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Abstract

In order to exploit the full-Earth viewing potential of satellite instruments to globally
characterise aerosols, new algorithms are required to deduce key microphysical pa-
rameters like the particle size distribution and optical parameters associated with scat-
tering and absorption from space remote sensing data. Here, a methodology based on5

neural networks is developed to retrieve such parameters from satellite inputs and to
validate them with ground-based remote sensing data. For key combinations of input
variables available from MODIS and OMI Level 3 datasets, a grid of 100 feed-forward
neural network architectures is produced, each having a different number of neurons
and training proportion. The networks are trained with principal components accounting10

for 98 % of the variance of the inputs together with principal components formed from
38 AERONET Level 2.0 (Version 2) retrieved parameters as outputs. Daily-averaged,
co-located and synchronous data drawn from a cluster of AERONET sites centred on
the peak of dust extinction in Northern Africa is used for network training and vali-
dation, and the optimal network architecture for each input parameter combination is15

identified with reference to the lowest mean squared error. The trained networks are
then fed with unseen data at the coastal dust site Dakar to test their simulation per-
formance. A NN, trained with co-located and synchronous satellite inputs comprising
three aerosol optical depth measurements at 470, 500 and 660 nm, plus the colum-
nar water vapour (from MODIS) and the modelled absorption aerosol optical depth at20

500 nm (from OMI), was able to simultaneously retrieve the daily-averaged size distri-
bution, the coarse mode volume, the imaginary part of the complex refractive index, and
the spectral single scattering albedo – with moderate precision: correlation coefficients
in the range 0.368 ≤ R ≤ 0.514. The network failed to recover the spectral behaviour of
the real part of the complex refractive index with only 39–45 % of the data falling within25

the acceptable level of uncertainty relative to ground-truth data at the daily timescale.
In the context of Saharan desert dust, this new methodological approach appears to
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offer some potential for moderately accurate daily retrieval of previously inaccessible
aerosol parameters from space.

1 Introduction

Aerosol particles reflect and absorb solar radiation in the atmosphere shading the
Earth’s surface. They also reduce visibility and can have a direct effect on human health5

(Samet et al., 2000). Moreover, they are used to determine the Earth’s hydrological cy-
cle (Remer et al., 2005). However, because of inadequate quantitative knowledge of
the global spatial and temporal variation of aerosol optical properties (Hansen et al.,
2005), there is uncertainty in the magnitude of their contribution to the Earth’s climate
and planetary radiative-forcing (IPCC, 2007). With the expansion of the global AEosol10

RObotic NETwork (AERONET) of high quality remote sensing measurement instru-
ments (Holben et al., 1998) and the development of advanced and robust inversion
algorithms (Dubovik and King, 2000) for the retrieval of aerosol parameters, our under-
standing of aerosol microphysics and optical properties has improved greatly. However,
the size of the uncertainty associated with the aerosol contribution is known to be un-15

acceptably large and must be reduced by at least a factor of 3 (Schwartz, 2004). An
attempt to address this uncertainty has been outlined in a recent report (Mishchenko
et al., 2007). In particular, the report presents aerosol retrieval accuracy requirements
for remote-sensing instruments in space to be able to detect changes in planetary
aerosol radiative-forcing over the next two decades:20

– radius of the fine and coarse particle modes (±10 %)

– variance of the fine and coarse particle modes (±40 %)

– spectral behaviour of the real part of the complex refractive index, CRI-R (±0.02)

– spectral behaviour of the single-scattering albedo, SSA (±0.03).
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The last parameter is a key aerosol optical property and proxy for radiative-absorption
(Hansen and Travis, 1974). Retrieval of all of these parameters from inversion of direct
sun and sky radiance measurements is provided by AERONET (Dubovik and King,
2000; Dubovik et al., 2002). Unfortunately, these retrievals have low and inhomoge-
neous spatial resolution (AERONET’s ground-based remote sensing instruments are5

densely situated in and around cities and sparsely-located elsewhere). Furthermore,
AERONET stations are largely absent from vast uninhabited areas like deserts, oceans
and the ice-caps which are the largest sources of planetary aerosol. Marine aerosol
retrievals, in particular, are only available at island sites or in coastal regions. In con-
trast, space-bound satellite instruments like the MODerate resolution Imaging Spectro-10

radiometer (MODIS) instrument on board the satellites Terra and Aqua, sample the
vertical atmospheric column of the whole Earth, but their retrieval algorithms are not
currently able to provide reliable proxies containing information on the mean particle
size of fine and coarse aerosol, the complex refractive index and particle shape – all
necessary for a full understanding of aerosol microphysics (Remer et al., 2005) and15

for globally-characterizing different types of aerosols and sources (Tanré et al., 1996).
Therefore, in order to exploit the full-Earth viewing potential of space-bound measure-
ments, new algorithms are required to deduce these key parameters.

1.1 Motivation

With the measurement accuracy requirements of Mishchenko et al. (2007) above pro-20

viding the context, this paper focuses on the question of how to retrieve daily estimates
of all of these parameters from satellite measurements. In this paper, we assess the
potential for achieving this by constructing neural network (NN) models and applying
them to data from an extensive region (Northern Africa) – where the dust global aerosol
optical depth (AOD) has its peak (Chin et al., 2002).25

This work is motivated then by the potential offered by capitalizing on the full-Earth
coverage of AOD, H2O and AAOD provided by satellite remote sensing instruments to-
gether with AERONET-quality retrievals of the aerosol volume size distribution (AVSD),
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CRI, SSA, and the particle asymmetry factor (ASYM). The key to building the required
bridge between ground and satellite retrievals is to train NNs on AERONET “ground-
truth” data so as to learn the relationship between combinations of satellite AOD, H2O
and AAOD inputs and AERONET microphysical and optical parameters as outputs. The
potential of the NNs to extrapolate is then tested by feeding them with unseen satellite5

inputs and comparing the outputs against co-located and synchronous ground-based
AERONET data. In our study, we use the latest AERONET Level 2.0 Version 2 Inver-
sion Products that are cloud-screened and quality assured (AERONET, 2012).

1.2 Contemporary studies

In the last 5 yr or so, multivariate fitting techniques including function-approximating10

NNs have been brought to bear on problems in the field of aerosol science. Of
paramount importance is the finding that a characteristic aerosol fine mode volume
and effective radius can be derived from measurements of the AOD, the Ångström
Exponent (å) and its curvature using a multi-functional approach (Gobbi et al., 2007).
A further study constructed a multiple-input single output NN that took radiances, solar15

viewing angles, and terrain elevation from MODIS as input, and predicted the values
of co-located AERONET AOD values as output (Radosavljevic et al., 2010). The study
used data from 221 AERONET sites and demonstrated that AERONET AOD could be
successfully estimated from satellite inputs. NN models were also applied in a very
recent study designed to detect and retrieve volcanic ash cloud properties from multi-20

spectral infrared MODIS measurements over Mount Etna during recent volcanic erup-
tions (Picchiani et al., 2011). These studies are a sign that the aerosol community is
starting to embrace such methods.

AERONET’s latest Level 2.0 Version 2 inversion algorithm retrieves all of the afore-
mentioned aerosol microphysical and optical parameters from ground-based sensors25

by performing multivariate regression – which must be performed for each measure-
ment. On the contrary, the NNs are potentially able to simultaneously retrieve the AVSD,
CRI, SSA, and ASYM for the entire data sample in a single step – without having to
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recalculate each day. NN retrieval schemes therefore (potentially) have the capacity to
produce real-time retrievals for large datasets. To be more specific, the NN calculates
the inverse function (applying to all cases covered by the training space), whereas
other methods like look-up table and optimal estimator methods match aerosol proper-
ties to corresponding light measurements for every case separately. The calculation of5

the inverse function may require considerable time in the case of a NN due to the need
for running a grid of training NNs, but, once complete, the retrieval using the trained
optimal NN is instantaneous. The theoretical basis underpinning the NN function ap-
proximation scheme is presented in Sect. 3.1.

1.3 Objectives10

Motivated by the need to develop a methodology to produce global satellite retrievals
of aerosol microphysical and optical parameters, and inspired by the success of recent
NN models, this paper reports on the initial phase of AEROMAP, a two-year EU-funded
project that began in March 2012. This, our first major study, has the following main
objectives:15

1. to assess the potential of performing aerosol typing a priori by using GOCART
model outputs to select suitable desert dust sites at the peak of dust extinction in
Northern Africa,

2. to see if it is possible to standardize and optimize NN architectures capable of
learning the relationship between the inputs and outputs for this region (i.e. for20

this aerosol type) and,

3. to validate the trained NNs with unseen data at a distant geo-location in the same
region (i.e. aerosol type), and to assess their performance using statistical regres-
sion and timescale analysis.

10960

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10955/2013/amtd-6-10955-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10955/2013/amtd-6-10955-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10955–11010, 2013

Satellite retrieval of
aerosol parameters

using neural
networks

M. Taylor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1.4 Structure of the paper

The data used and an outline of the NN model are presented in Sect. 2. Section 3 then
presents the theory involved in training and validating such NNs. In Sect. 4, the results
of NN training and testing for different input configurations are presented and key find-
ings, major impacts, as well as pros and cons of the method are noted and analyzed5

in Sect. 5. Finally, we conclude in Sect. 6 by assessing the overall potential offered by
the NN methodology for retrieving aerosol microphysical and optical parameters from
space.

2 Methodology

Aerosol particles from different sources have different sizes, absorption properties, and10

shape. They are typically classified into a small number of types (≈5–10) including for
example: desert or soil dust, smoke or organic and black carbon from biomass burning,
urban sulphates, marine sea salt, volcanic ash as well as their mixtures. Researchers in
the field have found that different aerosol types correlate strongly with pairs of different
aerosol parameters, but no consensus has yet been reached on a single method to15

disambiguate and universally-distinguish them. Therefore, in this work, in order to avoid
as much as possible such potential sources of data inhomogeneity or inconsistency, we
adopted an independent qualitative approach to aerosol typing which is described in
Sect. 2.1.3.

2.1 Data selection20

This work draws on 4 different data sources: “satellite inputs” from MODIS and
the Ozone Measuring Instrument (OMI), ground-based remote sensing data from
AERONET, and global chemical model output data from the Georgia Institute of
Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GO-
CART) model (Chin et al., 2000, 2002, and Ginoux et al., 2001). MODIS and OMI25
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provide satellite inputs and co-located and synchronous values of these inputs as well
as output parameters at the ground are provided by AERONET. GOCART data is used
for aerosol typing.

2.1.1 Satellite inputs

MODIS on board the Terra (EOS-AM) and Aqua (EOS-PM) satellites has been captur-5

ing data in 36 spectral bands from 400 nm to 1440 nm since 1999 with a spatial res-
olution ranging from 250 m–1 km. Collectively, the instruments image the entire Earth
surface every 1–2 days. Daily-averaged data was downloaded in hierarchical data for-
mat from the MODIS Level 3 Collection 5.1 Product (MODIS, 2012). From these files,
AOD(470), AOD(550), AOD(660) time series provided at 1◦ ×1◦ spatial resolution were10

extracted. In addition, co-located and synchronous, Level 2, near-infrared, mean to-
tal columnar water vapour (H2O) from the Aqua satellite (dataset MYD05_L2) was
also downloaded. Finally, the daily estimate of near-ultraviolet (UV) AAOD(500) was
downloaded from the OMI Level 3 OMAERUV Product (OMI, 2012) for co-located and
synchronous data (with MODIS) to test the impact of absorption on NN retrieval qual-15

ity. As a result, daily-averages of these parameters were obtained for the entire global
domain, spanning the full temporal record of available data: 4 July 2002 to 4 July 2012.

