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Abstract

The discrimination of cloudy pixels is required in almost any estimate of a parameter
retrieved from a satellite image in the ultraviolet (UV), visual (VIS) or infra-red (IR) parts
of the electromagnetic spectrum. Also, the distincion of clouds within satellite imagery
and the distribution of their micro-physical properties is essential to the understanding5

of radiative transfer through the atmosphere.
This paper reports the development of neural network algorithms for cloud detec-

tion for the NASA-Aura Ozone Monitoring Instrument (OMI). We present and discuss
the results obtained by training mathematical neural networks with simultaneous appli-
cation to OMI and Aqua-MODerate Resolution Imaging Spectrometer (MODIS) data.10

The neural network delivers cloud fraction estimates in a fast and automated way. The
developed neural network approach performs generally well in the training. Highly re-
flective surfaces, such as ice, snow, sun glint and desert, or atmospheric dust mislead
the neural network to a wrong predicted cloud fraction.

1 Introduction15

The retrieval of atmospheric constituents from satellite data requires the accurate iden-
tification of clouds due to their high reflectance which overwhelms the contribution of
other constituents to the reflectance measured at the top-of-atmosphere (TOA) re-
flectance (Andreae and Rosenfeld, 2008; Koelemeijer and Stammes, 1999). For in-
stance, for the retrieval of aerosol properties all cloud-contaminated pixels are dis-20

carded. Commonly cloud detection is performed using several tests, and different al-
gorithms have been developed to extract cloud information (Ackerman et al., 1998;
Kokhanovsky et al., 2011). The most consolidated methods are based on threshold-
ing the measured radiance or reflectance at certain wavelengths using values which
are empirically estimated, or set with information from, e.g. radiative transfer models.25

The application of these methods requires the extraction of cloud-related information
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from large quantities of satellite imagery using manual/visual interpretation which is a
time-consuming and complicated task and, in addition, results are observer dependent.
Hence, highly efficient and reliable algorithms for the automatic processing of satellite
imagery are required to discriminate between cloudy and clear pixels for climatological,
physical or chemical applications.5

In this paper we focus on OMI cloud screening which is challenging because of
the coarse spatial resolution and the lack of thermal channels in the instrument. The
current method for the retrieval of OMI cloud mask is based on two individual tests: the
first test combines a radiance threshold and the UV aerosol index, while the second
one takes into account the spatial homogeneity of the so-called small-pixel data (van10

der Oord, 2002). Pixels failing either of the two tests are classified as cloudy (Acarreta
and de Haan, 2002).

In this work we propose and discuss a novel approach using neural networks (NN)
for the direct determination of the pixel cloud fraction from VIS measurements provided
by the Ozone Monitoring Instrument (OMI). The approach employs the OMI radiance15

measurements together with auxiliary cloud information from the Aqua-MODerate Res-
olution Imaging Spectrometer (MODIS) to determine the presence of clouds mask. OMI
and MODIS fly in the A-train constellation on different platforms, respectively AURA and
AQUA, with a time lag of about 7 min.

In recent years neural networks have been adopted for a wide range of applications20

from atmospheric sciences to electromagnetic modelling. The developed applications
include, e.g. forward and inverse radiative transfer problems (Krasnopolsky, 2008), the
prediction of atmospheric parameters (Grivas and Chaloulakou, 2006; Sellitto et al.,
2012), the inversion of satellite observations and post processing of satellite data (Mas
and Flores, 2008; Del Frate and Schiavon, 1998), ozone retrievals (Del Frate et al.,25

2002, 2005a; Iapaolo et al., 2007), cloud classification (Tian et al., 1999), land cover
classification (Aitkenhead and Aalders, 2008), and feature extraction (Del Frate et al.,
2005b).
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Here we propose the application of a NN as an alternative approach to the cloud
screening task for OMI. The objective is to give information about cloud fraction, or
at least discriminate cloudy from clear pixels using only spectral information. A similar
approach is described in Preusker et al. (2008), where the cloud screening problem
is solved by applying a neural network scheme (for the Medium Resolution Imaging5

