of baseline algorithm.
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