2.1.2 AERONET retrievals

The AERONET Level 2.0 Version 2 Inversion Products contain retrievals for 116 differ-
ent aerosol parameters including the AVSD: dV (r)/dlnr (in µm3 µm−2) retrieved in 2220

logarithmically-equidistant radial bins spanning the range of particle radii: 0.05µm ≤ r ≤
15µm, the real and imaginary parts of the refractive index: CRI-R(λ), CRI-I(λ), and the
optical parameters: AOD(λ), SSA(λ), and ASYM(λ) centered at 4 wavelengths: λ = 440,
675, 870 and 1020 nm. Daily-averaged retrievals were downloaded for the entire global
AERONET record (comprising 809 sites) and spanning the period: 1 March 1996 to25

7 April 2012. For each site, its elevation (height above sea level in meters), its Eastern
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longitude and Northern latitude were extracted. In addition, although AERONET’s Level
2.0 Version 2 Inversion Products also provides the mean geometric radii of the fine and
coarse modes: r(f ) and r(c), their standard deviations: σ(f ) and σ(c), and their vol-
ume concentrations: V (f ) and V (c), the fine fraction η which is not provided – was
also calculated and appended to the AERONET data record. All of these parame-5

ters are calculated from the AVSD by specifying a mode separation point rs and, in
what follows, we will refer to them collectively as secondary microphysical parameters.
Their calculation (required for comparing satellite-driven NN simulated outputs with
AERONET) is described briefly in Appendix A. Furthermore, while the vast majority of
AERONET stations provide AOD data at the central wavelengths: 440, 675, 870 and10

1020 nm, it has been found that there is a (small) difference between AODs obtained
by MODIS and AERONET which is important and non-negligible (Remer et al., 2005).
Hence, the Ångström Exponent å(675 nm/440 nm) was calculated and used to extrap-
olate AERONET AODs to match those available from space at MODIS wavelengths
with the rearrangement:15

AOD(λ2) = AOD(λ1)
(
λ2

λ1

)−å(λ2,λ1)

(1)

These interpolated-AERONET AOD(470), AOD(550), AOD(660) values were also ap-
pended to the AERONET dataset. This dataset therefore contains both ground re-
trievals of the satellite inputs (aligned to the central wavelengths provided by MODIS)20

plus the output parameters which the NN model is built to retrieve.

2.1.3 Aerosol typing

In order to isolate suitable desert dust data for this study, we developed a qualitative
2-step approach. In the first step, the AERONET dataset was ranked by the number
of complete records available at each site (without data gaps in the input parameters:25

AODs, H2O, AAOD, and the output parameters: AVSD, CRI-R, CRI-I, SSA and ASYM).
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The requirement for records to be complete caused the number of sites to drop from
807 to 623 sites. It was found, for example, that the top-ranked site in the study region
(Northern Africa) is Banizoumbou (Niger) which contains 2283 complete data records.
The second step of our approach aims to answer the question: how many of these
daily-averaged records are dust dominated? For this, the GOCART model AOD extinc-5

tion per aerosol type was used. GOCART provides 3 hourly measurements of the total
extinction AOD as well as the contribution to total extinction AOD of sulphate (SO2),
organic carbon (OC), black carbon (BC), desert (mineral) dust and sea salt. GOCART
data was downloaded for the first 155 AERONET sites ranked in step 1 by the number
of complete records. This list accounts for 75 % of all available Level 2.0 Version 2 in-10

versions. Since GOCART provides eight 3 hourly measurements per day, these were
averaged to produce daily-averages and expressed as a percentage of the total ex-
tinction AOD for each aerosol type. The percentage of dust was then used as a basis
for re-ranking the list of high data volume sites. Table 1 below shows the AERONET
“complete record”, “ranked-sites”, ranked by dust contribution (according to GOCART15

data) for the study region (Northern Africa).
In Table 1, “Dataset A” comprises AERONET sites that operate the older CIMEL

model I sun photometers which lie on the peak of dust AOD extinction as extracted from
the mean global GOCART model output, and which are verified via cross-reference
with the strongest TOMS dust sources (shown in Fig. 1 below). “Dataset B” comprises20

those sites that operate the newer CIMEL model II sun photometers which, in addition,
also contribute measurements of near-UV AOD at 380 nm and 500 nm. This separation
of the Northern Africa data was made so as to investigate the possible effect of UV AOD
inputs on NN model performance. Dakar was selected as the testing site since: (i) it
has the largest number of days of co-located synchronous satellite measurements, (ii)25

it is also located on the peak of dust AOD extinction, and (iii) it operates the newer
model II CIMEL sun photometer.

10964

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10955/2013/amtd-6-10955-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10955/2013/amtd-6-10955-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 10955–11010, 2013

Satellite retrieval of
aerosol parameters

using neural
networks

M. Taylor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1.4 Handling of outliers

While it is generally not good practice to remove outliers since they often correspond
to interesting phenomena, in relation to NNs, it is important that infrequently-occurring,
extreme data that can significantly bias the data-fitting procedure is removed. This led
us to investigate various methods of outlier detection and to study the distribution of5

the data for each of the input and output parameters. Histograms were produced that
partitioned the data into 20 bins and it was found that all many of the parameters
presented near-normal distributions in quantile-quantile plots (the H2O, the volume
concentration in each radial bin, the CRI-R and the ASYM), but that AODs and the
CRI-I presented positive skew-normal distributions, and the SSA presented negative10

skew-normal distributions. We elected to apply the Grubb’s Test (Grubbs, 1969) to
remove outliers. Grubb’s Test consists of testing one data point at a time and finding
and removing the value furthest from the sample mean (usually applied to normally-
distributed data). Since the median is more statistically-robust when analyzing data
that is skew-normal, Grubb’s Test was applied with reference to the sample median15

rather than the sample mean. This procedure was applied iteratively to Datasets A and
B (used to train the NNs) until outliers were removed at the 68 % confidence level of the
entire 2-tailed data distribution. Outliers were deliberately not removed from the inputs
used in testing the NN so that the ability of the NNs to extrapolate on raw, unseen
data could be properly tested. The data selection scheme produced dust-typed input-20

output data that: (a) is homogeneous (does not contain parameter data gaps), (b) is
wavelength-matched and (c) is free of biasing values (at the 68 % level of confidence).

2.2 The NN model

Feed-forward NNs having at least one layer of “hidden” neurons whose activation func-
tions, are nonlinear hyperbolic tangent (Tanh) functions (or other general nonlinear sig-25

moidal functions), are able to operate as universal function approximators (Cybenko,
1989; Hornik, Stinchombe and White, 1989). This means that, given enough hidden
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neurons and training data, such networks are capable, in principle, of learning the
mathematical relation between inputs and outputs. The input and output parameters
used in this work were connected via 2 network layers – the first layer containing hid-
den neurons with Tanh activation functions and the second layer containing output
neurons having linear activation functions. We also tested 3-layer models that used 25

layers of hidden neurons but the results were worse than those obtained here. The
relation between input and output parameters for the type of NN used in this study is
presented in Sect. 3.1, together with details of the methodology adopted for evaluating
network training (Sect. 3.2) and network validation (Sect. 3.3). Here, we describe the
operation of the NN model which was coded using MATLAB’s object-oriented scripting10

language in conjunction with its neural network toolbox (Demuth and Beale, 2004).
NN models require specification of: (1) how the performance error associated with

the network model is to be measured, and (2) the architecture used. We measure the
performance error of the network using the mean squared error (MSE) calculated from
the difference between its outputs and target output data. The details of the macro-15

statistical approach we adopt are presented in Sect. 3.2 in the context of NN training.
The NN architecture is a more complex entity. It involves not only the number of hidden
neurons and their activation functions, but also the proportion of data used to train
and validate the NN as well as the learning algorithm used. The perception that NN
models are somewhat subjective is due to what is often seen as an arbitrary choice20

of some or all of these elements. In order to try to make the choice of architecture
more objective, we developed a new procedure to detect optimal NN architectures. We
began by creating a list of candidate input-output combinations (see below). Then, we
trained the corresponding NNs by following four steps:

1. normalize all input and output variables,25

2. apply principal components analysis (PCA) to inputs and outputs separately so
as to exclude redundant variability (it is required that the PCs account for 98 % of
the total variance),
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3. loop through a grid of 100 NNs of varying numbers of hidden neurons (4–24 in
steps of 2) and proportions of training data (40–90 % in steps of 5 %), and

4. select the NN that has the minimum total training and validation MSE.

This procedure can be automated and was found to avoid the bias and under-fitting that
can result from having too few neurons on the one hand, and the high variance and5

over-fitting that can result from having too many on the other (see Sect. 3.2). It also
avoids arbitrary partitioning of the data into training and validation proportions, and
the use of PCA helps exclude redundant variability which can adversely affect training
efficiency (Jolliffe, 2002). While we are conscious that the components calculated from
PCA are a mixture of the original variables and should not be applied indiscriminately10

(potentially producing non-physical combinations), we also did some trials applying
PCA on groups of variables of the same type (e.g. AVSD bins and spectral parameters
separately) so as to retain physical characteristics within variable clusters – but the
results were worse than those presented here.

Regarding candidate input combinations, we drew up a list of aerosol parameters15

which are provided by satellites globally at 1◦ ×1◦ spatial resolution, leading to the
following set: AOD(470), AOD(550), AOD(660) and H2O from MODIS, and AOD(380),
AOD(500) and AAOD (500) from OMI. Since it has been suggested that there is high
sensitivity to particle absorption in the near-UV (Torres et al., 2002), it was decided
that this effect would be studied separately by constructing an input combination that20

depended on the near-UV AOD at 380 nm and 500 nm – which are provided by the
new CIMEL (model II) AERONET sun photometers comprising Dataset B. Note that
the AAOD(500) provided by OMI is a modelled parameter obtained by using a look-up
table of expected SSA values that depend on the aerosol type and the geographical
location (Torres et al., 2007). Conversely, in the case of AERONET, the value of AAOD25

(at the central wavelengths: 440, 675, 870 and 1020 nm) is calculated from retrieved
aerosol microphysical properties (Dubovik et al., 2000). In all, the following 4 distinct
scenarios were identified and used in this study:
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– CASE 1 inputs=AERONET: AOD(470), AOD(550), AOD(660)

– CASE 2 inputs=AERONET: AOD(470), AOD(550), AOD(660)+H2O

– CASE 3 inputs=AERONET: AOD(470), AOD(550), AOD(660)+H2O+
AOD(380), AOD(500)

– CASE 4 inputs=MODIS: AOD(470), AOD(550), AOD(660)+H2O and OMI:5

AAOD (500)

In each case, the set of output variables comprises: the AERONET microphysical
AVSD (calculated at 22 equidistant logarithmic radial bins spanning the range 0.05 µm
to 15 µm), the spectral refractive index and the optical parameters SSA and ASYM cen-
tred at 440, 675, 870 and 1020 nm. CASES 1 and 2 use daily-averaged records drawn10

from Dataset A, CASE 3 uses daily-averaged records drawn from Dataset B and CASE
4 uses co-located satellite data synchronous with Dataset A (see Table 1). The NN
model then proceeds as follows. PCA is applied to the input and output data separately
for each of the CASES 1–4 and a grid of 100 NNs of differing (hidden neuron, train-
ing%) architecture is produced, trained and validated. The optimal NN is then identified15

using the minimum total training and validation MSE between the NN outputs and tar-
get AERONET data. The PCA is inverted back to parameter space and comparative
(linear regression) statistics are calculated for the outputs of the optimal trained NN in
relation to the AERONET training output data. In order to test each optimally-trained
NN, new and unseen CASE 1–4 data at the coastal dust site Dakar is transformed20

into PCA space and fed to the corresponding NNs. In each case, the network’s output
is transformed back from PCA space to parameter space where comparative statis-
tics are again applied to the NN outputs in relation to AERONET “ground-truth” data.
A schematic of the overall NN model is shown in Fig. 2.