Spectrometer (MERIS)) trained with a database of simulated cloudy and cloud free
spectra. Here we use real data obtained from MODIS, with a spatial resolution which
is much smaller than that of OMI. Hence the OMI cloud fraction in an OMI pixel can be
determined using MODIS data and used to train the NN for cloud fraction determination
in real OMI data.10

In the next sections, we describe the adopted design for the cloud screening algo-
rithm. This starts with some preprocessing of the OMI measured VIS radiance. Then,
two different learning algorithms are employed for training the neural networks, namely
the back-propagation and Extreme Learning Machine ones. We next report the com-
parison of the two methods and their results with an analysis of the performances of15

the learning algorithms for separated land and ocean pixels. Results are compared
to the MODIS cloud fraction data. Finally, we show an example of application of the
algorithms, which at the same time represents a test of their performance using four
random orbits. The use of only 4 orbits is not sufficient to provide a complete and accu-
rately trained NN which provides good solution for all relevant situations. However, the20

purpose of the current paper is to present and evaluate the method and its potential for
cloud screening.

The neural networks approach described here has been developed for the OMI/MODIS
combination and it will work also for the TROPOMI/VIIRS one without extensive modifi-
cations. The TROPOMI radiance spectrum has the added benefit of the oxygen A-band25

when compared to the OMI spectrum. This is expected to greatly enhance the perfor-
mance of the neural network method as this band contains cloud information.
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2 Instruments

OMI is a nadir-viewing near-UV-Visible spectrometer on board NASA’s Earth Observ-
ing System’s (EOS) Aura satellite. The Ozone Monitoring Instrument measures radi-
ances at 751 wavelengths in the visible parts of the electromagnetic spectrum cov-
ering the wavelength range from 349 nm to 504 nm. The nominal ground footprint is5

13×24 km2 at nadir. Complete global coverage was achieved daily (Levelt et al., 2006)
between 2002 and 2008, while after 2008 the global coverage is achieved in two days
due to the Row Anomaly affecting the quality of OMI level 1b radiance data. Aura flies
in formation about 7 min behind Aqua in the A-train satellite constellation, orbiting the
earth in a polar sun-synchronous pattern. One instrument on board Aqua is MODIS10

which produces many cloud related products (e.g.: cloud fraction, cloud top pressure,
cloud optical thickness) (Hubanks, 2012; King et al., 1992, 1998). Since Aura and Aqua
are separated by only 7 minutes the MODIS products can be used together with OMI
products with quite high confidence as has been shown in Stammes et al. (2008),
Vasilkov (2008) and in Sneep et al. (2008).15

3 Neural Networks

Neural networks algorithms aim at identifying the relationship between input and output
parameters by learning either from real or simulated reference data, rather than directly
from the application of a representative physical model.

Owing to the fact that cloud properties are highly variable and sometimes difficult20

to detect, neural networks with their adaptive learning nature offer an attractive and
computationally efficient alternative for cloud screening. It has been proven that neural
networks algorithms are able to approximate any continuous multivariate non-linear
function, provided that the learning data set is statistically representative of the process
to be modelled and an appropriate structure for the network has been selected (Hornik25

et al., 1989).
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One important class of neural networks is considered here which is referred to as
multilayer perceptron (MLP). Figure 1 shows the architectural graph of a multilayer per-
ceptron with one input layer, one hidden layer and an output layer. The input signal
comes in at the input layer of the network, flows through the network on a layer-by-
layer basis, and emerges at the output nodes of the network as an output signal, the5

response of the network to the inputs. The input nodes represent the satellite informa-
tion that is fed into the network.