In Sect. 3, the functional relation between network outputs and inputs is presented25

together with details of the methods used to train and validate the performance of the
NNs.
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3 Theory

3.1 The NN input-output function approximation

As we discussed in Sect. 2.2, the motor behind the NN model is the multiple input,
multiple output 2-layer feed-forward NN at the centre of Fig. 2. The NN has the following
input–hidden layer–output layer connectivity shown in detail in Fig. 3.5

The NN has a vector X of R-input PCs and a vector Y of s2-output PCs (grey circles).
For CASE 4 for example, PCA applied to the inputs generated R = 3 PCs, and PCA
applied to the outputs produced s2 = 7 PCs (see Sect. 2.2 for details). The NN has
2 layers of neurons connecting the inputs to the outputs. The first layer (the “hidden”
layer) has s1 neurons with nonlinear activation functions f 1 = Tanh and the output layer10

has s2 neurons with linear activation functions f 2. Each neuron has a single bias [0,1]
and so the hidden layer has a vector b1 of s1 biases while the output layer has a vector
b

2 of s2 biases. The vector of R-inputs X is connected to the s1-neurons of the hidden
layer via a matrix of [s1 ×R] input weights IW1,1 while the vector a

1 of s1-outputs is
connected to the s2-output neurons via a matrix of [s2×s1] layer weights LW2,1. Finally,15

the vector a
2 of s2-outputs is the vector Y of NN outputs. The exact mathematical

equation relating the NN outputs to the NN inputs is then the matrix equation:

Y = f 2
(

LW2,1f 1
(

IW1,1X +b1
)
+b2

)
. (2)

The multiplication of the matrix IW1,1 and the vector X is a dot product equivalent to20

the summation of all input connections to each neuron in the hidden layer. Equation (2)
above is the nonlinear functional approximation N that relates the output parameters
to the input parameters:

Y = N(X). (3)
25

As we described in Sect. 2.2, the input vector X contains a combination of the satel-
lite input parameters while the output vector Y contains the sought-after retrievals.
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Traditionally, a NN is assessed by dividing available data into 3 proportions: a train-
ing set, a validation set, and a testing set. However, since the data reduction scheme
described in Sect. 2 led to a substantial loss of available data records, it was decided
that all available data should be put to use in NN training and validation, with none
reserved for testing. During the testing phase, the NNs therefore are presented with5

unseen input data at a new site (Dakar) in the same region (Northern Africa), and used
to simulate the outputs – i.e. they are “blind” to the expected outputs. In this way, all
available aerosol-typed data for the region of interest is used (apart from Dakar) in the
training and validation process and testing is able to shine light on the potential of the
trained and validated NNs to work properly with unseen data. The results of the (su-10

pervised) NN training and validation phase are presented below. In Sect. 4 the results
of the (unsupervised) NN testing (simulation) phase are presented.

3.2 NN training

In “supervised mode” (the training phase) batch runs are performed on a grid of 100
NNs permuting through a range of architectures such that the number of hidden neu-15

rons ranged from 4–24 (in steps of 2) and so that the training proportion ranged from
40 % to 90 % (in steps of 5 %). The NN connection weights and biases are updated
(i.e. trained) using an optimization learning algorithm. Initial tests were made with both
a single layer of hidden neurons and also with 2 layers of hidden neurons. For each
of these tests, 4 different optimization learning algorithms were also investigated: (i)20

the Levenberg–Marquardt (LM) back-propagation optimisation learning algorithm (Lev-
enberg, 1944; Marquardt, 1963) (MATLAB flag “trainlm”), (ii) Bayesian regularization
(MATLAB flag “trainbr”), (iii) resilient back-propagation (MATLAB flag “trainrp”), and (iv)
scaled conjugate-gradient back-propagation (MATLAB flag “trainscg”). The best results
were obtained with the LM algorithm applied to a single layer of hidden Tanh neurons.25

During each iteration of the learning process, the weights and biases are tuned so as
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to minimize the MSE cost function:

MSE =
1
N

∑N

i=1
(ti − yi )

2 . (4)

Note that the MSE is calculated from N output vectors yi against N AERONET target
vectors ti . Training proceeds through a number of epochs until the MSE between NN5

outputs and AERONET targets (expected outputs) is minimised. In particular, the MSE
obtained from the training data and the MSE obtained from the validation data were
summed for each NN in the grid. The optimal NN was identified as the one whose
architecture had the smallest total MSE. Table 2 shows the results of applying this
optimisation process to CASES 1–4.10

For example, the optimal CASE 4 NN, trained with data from satellite inputs and
outputs from the AERONET stations comprising Dataset A, has 22 neurons in the
hidden layer, 7 neurons in the output layer, and used 90 % of Dataset A for training
and 10 % for validation. This NN has 3 inputs: the 3 principal components (PCs) of
AOD(470), AOD(550), AOD(660), H2O and AAOD(500), and 7 outputs: 7 PCs of the15

22 logarithmically-equidistant radial bins of the AVSD and the CRI-R, CRI-I, SSA and
ASYM spectral parameters centred at 440, 675, 870 and 1020 nm. The evolution of the
optimization process as well as the statistics associated with this optimal CASE 4 NN
found are shown in Fig. 4.

Figure 4a shows (as expected) that the training MSE tends to decrease as the num-20

ber of hidden neurons is increased, and decreases at a slower rate for larger samples
of training data. Figure 4b shows that the validation MSE shows an opposite tendency
– increasing slowly with the number of hidden Tanh neurons. Two sharp peaks at (10,
60 %) and (20, 45 %) are probably due to the fact that over-fitting is occurring at these
points due to the small size of the dataset. The total training time is seen in Fig. 4c25

to increase sharply and non-linearly when the number of neurons is> 22. In relation
to the evolution of NN performance with epoch in Fig. 4d, convergence has clearly
been reached after 10 epochs (iterations) at the horizontal asymptote where the “Best”
Validation MSE= 0.719. For all NNs, the goal for the back-propagation cost function
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is set to 1/100th of the variance of the targets (for the optimal CASE 4 NN this is
equal to 0.12). In this case, the goal is very stringent and is unlikely to be reached with
an increase in the number of iterations – suggesting that a much larger and uniform
training dataset is required to improve the training performance further. We base our
interpretations in this work mostly on macro-scale statistics so as not to distract from5

the main goal of the study. We will consider intrinsic NN errors and uncertainty in more
detail in a future paper. The Pearson product-moment correlation coefficient calculated
from NN PC outputs and AERONET training PC targets for the optimal CASE 4 NN is
R = 0.992 (see Fig. 4e) and is suggestive of an excellent NN fit. This is further backed
up by histogram of the differences between NN PC outputs and AERONET training10

PC targets (Fig. 4e) which presents a sharply-peaked Gaussian having a near-zero
mean error= 0.0006 and a standard deviation (SD)= 0.0627. These macro-statistics
suggest that the optimal NN is generally well trained and performing properly the func-
tion approximation between inputs and outputs. More transparency can be gained by
performing comparative macro-statistics on the output parameters separately, as de-15

scribed in the next section.

3.3 NN Validation

The results of NN training along with the training data size for each of the CASES 1–4,
are shown in the Table 3 below. The columns “Target” and “Validation” present the mean
value of each parameter. In Table 3, the daily-averaged coarse mode peak is measured20

by the volume concentration in “Radial bin 15” (≈2.241 µm), the entry 〈AVSD〉 is the
mean value of all correlations between the NN-derived AVSD and the AERONET target
AVSD, and the AAOD(440 V 500) represents the regression of the satellite (from OMI)
AAOD at 500 nm against the AERONET AAOD at 440 nm.
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3.3.1 Microphysical outputs

For AVSD outputs related to the coarse mode, all AERONET input CASES 1–3 were
able to retrieve the daily-averaged coarse volume concentration V (c) and its modal
peak “Radial bin 15” (≈2.241 µm) to a very high level of precision: 0.967 ≤ R(d ) ≤
0.970 and 0.956 ≤ R(d ) ≤ 0.983 respectively. The satellite input CASE 4 also retrieved5

the daily-averaged coarse volume concentration V (c) and its modal peak but to a mod-
erate degree R(d ) = 0.365 and R(d ) = 0.375 respectively. Only CASE 4 was able to
retrieve the coarse mode geometric radius r(c) to a moderate degree R(d ) = 0.346.
The AERONET input CASES 1–3 failed here. As described in Appendix A, this is most
likely due to the fact that the AVSD of desert dust does not have a clearly defined10

minimum to separate the coarse and fine modes. This leads to a lot of variation in the
location of the mode separation point rs. A lack of correlation in rs then translates into
a lack of correlation in the secondary microphysical parameters like the modal geomet-
ric radii and variances that depend sensitively on it. For AVSD outputs related to the
fine mode, only the satellite input CASE 4 was able to retrieve the daily-averaged fine15

mode volume V (f ): R(d ) = 0.461. The lack of correlation with the AERONET targets
for both r(f ) and var(f ) for all NNs is due to the fact that for desert dust AVSDs, V (f )
is a small proportion of the total volume concentration (≤ 9 %). The pre-dominance of
the coarse mode meant that all 4 models were able to retrieve the fine fraction (η)
to a moderate degree: 0.404 ≤ R(d ) ≤ 0.560. The variation of R(d ) across the entire20

AVSD (not just at radial bin 15) and the daily-averaged time series of the retrieved V (c)
in CASE 4 are presented in Fig. 5.