The role of each node in the hidden layer is determined by the activities of the input
nodes and the weights in the connection between input and hidden nodes. The be-
haviour of the output node depends on the activity of the hidden nodes and the weights10

between the hidden nodes and output ones. The weights between the input and the
hidden nodes determine when each hidden node is active. In the MLP, the model of
each node is based on a differentiable non-linear activation function. These functions
enable the network to learn complex tasks by extracting features from the input signal
as explained below. More details on artificial neural networks theory can be found in15

Ham and Kostanic (2001) and Haykin (2009). A multilayer perceptron network must be
trained and several algorithms have been developed for this task, including the basic
back-propagation, algorithm, batch version of it, and the Levenberg-Marquardt algo-
rithm.

The two learning algorithms, back-propagation and extreme learning machine, that20

were applied in this work to train the MLP neural networks are described in the next
sections.

3.1 Back-propagation

The error back-propagation algorithm is a popular learning algorithm used to train neu-
ral networks by modifying the weights during the training phase in order to model a25

particular learning task correctly for the training examples (Haykin, 2009). The training
phase of a NN updates the weights iteratively using the negative gradient of a Mean
Square Error (MSE) function. Basically, the error back-propagation algorithms perform
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two passes through each layer of the network: the first pass starts with the application
of the input vector to the input nodes of the network, and its effect is forwarded trough
the layers. This is the forward pass during which all the weights of the network are
fixed. Then, a set of output is produced as the response of the network to the input
signal, and is subtracted from a desired (target) response to produce an error signal.5

The error signal is propagated backward through the network. This process represents
the backward pass. During the backward pass the weights are adjusted to make the
actual response of the network move closer to the desired one in a statistical sense.
The model of each node is based on a non-linear activation function.

The particular activation function adopted in this work is the sigmoidal function10

g(x) = tanh(ax), (1)

where a > 0 is a scaling parameter.
The network structure consist of an input layer in which each component of the

training vectors is inputted into the network in its own node, one hidden layer of 25
nonlinear nodes, and a linear output layer. All the computations take place in the hidden15

layer and in the output layer where there is only one node, which is commonplace
in classification applications. The back-propagation algorithm is a stochastic gradient
algorithm for minimizing the mean-square error (MSE) between the target values and
the respective true outputs of the MLP network. It converges slowly and often to some
local minimum of the MSE error only instead of achieving global minimum. This should20

be taken into account when the solution is analyzed.

3.2 Extreme learning machine

The Extreme learning machine uses a special MLP network structure with one hidden
layer where the weights between the input layer and the nodes of the hidden layer
are chosen randomly beforehand, and similarly for the bias terms of the hidden layer25

nodes. The output layer is to be taken linear. The extreme learning machine method
for neural networks consists of the following steps:
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– Assume that we have a training set xi ,ti , i = 1,2, ...,N, where xi is the i -th input
vector of dimension n, and ti is the corresponding target vector of dimension m.

– Choose the activation function g(t) and number M of nodes in the hidden layer.
In our case, the selected activation function is g(x) = tanh(wx+β).

– Assign randomly the hidden layer scaling parameter vectors w j and biases βj,5

j = 1,2, ...,M.

– Calculate the N ×M hidden layer output matrix H. Its elements are

hij = g(wT
j xi +βj). (2)

– Calculate the M ×m weight matrix B of the output layer from:

B = H+T, (3)10

where T = [t1,t2, ...,tN]T is the N ×m target matrix and H+ is the pseudo-inverse
of the matrix H. The matrix B is

B =



w 1,m
w 2,m

.

.

.
wM,m

 . (4)

This learning method provides an easy implementation, it reaches small training error,
and it runs extremely fast as compared e.g. to the standard back-propagation algo-15

rithms (more detailed information in Huang et al., 2006). Since this type of algorithm
does not require tuning and the hidden layer parameters can be fixed, the optimal solu-
tion can be resolved from a system of linear equations using the least-squares method
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(pseudo-inverse) and avoiding problems related to gradient learning methods, such as
local minima in the back-propagation. The drawback of ELM is an increased number of
neurons in the hidden layer because the scaling parameters and biases are not learned
from data but chosen randomly.

4 Application OMI VIS radiance measurements for cloud detection by means of5

neural networks

To investigate the potential and limits of the application of NN for cloud screening, a
representative data set for the observed phenomena is required, including a statisti-
cally significant set of observational uncertainties. The training dataset needs to be
as complete as possible and of sufficient quality. In the NN training phase of the de-10

scribed cloud detection method, the input consists of quantities derived from OMI VIS
measurements and MODIS cloud fraction product which are described in Sect. 4.1.

4.1 The OMI training input

This section describes the OMI products included in the training dataset.
OMI measures radiances at a large number of wavelengths in the VIS band. Radi-15

ances are converted to reflectance to scale the input information between zero and
unity for the neural networks. The conversion was done using equation

ρ(λ) =
I(λ)

πcos(θz)L(λ)
, (5)

where ρ is the calculated reflectance, I is the OMI measured radiance at wavelengths
between 349 nm and 504 nm, θz is the solar zenith angle, and L is solar irradiance at20

wavelength λ.
OMI provides, at one wavelength, a five times higher spatial sampling in the flight

direction than normal which is called small-pixel data. This capability provides more
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information about spatial inhomogeneity in a pixel caused by, e.g. clouds. The small
pixel data is included in the level-1B data set (van der Oord, 2002). The small-pixel
reflectance has been derived from the small pixel radiance using Eq. (5), and the values
were used to calculate the variance of the reflectance in each OMI pixel which was
added to the training data set.5

Moreover, the solar zenith angle (SZA), providing information about measurement
geometry, and OMI Surface Reflectance Climatology Data Product (OMLER) were also
included to the training input data. OMLER is an OMI product describing the monthly
climatology of the Earth’s surface Lambertian Equivalent Reflectance (LER) value. LER
is defined as the required reflectance of an isotropic surface necessary to match the10

observed top of the atmosphere (TOA) reflectance in a pure Rayleigh scattering atmo-
sphere under cloud and aerosol free conditions. The product has a spatial resolution
of 0.5 by 0.5 degrees and is build by using five years of OMI data, obtained between
January 2005 and December 2009.

4.2 Singular value decomposition for the OMI reflectance15

In our study, the OMI reflectance data consists of 751 measurements for each pixel.
Therefore, a dimensionality reduction is necessary to help lessen the effect of large
datasets on computing time. Dimensionality reduction is the transformation of high-
dimensional data into a representation of reduced dimensionality without loosing valu-
able information. The singular value decomposition (SVD) is a method that converts20

a matrix to its diagonal form, and it is a very powerful tool in data reduction, power
spectrum estimation as well in image restoration (Golub and Van Loan, 1996). In the
present study the SVD procedure is applied to reduce the number of reflectances at
751 wavelengths to a set of 20 values. This was done as follows.

Consider an N ×M matrix X where N ≥M. It is possible to represent this matrix25

in the r-dimensional subspace where r ≤M. Let U = XXT and V = XTX be non nega-
tive, symmetric matrices with the same eigenvalues λ1,λ2, ...,λr , where it is assumed
that λ1 ≥ λ2 ≥ λ3 ≥ ...λr . The square roots of these eigenvalues are called the singular
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values of X. Now, if we form matrices Ψ and Φ from the corresponding eigenvectors
of U and V, then X can be diagonalized as:

X =ΨΛΦT (6)

where Λ is the diagonal matrix of the eigenvalues, i.e. diag(Λ) = [
√
λ1,

√
λ2, ...,

√
λr ].

Basically, each singular value represents the information content of the matrix X pro-5

jected into each subspace.
The reduction of the reflectance data set is done by using only the part of the diag-

onalized system where the eigenvalues are significant. We tested several numbers of
non-zero eigenvalues such as 5, 10 and 20. They all provide a large reduction when
compared to the original size of 751. Finally, 20 eigenvalues were chosen as adding10

more values did not enhance the results in the initial testing.