Figure 5a shows moderate values of the regression coefficient (0.340 ≤ R(d ) ≤
0.470) across the whole AVSD with higher correlations (0.438 ≤ R(d ) ≤ 0.470) in
the fine mode: radial bins 3 (r ≈0.086 µm) to 7 (r ≈0.255 µm) and lower correla-25

tions (0.355 ≤ R(d ) ≤ 0.380) in the coarse mode: radial bins 10 (r ≈ 0.576 µm) to 18
(r ≈ 5.060 µm). In Fig. 5b is shown that while there is good agreement between the
mean value of the AERONET time series (〈V (c)〉 = 0.342) and the NN time series
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(〈V (c)〉 = 0.383) it is clear that the daily variability of V (c) is not retrieved by the NN
with retrieved values clamped to the narrow range: 0.2 ≤ V (c) ≤ 0.8 µm3 µm−2. Finally,
and importantly with respect to the AVSD, the entry “〈AVSD〉” is the mean value of all
regressions of the NN-retrieved AVSD against the target AERONET AVSD over the
whole range of values of the AOD(470) – i.e. aerosol loads. In all CASES 1–4, this5

mean value is extremely high: R(d ) > 0.944 – suggesting that the trained NNs were
able to retrieve the AVSD despite the existence of only moderate regressions on the
scale of radial bins.

Regarding the complex refractive index, CASE 1 retrieved the imaginary part CRI-
I (0.426 ≤ R(d ) ≤ 0.473) at all wavelengths considered, but was only able to retrieve10

the real part CRI-R to a lesser degree: R(d ) = 0.326 in the near-IR (1020 nm). The
addition of columnar water vapour (H2O) in CASE 2 substantially improves the re-
gression for CRI-R: 0.447 ≤ R(d ) ≤ 0.565 at all wavelengths. A marginal improvement
was found in the retrieval of CRI-I: 0.437 ≤ R(d ) ≤ 0.473 at visible wavelengths (470–
870 nm). The CASE 3 training results, despite having 4 inputs in common with CASE 215

(AOD(470), AOD(550), AOD(660) and H2O), under-performs CASE 2 outputs with re-
spect to retrieval of the CRI (with the exception of CRI-R(440) which showed a marginal
improvement from R(d ) = 0.447 to R(d ) = 0.476. The NN trained with satellite inputs
in CASE 4, somewhat surprisingly retrieved CRI-R to a more respectable degree:
0.521 ≤ R(d ) ≤ 0.532, excelling over the AERONET-input NNs. This is likely to be due20

to the inclusion of the modelled AAOD from OMI in the NN inputs. The satellite in-
puts CASE 4 NN also retrieved CRI-I at all wavelengths: 0.331 ≤ R(d ) ≤ 0.354, but to
a lesser degree than the AERONET inputs CASES 1–2.

3.3.2 Optical outputs

In CASE 1, all optical parameters (SSA and ASYM) are retrievable with regression25

coefficients in the range: 0.386 ≤ R(d ) ≤ 0.512, with the best result being obtained for
SSA(1020). The addition of columnar water vapour (H2O) in CASE 2, while hardly
impacting on the retrieval accuracy of the SSA, led to a significant improvement in
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the retrieval of the asymmetry factor (ASYM) at all wavelengths: 0.630 ≤ R(d ) ≤ 0.657.
Once again, the CASE 3 training results, despite having 4 inputs in common with CASE
2 under-performs even the CASE 1 optics outputs (with the exception of ASYM at
440 nm which is slightly better than the CASE 1 result but still worse than the CASE 2
retrieval). The addition of the 2 UV AODs in CASE 3 does not appear then to offer an5

improvement for dust in Northern Africa. The optical parameter retrievals of SSA and
ASYM from the CASE 4 NN are, in general, moderately good: 0.322 ≤ R(d ) ≤ 0.410
(with the exception of SSA(440) where R(d ) = 0.262). There appears to be a play-off
between the ability of the NN to recover all microphysical parameters and simultane-
ously all optical parameters. The best training and validation results are associated with10

CASE 2 NN. In the next section we report on the performance of the CASE 1–4 trained
NNs by feeding them with unseen input data, i.e. in unsupervised (testing) mode.

4 Results

The testing performance of the trained NNs was tested by feeding them with unseen
CASE 1–4 input data at the coastal dust site Dakar in Northern Africa (or in the pixel15

containing the site in the case of satellite inputs). The test outputs are compared with
the daily-averaged target AERONET microphysical AVSD (calculated at 22 equidistant
logarithmic radial bins spanning the range of 0.05 µm to 15 µm), the CRI and the op-
tical parameters SSA and ASYM at 440, 675, 870 and 1020 nm. The test results are
collected in Table 4 following the same general format as the training results of Table 3.20

In addition to the regression coefficient for daily-averages R(d ), regression coefficients
are also calculated for weekly-averages R(w) and monthly-averages R(m) so as to
assess the behaviour of the NN results at other timescales.
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4.1 Inputs

As for the training inputs described in Sect. 3.3, for CASES 1–2 the number of
AERONET Level 2.0 Version 2 Inversion Products daily-averages at Dakar is substan-
tially larger (862–942 records) than the 149 records available in CASE 3, and the 167
records obtained in CASE 4 due to the co-location and synchronization (the same day)5

of AERONET data with the satellite data. The fewer records for CASE 3 is due to the
fact that relatively fewer UV measurements of AOD(380) and AOD(500) exist at Dakar.
Another thing to be noted about the input data for CASES 1–4 is that outliers were de-
liberately not removed in the testing datasets so as to provide a more stringent test of
the NN retrieval. In particular, it is important to compare the CASE 4 satellite inputs with10

their co-located and synchronous AERONET counterparts. This is especially important
for the AAOD which is modelled from OMI, whereas from AERONET is calculated (see
discussion in Sect. 3.3.2). With reference to Table 4, the regression of satellite val-
ues for AOD(470), AOD(550) and AOD(660) on their AERONET co-located and syn-
chronous counterparts is moderate, spanning the narrow range: 0.421 ≤ R(d ) ≤ 0.442.15

A similar level of correlation is found for the AAOD(500): R(d ) = 0.450. However
a strong positive correlation is evident in the case of columnar H2O: R(d ) = 0.834.
Figure 6 shows the daily-averaged time series of AOD(660) (as a representative mea-
sure of the aerosol optical thickness), H2O and AAOD(500) satellite inputs overlaid on
the time series of co-located and synchronous AERONET counterparts (note that the20

AERONET AAOD used for comparison is at 440 nm).
The MODIS and OMI data appear to be systematically lower than AERONET, par-

ticularly at higher values. This is explainable by the difference in the way AERONET’s
ground-based and MODIS’s space-based remote sensing instruments measure the
AOD. AERONET’s sun photometers perform almucantar scans of light radiation25

based around the pointing direction to the sun (zenith angle) whereas MODIS’s
spectro-radiometers measure the intensity of solar radiation reflected vertically by
the Earth system (the planetary surface and the atmosphere). As a result, the light
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paths are usually different and sample different angular variations of aerosol (this ef-
fect is likely to be minimized when the sun is overhead but tends to increase close to
sunrise and sunset). For example, AOD data from 132 global AERONET stations over
a two year period were regressed against MODIS-derived AOD values and revealed
MODIS values to be systematically lower than AERONET values (Remer et al., 2005).5

Therefore, despite its small sample size in comparison with the above study, the CASE
4 co-located and synchronous dataset at Dakar is consistent with this finding and a sim-
ilar under-estimation of the satellite inputs relative to AERONET is observable (with the
exception of H2O).

4.2 Microphysical outputs10

For AVSD outputs related to the coarse mode, the AERONET input CASES 1–3 were
able to retrieve the daily-averaged coarse volume concentration V (c) at Dakar to a very
high level of precision: 0.965 ≤ R(d ) ≤ 0.969, and also the location of the coarse mode
peak (“Radial bin 15”): 0.943 ≤ R(d ) ≤ 0.963. This level of accuracy is also maintained
at the weekly and monthly timescales. The CASE 4 NN with satellite inputs was able to15

retrieve the daily-averaged coarse volume concentration V (c) and its modal peak with
a moderate degree of correlation: R(d ) = 0.514 and R(d ) = 0.486 respectively. Unfor-
tunately, none of the NNs could retrieve the daily-averaged coarse mode geometric
radius r(c) or its variance var(c) for reasons described in Sect. 3.3.1 regarding the
problematic determination of the mode separation point for dust AVSDs. The same20

is true for the daily-averaged fine mode volume V (f ). The satellite CASE 4 NN could
only retrieve V (f ) to a low to moderate degree: R(d ) = 0.261 (with some improvement
at the monthly timescale: R(m) = 0.388). CASES 1–4 present unacceptable correla-
tions for r(f ) and var(f ) which, as described in Sect. 3.3.2, is explained by the fact
that for desert dust fine particles contribute only a small proportion to the total volume25

concentration. Future work will present results of a NN retrieval scheme for regions
dominated by other aerosol types such as urban pollution or the products of biomass
burning that have a more clearly defined fine mode. With respect to the fine fraction (η),
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the dominance of the coarse mode meant that CASES 1–4 were able to retrieve this
daily-averaged parameter to a moderate to good accuracy: 0.400 ≤ R(d ) ≤ 0.491 with
the satellite CASE 4 NN retrieving η with R(d ) = 0.413. Much stronger correlations for
this parameter are evident at the monthly timescale: R(m) ≥ 0.541. It is encouraging
that the satellite retrievals for V (c), its peak at radial bin 15 and also for η all show5

moderate correlations with co-located and synchronous AERONET outputs at the daily
timescale: R(d ) = 0.514, 0.486 and 0.413 respectively.

Finally, with respect to the AVSD, in this section the effect of increasing aerosol load
(using AOD(470) as a proxy), on the AVSD regression is also briefly investigated. Low
values of AOD correspond to small volume concentrations and are important to inspect10

due to the fact that spurious retrieval effects are known to exist at low number densities
(Dubovik and King, 2000). The reason for this is that AERONET’s Level 2.0 Version 2
Inversion Products are obtained following certain constraints: (i) aerosol loads should
be moderate (AOD> 0.4), (ii) the sky should not have strong cloud contamination, (iii)
solar zenith angles should be high (> 50◦) so that the air mass factor is high, and15

(iv) simultaneous measurements of AOD(440), AOD(675), AOD(870) and AOD(1020)
should be available within ±15 min of the almucantar measurement. When these con-
ditions are not satisfied, inversions are less reliable or absent from the AERONET data
record. Assessment of the dependence of AVSD on AOD(470) is done as follows: (1)
the NN-derived AVSDs were individually regressed on co-located and synchronous20

AERONET AVSD targets for days sorted by AOD(470), and (2) the 20 % quantiles
of AOD(470) were identified and used to calculate the mean AVSD from a sample
of AVSDs corresponding to days where the AOD(470) is 10 % above and below the
quantile point. Figure 7 looks into this behaviour in more analytical detail.