4.3 The MODIS cloud fraction training data

The MODIS cloud fraction is employed as auxiliary reference data for training the neural
networks. To this end, OMI and MODIS pixels need to be matched (Stammes et al.
(2008)). Since the OMI Level 1B data product provides geodetic latitude and longitude15

only for the center of each ground pixel, a separate product, OMI ground pixel corner
(OMPIXCOR), was used to arrange cross-platform pixel mapping. The OMI latitude-
longitude corner coordinates are used to construct boxes representing the pixel area.
The MODIS geo-located data is then searched for measurements falling within each
box: a MODIS pixel is considered to fall within a particular OMI box if the center lies20

inside the OMI pixel boundary. The matches allow the use of MODIS data to determine
the cloud fraction within an OMI pixel, as the number of cloudy pixels divided by the
total number of MODIS pixels falling within the considered OMI pixel. The re-gridded
data is then included in the training input as the reference data.
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4.4 Dataset composition for training and NN structure

For the purpose of training the NN algorithm, the training dataset was composed of the
OMI SVD reduced reflectance values, the OMLER climatological data, the solar zenith
angle, the small pixel variance. The corresponding MODIS geometrical cloud fraction is
the reference data. The block diagram in Fig. 2 shows the different components of the5

training data set which represents the input to the neural network. The neural network
processes this information and provides the predicted cloud fraction.

The neural network considered for this study was a multilayer perceptron (MLP) with
a single hidden layer, as is illustrated in Fig. 1. The input layer consists of 24 nodes: 20
input nodes for the SVD reduced OMI reflectance data, one input node for the so-10

lar zenith angle, the small pixel variance, OMLER data, and one output node for the
reference MODIS cloud fraction.

Since we compared the performances of two learning algorithms with different char-
acteristics, back-propagation and Extreme Learning Machine, the structure of the NN
changes in the two considered cases. The two algorithms differ in the number of nodes15

in the hidden layer. To determine the optimal number of nodes in the hidden layer, sev-
eral tests were made. For the back-propagation algorithm, 25 hidden nodes guarantee
a good performance either in terms of training accuracy or training time. The ELM al-
gorithm, because of its nature, requires a much larger amount of hidden nodes. The
optimal number was found to be 240.20

5 Results

The back-propagation and Extreme Learning Machine learning algorithms were trained
with the same set of input data. Four random OMI orbits (2004m1028t0755, 2005m0828
t1257, 2006m0912t0828, 2006m0113t1325), covering different areas and seasons,
were selected to compose the training datasets. The performance of the learning al-25

gorithms in predicting cloud fraction was assessed in terms of the percentage of pixels
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that the NNs estimate to be cloudy/clear and which are actually cloudy/clear according
to the MODIS re-gridded cloud fraction.

To compare the cloud masking capabilities of two NNs, two cloud thresholds were
considered, 60 % and 30 %, respectively. A threshold t=60 % implies that 60 % of
an OMI pixel contains clouds. Values above the thresholds represent cloudy pixels5

while values below the thresholds represent cloud-free ones. The selected orbits were
divided into a cloudy and a non-cloudy set based on the threshold values and the
analysis was based on these separated sets. We analysed the results by selecting
MODIS cloud fraction pixel with values above (below) the 60 % or 30 % thresholds and
compare these reference data with the corresponding values predicted by the NNs.10

Several options were explored in order to prepare the training dataset. Data was
first analysed by observing each orbit individually, then by separating land- and water-
covered pixels and discarding the ice-covered ones. Although the performances of
the two training algorithms in Fig. 3 are comparable when each orbit is individually
observed, the back-propagation algorithm sets apart because of the long processing15

time required for training the algorithm. The histograms shown in Fig. 3 represent the
percentages of correctly detected cloudy and cloud-free pixels for the two thresholds for
the four selected orbits presented along the x-axis. Both algorithms, back-propagation
and ELM, detect cloud fraction accurately when the cloudiness threshold is set to 60 %
rather than 30 %. The lowest performance is obtained for orbit 2005m0828t1257 and20

orbit 2006m0912t0828 for cloud-free pixels. Generally cloud-free pixels are detected
with lower accuracy. This can be explained by considering the chosen orbits: most of
the pixels are fully covered by clouds, thus not enough information is provided to the
NN for the training.

Next, in order to test whether land or ocean pixels influence the NN behaviour,25

we analysed the same data but trained the learning algorithms with separated date-
sets for land/water pixels. Results are presented in Fig. 4. The histograms show that
the back-propagation algorithm performs with lower efficiency. The four plots show
that the lowest number of correctly detected pixels corresponds to clear pixels. This
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confirms the lack of information regarding cloud-free reflectance in each single orbit.
Referring to results from the ELM learning algorithm for orbits 2005m0828t1257 and
2006m0912t0828, we unexpectedly found that NN perform worse over ocean than over
land. The ocean, in fact, acts as an homogeneous dark surface in the background,
hence contrast should be enhanced between cloudy and cloud-free measurements.5

To supply the neural networks with the largest amount of information and scenarios,
all four orbits were included in one dataset for the training phase. Providing a larger
amount of data for the training, with a larger variety as regards seasons and locations,
is expected to enhance the overall performance. The results are presented in Fig. 5.
By comparing Figs. 4 and 5, we can observe that the performance of the NN are10

enhanced when detecting clear pixels for the threshold of 60% for land and ocean
pixels. Results for the 30 % threshold do not present major improvement even when
the training dataset is enlarged. As mentioned previously, the observed orbits are fully
clouded meaning that the 30 % threshold is not representativefor the selected data.
After training the ELM algorithm with a training dataset formed by the four observed15

orbits taking into consideration the ground pixel coverage type (land/water), we ran the
resulting NNs on each single considered orbit. Pixels covered with ice or snow were
discarded. This process leads to predicted cloud fraction values for each orbit.

The cloud fractions estimated from the ELM neural network are plotted with MODIS
re-gridded data for each of the considered orbits in Fig. 6. The colour scale provides20

a measure for the number of points. Correlation coefficients are shown in the upper
right corner of each figure. The images are organized in a matrix where the four rows
represent the four analysed orbits and the two columns divide land and water pixels, re-
spectively. A good correlation is observed for the the orbits in the first and last rows. For
small cloud fraction over land the value retrieved by the NN and the MODIS geometrical25

cloud fraction appear non-linearly related as we find in Fig. 6 a bias of 10 % and 12 %
between the datasets, with correlations of 0.81 and 0.89 for orbit 2004m1028t0755
and orbit 2006m0113t1325, respectively. This implies that land surface albedo leads
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the NN to underestimate the cloud fraction retrieved by MODIS. Low correlations are
found for orbits 2005m0828t1257 and 2006m0912t0828, over both land and ocean.

Figure 7 shows the results of testing of the NN model for cloud fraction prediction.
Once the ELM neural network has been trained with the dataset including all orbits,
the final weights are applied to each single orbit and the accuracy of the cloud fraction5

estimates is determined. The algorithm fails in distinguishing cloud-free pixels, espe-
cially for the lower threshold for both land and ocean measurements and the reason,
as explained above, is due to the lack of cloud-free pixels in the training dataset. Or-
bits 2005m0828t1257 and 2006m0912t0828 present low accuracy values for predicted
cloud fractions over land and there is an overestimation of cloudy pixels.10