In the left panel of Fig. 7 showing the variation of the regression coefficient (R) with25

AOD(470), it is clear that the variation in the value of R decreases with increasing
AOD(470). There is much greater variance in the value of R when AOD(470)≤ 0.4.
This is expected since, as mentioned above, AERONET retrievals are not as reliable
for low aerosol loads. In the right panels of Fig. 7, the mean AVSD is calculated at
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20 %, 40 %, 60 % and 80 % of the min-max range (0.01 to 1.43) of AOD(470) values.
The mean NN-derived and AERONET AVSD at each quantile is calculated from a 20 %
sample (10 % above and below) in the AOD(470) domain. It can be seen that for the
satellite NN of CASE 4, a substantial difference is observable at the 60 % quantile level
where AOD(470)= 0.865 and also at the 80 % level where AOD(470)= 1.15. However,5

the number of AVSDs used to calculate the mean AVSD at these quantile points is small
(N = 7 and N = 3 respectively) and are not likely to be statistically representative. There
is a strong resemblance between the mean AVSD obtained at the more populated
20 % and 40 % AOD(470) quantiles. Furthermore, all models (CASES 1–4) were able
to retrieve very accurately the AVSD across the entire range of AOD(470) values as10

measured by the value 〈AVSD〉 (see Table 3) with mean regressions falling in the range:
0.906 ≤ R(d ) ≤ 0.918. It is encouraging that here, the best correlation was obtained
with the satellite inputs CASE 4 NN. This brief analysis suggests that the majority of
daily-averaged AVSDs retrieved with the satellite input CASE 4 NN at aerosol loads
AOD(470)≥ 0.4 appear to be reliable.15

With regard to the complex refractive index, Table 4 shows that the CASE 1 NN
failed to retrieve the CRI-R. It did however retrieve the CRI-I to a moderate degree:
0.406 ≤ R(m) ≤ 0.453 with retrieval improving with increasing wavelength. The results
for CRI-I also improve substantially at the monthly timescale: 0.651 ≤ R(m) ≤ 0.675
where even CRI-R(440) also becomes acceptable with a value R(m) = 0.375. As de-20

scribed in Sect. 3.3, the addition of H2O (i.e. the CASE 2 simulation) substantially
improves the regression for CRI-R: 0.335 ≤ R(d ) ≤ 0.410 (with even more pronounced
positive correlations at the monthly timescale). The retrieval of CRI-I is relatively unaf-
fected by the addition of H2O to the inputs. These test results validate our claim that
H2O is indeed an important input parameter and should be added to the base set:25

AOD(470), AOD(550) and AOD(660) for satellite-based retrievals. In particular, H2O is
required for moderate retrieval of CRI-R. This effect is shown in Fig. 8.

The further addition UV AOD inputs in CASE 3 did not lead to an increase in
the ability of the NN to retrieve the complex refractive index. To the contrary, the
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correlations were systematically worse. For the satellite inputs CASE 4 NN, the re-
trievals of the absorption-related CRI-I are acceptable and show a moderate corre-
lation: 0.368 ≤ R(d ) ≤ 0.381. The correlation strengthens substantially at the monthly
timescale and especially at shorter wavelengths: 0.469 ≤ R(m) ≤ 0.550. An acceptable
correlation is only observed for CRI-R(440) at the daily timescale: R(d ) = 0.344.5

4.3 Optical outputs

Referring to Table 4, the CASE 1 NN retrieves the optical SSA and ASYM parameters
to a moderate degree: 0.336 ≤ R(d ) ≤ 0.481, with the best result being obtained for
SSA(1020). In fact, for the absorption-related parameter SSA (as noted above for the
CRI-I), the retrieval improves with increasing wavelength and also substantially at the10

monthly timescale: 0.559 ≤ R(m) ≤ 0.734. The addition of H2O (i.e. the CASE 2 simu-
lation) leads to a minor improvement in the retrieval of the asymmetry factor (ASYM):
0.504 ≤ R(d ) ≤ 0.516. The correlations for SSA are relatively unaffected by the addi-
tion of H2O. Once again, the further addition of UV AOD inputs in CASE 3 muddied
the waters and failed to improve the retrieval of the optical parameters (with the excep-15

tion of ASYM(440) which showed a slight improvement over the CASE 1–2 NNs at the
daily timescale. For the CASE 4 NN (satellite inputs), the retrievals of the absorption-
related SSA are acceptable and show a moderate correlation: 0.373 ≤ R(d ) ≤ 0.440.
The correlation strengthens substantially at the monthly timescale and especially at
shorter wavelengths: 0.521 ≤ R(m) ≤ 0.710. An acceptable correlation is also observed20

for ASYM (440–870) at the monthly timescale: 0.304 ≤ R(m) ≤ 0.348.
A visual overview of the retrieval performance of the spectrally-dependent micro-

physical (CRI) and optical parameters (SSA and ASYM) at the daily, weekly and
monthly timescale for the satellite CASE 4 is shown in Fig. 9.

When tabulated in this “micro-array” format, one can see at a glance that the satellite25

input trained NN of CASE 4 retrieves the spectral behaviour of the absorption-related
SSA and CRI-I parameters better than the shape-related CRI-R and ASYM parameters
at all timescales. As mentioned with regard to macro-statistics, more detail is revealed
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by looking at the time series of the daily-average retrievals. For example, in Fig. 10
below, daily-average retrievals of SSA(440) at Dakar are shown for the CASE 4 NN.

Figure 10 shows that the satellite retrieval at Dakar, while insufficiently fitting the
magnitude of peaks and troughs in the SSA(440) time series, does echo them to
some degree. Furthermore, out of the 169 co-located and synchronous daily-averages,5

73.653 % (i.e. 124 of them) are within ±0.03 of the corresponding AERONET data (the
target level of uncertainty suggested by Mishchenko et al., 2007). In the next section,
we briefly look at the performance (in terms of the target levels of uncertainty) of the
satellite input CASE 4 NN for the other retrieved parameters.

4.4 Uncertainty analysis10

As mentioned in the introduction, Mishchenko et al. (2007) presented the following
target levels of uncertainty for the output parameters: r(f ) and r(c): ±10 %, var(f ) and
var(c): ±40 %, SSA(±0.03) and CRI-R (±0.02). In Table 5, the number of retrieved
daily-averages that fall within the target band, are presented for the results of the CASE
4 test at Dakar.15

In the context of the target levels of uncertainty provided, the satellite input NN of
CASE 4 is performing quite well as shown by the percentage of certain simulations
(“Certainty”). The retrieval of r(c) is problematic (34.32 % certainty) for the reasons
described in Sect. 4.2, and the retrieval of CRI-R at all wavelengths (certainties are in
the low range 39.05 % to 44.97 %) is also problematic for the reasons reported above20

in Sect. 4.3. For all of the other parameters at least 60 % of the retrieved daily-averages
are within the accepted level of difference which is a satisfactory result given the small
size of the co-located and synchronous data sample at Dakar.

4.5 Timescale analysis

Here we briefly show the results of quantifying the differences between the NN outputs25

and the AERONET values at different timescales in order to measure the ability of the
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trained NNs to capture temporal patterns in the data. As a measure of the typical ab-
solute difference for each output, we calculated the median absolute error (MAE) and
also the median absolute relative error (MARE). For MAE, the absolute differences be-
tween the NN outputs and the AERONET values at different timescales were calculated
and the median value was then reported. For the MARE, the absolute relative error:5

1-p(NN)/p(AERONET) for each parameter p at different timescales were calculated
and the median value was then reported as a percentage. In the case of the AVSD, the
coarse mode volume concentration V (c) was used as a proxy single parameter. The
MARE in particular, is a good summary measure of the typical difference between the
NN model and the expected results. The results of this analysis are shown in Table 6.10

With regard to the microphysics, for CASE 1–3 test results of V (c) at Dakar, the
use of ground-based AERONET inputs produces results that differ typically by 15.6–
23.8 % from expected values (as measured by MARE). This error is comparable to
reported errors for the AVSD retrieved by the AERONET inversion (Dubovik and King,
2000). The important (for this study) satellite input CASE 4 test at Dakar presents15

a larger error (MARE= 32.5 %). At the daily, weekly and monthly timescales, the MARE
for CASE 4: are 27.6 %, 32.5 % and 24.8 % respectively. The MARE for CRI-R for all
CASES 1–4 is very small and spans the range: 0.9 % to 2.2 % – indicating that the
optimal NNs are simulating these parameters well (in the context of an acceptable
Mishchenko uncertainty of ±0.02). Hardly any variation in the errors with timescale is20

observed here. However, MARE values for CRI-I reveal a very different trend. First of
all, they are large compared with the MARE for the other parameters spanning the
range: 34.4 % to 67.7 % for all CASES 1–4. The reason for the appearance of such
significantly larger MARE values for CRI-I is that it has a very small absolute value
compared to the other parameters: 〈CRI-I〉 ≤ 0.006. For days when the value of this25

parameter is particularly small (close to zero), the relative error tends towards a 0/0
type infinity error (“0/0 inflation”). Furthermore, while the impact of such outlier cases
was avoided by using the median rather than the mean as a measure of the average,
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clearly the results suggest that there are many “average” co-located and synchronous
outputs where this effect starts to play a role around the median.

In the context of the optical parameters, the MARE for SSA, and ASYM for all CASES
1–4 is very small and spans the range: 1.0 % to 3.4 % – indicating once again that
the optimal trained NNs are simulating these parameters well (in the context of an5

Mishchenko uncertainty of ±0.03 for SSA). Hardly any variation in the errors with
timescale is observable here. Overall, the results of Table 6 suggest that it is not clear
that the timescale plays an important role on the size of the typical error (apart from
CRI-I where temporal averaging helps smooth out the effect of 0/0 inflation – leading
to lower MARE values).10

5 Discussion

A new methodology has been developed, based on a NN model, with the aim of retriev-
ing aerosol microphysical and optics parameters from satellite remote sensing data at
the daily timescale and to an acceptable degree of accuracy. The NNs were regularised
and trained with AERONET Level 2.0 Version 2 Inversion Products at sites centred on15

the peak of dust extinction (according to the GOCART model averaged over a 10 yr
period) in Northern Africa, and have been shown to be capable of learning the rela-
tionship between satellite inputs and the desired output parameters. The trained NNs
have the added benefit that they retrieve the entire time series of all output parameters
simultaneously. We were also able to demonstrate a new technique for objectively de-20

ducing optimal NN architectures by minimizing the back-propagation cost function over
a grid of runs. Since in regression schemes like NN models, possible redundancies in
both the data and the NN model space can lead to ill-posed problems, we have tried
to eliminate these problems by carefully selecting data of the same aerosol type (pre-
dominantly dust as flagged up by the GOCART model global average), by constructing25

representative test scenarios, and by removing missing values and outliers. Further-
more, PCA was used to extract “meaningful” components from the variables in the NN
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model space, to eliminate remove redundancies and to increase the performance of
the NN-based retrievals.

With regard to testing the ability of the NNs to extrapolate to unseen data at Dakar,
it is important to bear in mind that while an estimate of output uncertainties is provided
with reference to known a priori target values, the test results presented in Sect. 45

incorporate also a network-induced error and are therefore only approximate. Having
said this, the histogram of the differences between NN outputs and training targets
was found to present a sharply-peaked Gaussian having a near-zero mean error. In
assessing the performance of the NN model, the uncertainty accuracy requirements
provided by Mishchenko et al. (2007) were shown to provide a practical guide in that10

they provide both limits of validity and also a context for the comparison of test retreivals
with known a priori AERONET data as was seen in Table 5. In order to help summarize
our findings, an overall assessment of the performance of the trained NNs at the daily
timescale is shown in Table 7 below:

Assessing the performance of NNs trained on different combinations of inputs in the15

context of Northern African desert dust data reveals that:

1. AERONET-measured AOD inputs (470, 550 and 600 nm) alone (CASE 1) are
insufficient to retrieve the daily spectral behaviour of the CRI-R simultaneously
with the AVSD, CRI-I and secondary microphysical parameters, together with the
optical parameters SSA and ASYM,20

2. the inclusion of AERONET H2O in the inputs substantially improves the retrieval
potential of the NN, especially with respect to the daily spectral behaviour of CRI-
R and ASYM,

3. the further inclusion of AERONET UV AOD (380 and 500 nm) in the inputs led
to a deterioration in the performance particularly with respect to the absorption-25

related parameters SSA and CRI-I at the daily timescale,

4. the NN trained with MODIS AOD (470, 550 and 660 nm) and H2O, and OMI AAOD
(500 nm) was able to retrieve with a good to very good degree of accuracy the
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daily-averaged AVSD as well as secondary microphysical parameters related to
the coarse mode. The NN was also able to simultaneously retrieve the CRI-R
(440) and the CRI-I (all wavelengths) to a moderate degree and managed to re-
trieve the spectral behaviour of the SSA to a moderate to good degree – but at
the expense of the daily-averaged ASYM whose retrieval was poor.5

6 Conclusions

The results show that it is possible to deduce an optimal NN architecture and to train
it to retrieve daily-averaged aerosol microphysical and optical parameter values from
satellite inputs. The acceptable performance of the NN retrieval with regard to AVSD
over nearly the whole range of observed aerosol loads, means also that important10

secondary microphysical parameters such as the fine fraction, and the modal volume
concentrations obtained are also likely to be robust and reliable (despite observed
problems related to the way AERONET deduces the location of the mode separation
point). The potential of the NN for retrieving size distribution information is interesting as
this may open up the possibly of adding size distribution data to the arsenal of satellite15

products currently available.
The potential for retrieving the complex refractive index and the optical parame-

ters, although less accurate, nevertheless can provide important information on these
key parameters over regions where no ground-truth data exists. In essence, the NN
model applied to satellite inputs, may allow for the creation of a virtual space-based20

AERONET centred at 1◦ ×1◦ resolution longitude-latitude grid points over the Earth’s
surface.

The results presented here are appropriate to dust-dominated data over Northern
Africa and further studies will assess whether or not the same methodology can be
applied to other dust regions, as well as to regions dominated by other key aerosol25

types such as marine aerosol and the products of biomass burning and urban pollution.
The NN model developed appears to offer some potential for obtaining daily retrievals
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from satellite data, and it is hoped, will contribute to efforts currently underway for
globally monitoring aerosols from space and hence improving assessments of global
climate forcing.

Appendix A

As mentioned in Sect. 2.1.2, the secondary microphysical parameters: r(f ), r(c),5

var(f ), var(c), V (f ) and V (c) need to be calculated so as to compare NN outputs
with AERONET outputs. In AERONET’s retrieval algorithm, all of these parameters
are calculated from the AVSD by specifying a mode separation point rs that divides
the distribution into 2 volume concentrations V (f ) and V (c). From the retrieved AVSD:
dV (r)/dlnr , the volume concentration V occupied by particles spanning the range of10

radial sizes [r1,r2] is then calculated by integrating over the distribution,

V =

r2∫
r1

dV (r)

d lnr
dlnr . (A1)

In principle, the aerosol number size distribution (ANSD): dN(r)/dlnr or dN(r)/dr ,
could equally well be used instead of the AVSD (King et al., 1978), since the conver-15

sion between the AVSD and ANSD parameters is straight-forward (see for example
Appendix A of Sayer et al., 2012). Note that the AVSD is preferable to the ANSD as it is
more accurate when inverting scattering properties that are more sensitive to aerosol
particle volume, than number (Dubovik et al., 2011). The AERONET inversion algo-
rithm estimates V by using Trapezium Rule integration (Dubovik and King, 2000) and20

the same approach was adopted in this work. The volume concentration of the fine
mode V (f ) is obtained by setting r1 = 0.05 µm and r2 = rs while the volume concentra-
tion of the coarse mode V (c) is obtained by setting r1 = rs and r2 = 15 µm. The ratio
of the area of the AVSD contributed to by the fine mode to the total area over the
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whole distribution constitutes the fine fraction η. The logarithmic volume geometric ra-
dius (mean logarithm of radius) measures of the characteristic size of “typical” aerosol
particles in the atmospheric column sampled, and is given by,

lnrV =

∫r2
r1

ln rdV (r)
d lnr dlnr∫r2

r1

dV (r)
d lnr dlnr

. (A2)

5

The geometric radius of the fine mode r(f ) is obtained by setting r1 = 0.05 µm and
r2 = rs in this expression and then exponentiating, while the geometric radius of the
coarse mode r(c) is obtained by setting r1 = rs and r2 = 15 µm and then exponentiating.
The geometric standard deviation which measures the spread of particle modes is
given by,10

σV =

√√√√√∫r2
r1

(lnr − lnrV )2 dV (r)
d lnr dlnr∫r2

r1

dV (r)
d lnr dlnr

. (A3)

The geometric variance of the fine mode var(f ) = (σV f )
2 is obtained by setting

r1 = 0.05 µm and r2 = rs in this expression and then squaring, while the geometric vari-
ance of the coarse mode var(c) is obtained by setting r1 = rs and r2 = 15 µm and then15

squaring. From the above, it is clear that all secondary microphysical parameters de-
pend on a precise determination of the fine mode/coarse mode separation point rs.
At present, AERONET estimates this by finding the minimum within the size interval
0.439 ≤ r ≤ 0.992 µm (Dubovik et al., 2000). The same approach was used in this study
although there are signs (see Sects. 3.3.2 and 4) that this is perhaps problematic for20

aerosol distributions like those for desert dust that do not have clearly separated fine
and coarse modes.
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Table 1. Selection of desert-dust dominated AERONET sites for this work. N is the number of
complete AERONET daily-averaged Level 2.0 Version 2 inversion records. For each site, the
total mean extinction AOD and the percentage composition of the total is given for GOCART-
modelled aerosol types.

AEROSOL SITE N (inversions GOCART Mean AOD & aerosol composition
TYPING 7 Apr 2012) 〈AOD〉 % SO2 % OC % BC % Sea Salt % Dust

TRAINING Tamanrasset INM 407 0.793 4.54 % 1.39 % 0.63 % 0.13 % 93.44 %
(Dataset A) Agoufou 1028 0.973 3.70 % 2.47 % 0.82 % 0.10 % 92.91 %

Banizoumbou 2283 0.920 4.57 % 3.48 % 1.09 % 0.11 % 90.76 %
DMN Maine Soroa 680 0.967 5.27 % 3.52 % 1.14 % 0.10 % 90.07 %
IER Cinzana 1469 0.823 4.86 % 4.62 % 1.22 % 0.12 % 89.19 %
Ouagadougou 966 0.776 6.06 % 7.47 % 1.93 % 0.13 % 84.41 %
Niamey 310 0.920 4.57 % 3.48 % 1.09 % 0.11 % 90.76 %

TRAINING IER Cinzana 1469 0.823 4.86 % 4.62 % 1.22 % 0.12 % 89.19 %
(Dataset B) Dahkla 299 0.629 8.43 % 1.91 % 0.79 % 0.95 % 88.08 %

Santa Cruz Tenerife 660 0.405 15.06 % 2.96 % 1.23 % 4.20 % 76.79 %
Izana 563 0.358 17.32 % 3.07 % 1.40 % 5.59 % 72.63 %

SIMULATION Dakar 1583 0.705 7.38 % 5.53 % 1.42 % 0.71 % 84.82 %
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Table 2. In this study 4 distinct optimal NN architectures were constructed corresponding to
CASES 1–4. NNs for CASES 1–3 are trained on AERONET-only inputs and outputs. CASE 4
is trained on satellite inputs and AERONET outputs. The number of hidden neurons and their
Tanh activation functions in NN layer 1 are in italic to distinguish them from NN layer 2 linear
output neurons.

NN OPTIMISATION PARAMETER AERONET SATELLITE
CASE 1 CASE 2 CASE 3 CASE 4

AERONET AOD(470) AERONET AOD(470) AERONET AOD(470) MODIS AOD(470)
AOD (Visible) AERONET AOD(550) AERONET AOD(550) AERONET AOD(550) MODIS AOD(550)

AERONET AOD(660) AERONET AOD(660) AERONET AOD(660) MODIS AOD(660)
INPUTS Columnar Water Vapour AERONET H2O AERONET H2O MODIS H2O

Absorption AOD OMI AAOD(500)
AOD (UV) AERONET AOD(380)

AERONET AOD(500)
AVSD(22 bins): 0.05–15 µm AVSD(22 bins): 0.05–15 µm AVSD(22 bins): 0.05–15 µm AVSD(22 bins): 0.05–15 µm

OUTPUTS Microphysics CRI-R(440,675,870,1020) CRI-R(440,675,870,1020) CRI-R(440,675,870,1020) CRI-R(440,675,870,1020)
CRI-I(440,675,870,1020) CRI-I(440,675,870,1020) CRI-I(440,675,870,1020) CRI-I(440,675,870,1020)

Optics SSA(440,675,870,1020) SSA(440,675,870,1020) SSA(440,675,870,1020) SSA(440,675,870,1020)
ASYM(440,675,870,1020) ASYM(440,675,870,1020) ASYM(440,675,870,1020) ASYM(440,675,870,1020)

Training Dataset A A B A
X = PCA (inputs); 98 % variance 1 2 2 3
Y = PCA (outputs): 98 % variance 7 7 6 7

ARCHITECTURE Number of Layers 2 2 2 2
Backpropagation Method LM LM LM LM
Cost Function MSE MSE MSE MSE
Activation Functions (Layer 1/Layer 2) Tanh/Linear Tanh/Linear Tanh/Linear Tanh/Linear
Optimal Neurons (Layer 1/Layer 2) 10/7 14/7 10/6 22/7
Optimal Train % 90 % 85 % 85 % 90 %
N (samples) 3808 3808 353 213
N (training) 3427 3237 300 181
N (validation) 381 571 53 32
Train time [s] 539 1079 86 100

OUTCOME Best Epoch 2 13 24 10
Best training MSE 0.848 0.760 0.765 0.818
Best validation MSE 0.714 0.629 0.552 0.719
Pearson R (Y = aX +b) 0.998 0.998 0.998 0.992
a 0.994 0.995 0.994 0.985
b 0.000 0.000 0.000 0.005
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Table 3. Training results obtained for the optimal NN found for each of the CASES 1–4. The
mean “Target” outputs (AERONET) are presented along with the mean “Validation” outputs
(NN) together with the Pearson product-moment correlation coefficient obtained at the daily
timescale R(d ). The outputs are divided into microphysical parameters derived from the AVSD
and the CRI, and the optical parameters SSA and ASYM.

TRAINING (NAF) AERONET SATELLITE

CASE 1 CASE 2 CASE 3 CASE 4

Target Validation R(d ) Target Validation R(d ) Target Validation R(d ) Target Validation R(d )

N (samples) 2099 1985 353 134
AOD(470) 0.721 0.695 0.624 0.609
AOD(550) 0.704 0.678 0.604 0.583
AOD(660) 0.684 0.659 0.582 0.556
H2O 2.265 2.357 2.289
AAOD(440 V 500) 0.061
AOD(380) 0.621
AOD(500) 0.650

Microphysics V (f ) 0.022 0.022 −0.119 0.022 0.023 0.177 0.023 0.026 0.290 0.029 0.030 0.461
V (c) 0.434 0.432 0.969 0.420 0.417 0.967 0.328 0.320 0.970 0.383 0.342 0.365
η 0.058 0.058 0.473 0.059 0.061 0.520 0.079 0.087 0.387 0.090 0.085 0.404
r(f ) 0.109 0.109 0.031 0.109 0.110 0.209 0.118 0.120 0.288 0.111 0.112 0.243
r(c) 2.051 2.028 0.007 2.055 2.046 0.114 1.855 1.871 0.255 2.018 1.994 0.385
var(f ) 1.139 1.135 −0.007 1.139 1.136 0.053 1.153 1.178 0.046 1.137 1.135 −0.194
var(c) 1.560 1.562 0.158 1.563 1.569 0.166 1.584 1.572 0.346 1.534 1.560 0.268
Radial Bin 15 0.982 0.983 0.956 0.375
〈AVSD〉 0.958 0.961 0.964 0.944
CRI-R(440) 1.472 1.466 0.068 1.472 1.467 0.447 1.475 1.472 0.476 1.448 1.446 0.532
CRI-R(675) 1.487 1.482 0.204 1.488 1.484 0.512 1.492 1.490 0.480 1.472 1.472 0.528
CRI-R(870) 1.471 1.467 0.276 1.473 1.470 0.546 1.481 1.481 0.484 1.464 1.465 0.521
CRI-R(1020) 1.458 1.453 0.326 1.459 1.457 0.565 1.469 1.469 0.493 1.452 1.454 0.521
CRI-I(440) 0.005 0.005 0.426 0.005 0.005 0.437 0.006 0.007 0.292 0.006 0.006 0.338
CRI-I(675) 0.003 0.003 0.450 0.003 0.003 0.461 0.004 0.006 0.258 0.004 0.004 0.354
CRI-I(870) 0.003 0.003 0.461 0.003 0.003 0.465 0.003 0.006 0.230 0.003 0.004 0.346
CRI-I(1020) 0.003 0.003 0.473 0.003 0.003 0.473 0.003 0.006 0.220 0.003 0.004 0.331

Optics SSA(440) 0.900 0.900 0.404 0.899 0.898 0.409 0.898 0.895 0.363 0.900 0.896 0.262
SSA(675) 0.948 0.945 0.509 0.947 0.944 0.511 0.939 0.931 0.387 0.938 0.934 0.347
SSA(870) 0.954 0.951 0.508 0.953 0.950 0.508 0.950 0.940 0.381 0.949 0.945 0.354
SSA(1020) 0.957 0.954 0.512 0.956 0.952 0.510 0.953 0.942 0.379 0.952 0.948 0.351
ASYM(440) 0.770 0.770 0.435 0.769 0.768 0.643 0.761 0.756 0.530 0.763 0.761 0.322
ASYM(675) 0.742 0.742 0.456 0.741 0.740 0.657 0.735 0.726 0.422 0.736 0.733 0.335
ASYM(870) 0.743 0.743 0.399 0.743 0.741 0.630 0.733 0.723 0.382 0.736 0.733 0.370
ASYM(1020) 0.748 0.748 0.386 0.747 0.746 0.627 0.737 0.727 0.384 0.742 0.739 0.410
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Table 4. Test results obtained from the optimised trained NNs for CASES 1–4 using inputs from
the Dakar AERONET site and satellite inputs from MODIS and OMI over Dakar.

SIMULATION (Dakar) AERONET

CASE 1 CASE 2 CASE 3

Target Simulation R(d ) R(w) R(m) Target Simulation R(d ) R(w) R(m) Target Simulation R(d ) R(w) R(m)

N (samples) 942 931 149
AOD(470) 0.649 0.640 0.674
AOD(550) 0.626 0.618 0.650
AOD(660) 0.603 0.594 0.626
H2O 2.698 2.244
AAOD(440 V 500)
AOD(380) 0.710
AOD(500) 0.669

Microphysics V (f ) 0.026 0.026 0.115 0.279 0.581 0.026 0.026 0.209 0.290 0.504 0.033 0.027 −0.016 0.063 0.390
V (c) 0.357 0.360 0.965 0.950 0.959 0.353 0.355 0.967 0.950 0.961 0.344 0.361 0.969 0.940 0.949
η 0.092 0.079 0.474 0.599 0.762 0.093 0.085 0.491 0.600 0.812 0.115 0.082 0.400 0.446 0.706
r(f ) 0.115 0.118 0.043 0.227 0.344 0.115 0.117 0.029 0.152 −0.048 0.127 0.115 −0.060 −0.237 −0.703
r(c) 1.928 1.909 −0.028 −0.257 0.000 1.929 1.923 0.009 0.103 0.098 1.934 1.888 −0.035 −0.151 0.151
var(f ) 1.529 1.514 −0.041 0.065 0.067 1.142 1.171 −0.065 0.018 −0.146 1.165 1.175 0.227 0.248 0.601
var(c) 3.056 2.650 0.239 0.312 0.049 1.529 1.530 0.176 0.273 0.125 1.514 1.501 0.102 0.460 0.466
Radial Bin 15 0.956 0.943 0.963
〈AVSD〉 0.912 0.913 0.906
CRI-R(440) 1.472 1.457 0.209 0.235 0.375 1.457 1.458 0.374 0.370 0.542 1.462 1.463 0.307 0.289 0.368
CRI-R(675) 1.488 1.479 0.048 −0.058 −0.240 1.480 1.481 0.335 0.347 0.473 1.482 1.482 0.318 0.337 0.303
CRI-R(870) 1.472 1.471 0.175 0.120 0.034 1.471 1.473 0.383 0.396 0.491 1.471 1.471 0.350 0.396 0.300
CRI-R(1020) 1.459 1.460 0.244 0.220 0.176 1.460 1.461 0.410 0.432 0.529 1.457 1.457 0.379 0.390 0.264
CRI-I(440) 0.005 0.006 0.406 0.437 0.651 0.006 0.006 0.395 0.427 0.585 0.007 0.007 0.208 0.214 −0.048
CRI-I(675) 0.003 0.003 0.436 0.464 0.675 0.003 0.003 0.427 0.458 0.617 0.004 0.004 0.169 0.207 −0.004
CRI-I(870) 0.003 0.003 0.445 0.466 0.665 0.003 0.003 0.433 0.461 0.613 0.004 0.003 0.154 0.199 −0.001
CRI-I(1020) 0.003 0.003 0.453 0.473 0.661 0.003 0.003 0.439 0.465 0.608 0.004 0.003 0.147 0.195 −0.005

Optics SSA(440) 0.901 0.897 0.336 0.360 0.559 0.896 0.895 0.314 0.291 0.462 0.883 0.885 0.203 0.233 −0.105
SSA(675) 0.948 0.947 0.472 0.519 0.708 0.947 0.946 0.463 0.506 0.665 0.938 0.941 0.263 0.282 0.035
SSA(870) 0.954 0.957 0.477 0.509 0.698 0.956 0.956 0.464 0.499 0.655 0.948 0.951 0.275 0.280 0.024
SSA(1020) 0.956 0.959 0.481 0.507 0.692 0.959 0.958 0.466 0.493 0.643 0.952 0.955 0.277 0.276 0.004
ASYM(440) 0.769 0.764 0.425 0.555 0.734 0.764 0.763 0.504 0.525 0.489 0.763 0.764 0.544 0.547 0.557
ASYM(675) 0.742 0.731 0.440 0.507 0.680 0.731 0.730 0.512 0.479 0.452 0.731 0.732 0.451 0.496 0.399
ASYM(870) 0.744 0.731 0.405 0.471 0.648 0.731 0.730 0.504 0.454 0.425 0.732 0.733 0.395 0.453 0.305
ASYM(1020) 0.748 0.736 0.393 0.445 0.610 0.736 0.736 0.516 0.446 0.409 0.738 0.740 0.382 0.446 0.276
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Table 4. Continued.

SIMULATION (Dakar) SATELLITE

CASE 4

Target Simulation R(d ) R(w) R(m)

N (samples) 167 167
AOD(470) 0.590 0.357 0.421
AOD(550) 0.562 0.316 0.442
AOD(660) 0.532 0.301 0.439
H2O 2.419 2.779 0.834
AAOD(440 V 500) 0.067 0.048 0.450
AOD(380)
AOD(500)

Microphysics V (f ) 0.030 0.030 0.261 0.214 0.388
V (c) 0.305 0.315 0.514 0.438 0.487
η 0.112 0.093 0.413 0.329 0.541
r(f ) 0.115 0.112 −0.117 −0.296 −0.117
r(c) 1.906 1.891 0.105 −0.060 0.042
var(f ) 1.137 1.134 −0.115 −0.076 −0.096
var(c) 1.529 1.525 0.114 0.092 0.000
Radial Bin 15 0.486
〈AVSD〉 0.918
CRI-R(440) 1.449 1.450 0.344 0.228 0.294
CRI-R(675) 1.474 1.475 0.228 0.104 0.162
CRI-R(870) 1.469 1.470 0.153 0.057 0.179
CRI-R(1020) 1.460 1.461 0.139 0.036 0.162
CRI-I(440) 0.007 0.007 0.381 0.347 0.550
CRI-I(675) 0.004 0.004 0.372 0.288 0.482
CRI-I(870) 0.004 0.004 0.373 0.274 0.486
CRI-I(1020) 0.004 0.004 0.368 0.249 0.469

Optics SSA(440) 0.887 0.887 0.440 0.506 0.710
SSA(675) 0.936 0.935 0.395 0.347 0.562
SSA(870) 0.947 0.947 0.383 0.314 0.546
SSA(1020) 0.951 0.950 0.373 0.283 0.521
ASYM(440) 0.757 0.756 0.159 0.120 0.331
ASYM(675) 0.725 0.723 0.149 0.084 0.348
ASYM(870) 0.726 0.724 0.094 0.010 0.304
ASYM(1020) 0.732 0.731 0.067 −0.031 0.261
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Table 5. Uncertainty analysis using the target levels of Mishchenko et al. (2007). Results are
shown for the CASE 4 test at Dakar at the daily timescale.

MISHCHENKO PARAMETER Uncertainty Level CASE 4 test at Dakar (N = 169)
〈AERONET〉 〈NN〉 N Certain Certainty

r(f ) ±10 % 0.115 0.118 102 60.36 %
r(c) ±10 % 1.928 1.909 58 34.32 %
var(f ) ±40 % 1.529 1.514 169 100.00 %
var(c) ±40 % 3.056 2.650 169 100.00 %
CRI-R(440) ±0.02 1.472 1.457 66 39.05 %
CRI-R(675) ±0.02 1.488 1.479 76 44.97 %
CRI-R(870) ±0.02 1.472 1.471 76 44.97 %
CRI-R(1020) ±0.02 1.459 1.460 70 41.42 %
SSA(440) ±0.03 0.901 0.897 124 73.37 %
SSA(675) ±0.03 0.948 0.947 115 68.05 %
SSA(870) ±0.03 0.954 0.957 119 70.41 %
SSA(1020) ±0.03 0.956 0.959 121 71.60 %
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Table 6. Test results at Dakar obtained for CASES 1–4 for the median absolute difference
(MAE) and median absolute relative error (MARE) of output parameters, at the daily, weekly
and monthly timescale.

TIMESCALE ANALYSIS AERONET
CASE 1 CASE 2

Daily (d) Weekly (w) Monthly (m) Daily (d) Weekly (w) Monthly (m)
MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE %

V (c) 0.081 11.6 0.093 15.6 0.072 11.5 0.079 11.6 0.090 15.2 0.062 12.0
CRI-R(440) 0.022 1.5 0.022 1.6 0.021 1.5 0.021 1.4 0.020 1.4 0.018 1.2
CRI-R(675) 0.018 1.2 0.019 1.3 0.017 1.1 0.018 1.2 0.016 1.1 0.013 0.9
CRI-R(870) 0.018 1.2 0.018 1.3 0.018 1.2 0.016 1.1 0.017 1.1 0.013 0.9
CRI-R(1020) 0.018 1.3 0.017 1.2 0.015 1.1 0.017 1.1 0.017 1.2 0.014 0.9
CRI-I(440) 0.002 34.4 0.002 35.1 0.002 36.7 0.002 42.2 0.002 42.2 0.002 40.6
CRI-I(675) 0.001 53.2 0.001 49.4 0.001 50.4 0.002 67.7 0.002 55.5 0.001 50.9
CRI-I(870) 0.001 49.1 0.001 45.5 0.001 46.9 0.001 62.9 0.001 50.2 0.001 47.7
CRI-I(1020) 0.001 47.0 0.001 44.2 0.001 39.8 0.001 59.2 0.001 49.9 0.001 44.8
SSA(440) 0.014 1.6 0.022 2.4 0.019 2.1 0.017 1.9 0.023 2.6 0.023 2.6
SSA(675) 0.014 1.5 0.017 1.8 0.017 1.8 0.017 1.8 0.020 2.0 0.019 2.0
SSA(870) 0.012 1.3 0.014 1.5 0.015 1.5 0.016 1.6 0.017 1.7 0.016 1.6
SSA(1020) 0.012 1.2 0.013 1.4 0.015 1.5 0.015 1.6 0.016 1.6 0.015 1.5
ASYM(440) 0.011 1.4 0.010 1.3 0.007 1.0 0.011 1.4 0.012 1.5 0.010 1.3
ASYM(675) 0.013 1.8 0.011 1.5 0.008 1.0 0.013 1.8 0.012 1.7 0.010 1.4
ASYM(870) 0.013 1.8 0.011 1.5 0.008 1.1 0.013 1.7 0.012 1.7 0.010 1.4
ASYM(1020) 0.012 1.6 0.011 1.5 0.007 1.0 0.011 1.5 0.011 1.5 0.010 1.3
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Table 6. Continued.

TIMESCALE ANALYSIS AERONET SATELLITE
CASE 3 CASE 4

Daily (d) Weekly (w) Monthly (m) Daily (d) Weekly (w) Monthly (m)
MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE %

V (c) 0.131 13.4 0.165 23.8 0.127 11.6 0.268 27.6 0.265 32.5 0.255 24.8
CRI-R(440) 0.022 1.5 0.026 1.8 0.024 1.7 0.031 2.2 0.028 2.0 0.028 1.9
CRI-R(675) 0.017 1.2 0.024 1.6 0.018 1.2 0.022 1.5 0.022 1.5 0.023 1.5
CRI-R(870) 0.019 1.3 0.027 1.8 0.020 1.3 0.022 1.5 0.024 1.7 0.022 1.5
CRI-R(1020) 0.019 1.4 0.027 1.9 0.021 1.4 0.024 1.6 0.024 1.6 0.022 1.5
CRI-I(440) 0.002 38.7 0.002 28.0 0.003 41.9 0.002 40.8 0.002 42.1 0.002 34.6
CRI-I(675) 0.002 52.8 0.002 46.1 0.002 55.4 0.002 60.0 0.002 63.3 0.002 52.9
CRI-I(870) 0.001 42.9 0.001 44.4 0.002 52.6 0.002 60.2 0.002 63.7 0.001 59.5
CRI-I(1020) 0.001 40.8 0.001 48.8 0.002 54.5 0.002 57.0 0.002 64.1 0.001 58.2
SSA(440) 0.013 1.4 0.018 2.1 0.022 2.4 0.018 2.0 0.020 2.2 0.021 2.3
SSA(675) 0.017 1.8 0.019 1.9 0.033 3.4 0.021 2.2 0.022 2.3 0.023 2.4
SSA(870) 0.017 1.8 0.017 1.7 0.024 2.7 0.020 2.1 0.018 1.9 0.021 2.2
SSA(1020) 0.018 1.8 0.015 1.5 0.023 2.4 0.020 2.1 0.018 1.9 0.017 1.8
ASYM(440) 0.013 1.7 0.017 2.2 0.011 1.5 0.020 2.6 0.017 2.3 0.017 2.2
ASYM(675) 0.016 2.2 0.016 2.2 0.013 1.8 0.024 3.2 0.021 2.8 0.020 2.7
ASYM(870) 0.016 2.1 0.017 2.3 0.013 1.8 0.022 3.0 0.022 3.0 0.019 2.6
ASYM(1020) 0.013 1.7 0.016 2.2 0.013 1.7 0.020 2.6 0.020 2.8 0.016 2.2
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Table 7. Overall assessment of the simulation performance of trained NNs fed with AERONET
inputs (CASES 1–3) and satellite inputs (CASE 4) at the daily timescale.

29 
 

Table 7. Overall assessment of the simulation performance of trained NNs fed with AERONET inputs (CASES 930 
1-3) and satellite inputs (CASE 4) at the daily timescale.   931 

ASSESSMENT AERONET  
 

SATELLITE 

CASE 1 CASE 2 CASE 3 CASE 4 

  V(f) Very Poor Poor Very Poor Poor 

  V(c) Very Good Very Good Very Good Very Good 

  η Good Good Good Good 

  
Radial Bin 

15 Very Good Very Good Very Good Good 

Microphysics CRI-R(440) Poor Moderate Moderate Moderate 

  CRI-R(675) Very Poor Moderate Moderate Poor 

  CRI-R(870 Very Poor Moderate Moderate Poor 

  CRI-R(1020) Poor Good Moderate Poor 

  CRI-I(440) Good Moderate Poor Moderate 

  CRI-I(675) Good Good Very Poor Moderate 

  CRI-I(870 Good Good Very Poor Moderate 

  CRI-I(1020) Good Good Very Poor Moderate 

  SSA(440) Moderate Moderate Poor Good 

  SSA(675) Good Good Poor Moderate 

  SSA(870 Good Good Poor Moderate 

Optics SSA(1020) Good Good Poor Moderate 

  ASYM(440) Good Very Good Very Good Very Poor 

  ASYM(675) Good Very Good Good Very Poor 

  ASYM(870 Good Very Good Moderate Very Poor 

  ASYM(1020) Moderate Very Good Moderate Very Poor 

            

  Very Poor   R(d)<0.2     

  Poor   0.2≤R(d)<0.3     

  Moderate   0.3≤R(d)<0.4     

  Good   0.4≤R(d)<0.5     

  Very Good   R(d)≥0.5     
 932 

 933 

  934 
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Table 8. Acronyms.

AERONET aerosol robotic network
AAOD absorption aerosol optical depth
AOD aerosol optical depth
ASYM asymmetry factor
AVSD aerosol volume size distribution
CRI-R complex refractive index-real part
CRI-I complex refractive index-imaginary part
GOCART global ozone chemistry aerosol radiation and transport model
MAE median absolute error
MARE median absolute relative error
MODIS moderate-resolution imaging spectro-radiometer
MSE mean squared error
NN neural network
OMI ozone measuring instrument
PCA principal components analysis
SSA single scattering albedo
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Fig. 1. Schematic showing: (a) the 7 Northern African (NAF) AERONET sites used for NN
training (red) and the coastal AERONET site at Dakar (green) used for simulation with Dataset
A, (b) the NAF study region in the context of the global distribution of TOMS dust sources
(Prospero et al., 2002), (c) an overlay of the AERONET sites on the peak of dust AOD extinction
for the study region extracted from the mean global GOCART model output in shown in (d).
(Chin et al., 2000, 2002).
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Fig. 2. Schematic of the NN model used in this work. Principal components obtained from PCA
applied to CASE 1–4 data are formed and used to train the central engine NN shown in the
centre. The training cycle is repeated for the grid of NNs and the optimal trained NN is found.
The outputs of the trained NN are then transformed back to the full parameter space using the
reverse principal components (“un-PCA”). The outputs from the trained NN are used to validate
the interpolation potential of the optimal NN. Principal components obtained during the data
pre-processing step of network training are used to transform new CASE 1–4 inputs at Dakar
which are fed to the trained NN to simulate CASE 1–4 outputs at Dakar.
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Fig. 3. Schematic showing the neural connectivity between input and output parameters.
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Fig. 4. Optimization of the NN for CASE 4. The upper panels show the training MSE surface
(left), the validation MSE surface (middle), and the total training time surface [s] (right) for the
grid of 100 NNs. The MSE of the training data and validation data (100-training %) with back-
propagation iteration (epoch) is shown for the optimal NN (22, 90 %) in the lower left panel,
while the errors calculated from the difference between the NN PC outputs and the AERONET
PC outputs for the same NN together with the value of their regression coefficient R, is shown
in the lower right panel.
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Fig. 5. Aerosol microphysical parameter training results obtained for CASE 4: (a) regression
per radial bin of the AVSD (inset: Radial bin 15) and (b) daily-averaged time series for the
volume concentration of the coarse mode V (c).
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Fig. 6. Comparison of representative CASE 4 satellite inputs with co-located and synchronous
AERONET values for the representative parameters: AOD(660), H2O and AAOD(500). Mean
values and standard deviations are shown for each time series together with the results of
performing a linear regression.
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Fig. 7. Test results for the dependence of the AVSD regression on aerosol load using AOD(470)
as a proxy are shown for the satellite inputs NN of CASE 4. (Left panel): each point is the
regression of the 22 radial bins of the AERONET AVSD on the NN AVSD. Also shown is the
AOD= 0.4 suggested limit for the validity of the results of the AERONET Level 2.0 Version 2
Inversion Products. (Right panels): the median AVSD at 20 %, 40 %, 60 % and 80 % quantile
values of AOD(470).
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Fig. 8. Simulation results for the daily-averaged CRI-R illustrating the effect of adding columnar
water vapour (H2O [cm]) as a input (CASE 1→CASE 2).
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Fig. 9. Test results obtained for all spectrally-dependant microphysical and optical parameters
with the satellite input CASE 4 NN at the daily, weekly and monthly timescale.
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Fig. 10. Test results at Dakar for SSA(440) with the CASE 4 NN. In the lower left panel, the
grey band corresponds to the desired level of uncertainty for satellite retrievals as described in
Sect. 1 and discussed in Mishchenko et al. (2007). The percentage of “certain” retrievals refers
to the number of retrieved daily-averages that fall within this target level.
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