Overall, a poor correlation between predicted and MODIS cloud fraction is always
present in orbits 2005m0828t1257 and 2006m0912t0828 which are presented in Figs. 8
and 9. Figures 8a and 9a show the MODIS geometrical cloud fraction and the color
scale indicates the cloud fraction between 0 (cloud-free) and 100 (totally clouded). Fig-
ures 8b and 9b are the MODIS RGB granule images. Figures 8c and 9c show the dif-15

ference between MODIS geometrical cloud fraction and the ELM estimates: the value
0 of the color scale represents a perfect agreement between the cloud fraction of the
two datasets, while a value of 100 signifies a total mismatch. Some of the causes of
failure are indicated by the MODIS granules inserted in Figs. 8b and 9b. By inspect-
ing MODIS RGB granule images, the ocean areas resulting in non-satisfactory cloud20

retrieval accuracy are affected by dust and sun glint while over land highly reflective
surfaces such as desert and ice (low contrast against clouds) result in low accuracy.
Good performances of the neural network in cloud detection are presented in Figs. 10
and 11.

A preliminary validation of the ELM algorithm for cloud masking was made using25

observations which were not included in the training dataset. The dataset of four or-
bits was divided into two subsets. To this end, the training set was now composed of
three orbits (2004m1028t0755, 2005m0828t1257, and 2006m0912t0828), while orbit
2006m0113t1325 was left for independent testing. The weights determined during the
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training of the ELM were used for the independent orbit. The result of the independent
validation is presented in Fig. 12. The resulting predicted cloud fraction is rather inac-
curate and this might be due to two factors: first the very limited training dataset, and
second two orbits of the training set presented problems in discriminating bright sur-
faces from cloud reflectances, as previously shown in Figs. 8 and 9. The three orbits5

of the training set were mainly covered by clouds, thus they provided insufficient data
describing cloud-free pixels and moreover cloud-free areas were influenced by dust,
sun-glint or bright surface. Hence, the trained NN was unable to produce totally cloud
free estimates for the cloud fraction. However, the general features of the cloud fraction
can be observed in Fig. 12.10

6 Conclusions

In this work, a neural networks-based solution was described for the problem of cloud
screening for OMI VIS satellite imagery. Neural networks are attractive for cloud screen-
ing because of their capability of high computational speed for large datasets. More-
over, they rely on auxiliary data only during the training and they are independent from15

the instrument platform which makes the approach portable to other combinations of
instruments such as TROPOMI/VIIRS.

A comprehensive study was made to select the optimal learning algorithm for the
cloud screening task, and two neural network learning algorithms, back-propagation
and ELM, were compared. An SVD procedure was included in order to reduce the 75120

VIS channels from OMI to 20 without loosing information of the original data.
The results show that the ELM-based solution achieved higher cloud screening ac-

curacy than the back-propagation algorithm. The back-propagation based scheme was
also extremely time consuming in the training phase when compared to the ELM train-
ing approach. Both algorithms performed poorly over cloud-free scenes because the25

training dataset lacks information representing clear sky. All the orbits were mainly

1664

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/1649/2013/amtd-6-1649-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/1649/2013/amtd-6-1649-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 1649–1681, 2013

A NN method for
cloud screening

G. Saponaro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

totally cloudy, and moreover the few clear-pixels were contaminated with dust, sun
glint or covered by bright surfaces.

It was found that the spectral features alone can discriminate cloudy from clear pixels
with a reasonable accuracy. Nevertheless, none of these feature-sets provide consis-
tently good discrimination ability for all cloud/background classes which will be taken5

into consideration in future work. NN failed in predicting cloud fraction in the presence
of ice, snow, dust and sun glint because of their spectral similarities which mislead the
neural network to a wrong final prediction.

In the future we will study the possibility to compose a complete database of orbits
for learning the neural network where the orbits having low correlation with the refer-10

ence data are iteratively discarded, and an alternative approach for the dimensionality
reduction based on information content.

This work serves as a preliminary study on cloud screening for the upcoming TRO-
POspheric Monitoring Instrument (Veefkind et al., 2012). The TROPOMI instrument is
expected to provide daily high-quality global information of atmospheric parameters for15

climate and air quality applications. TROPOMI is planned to be launched in 2015 on
board the ESA/GMES Sentinel 5 Precursor (S5P) satellite, extending the current data
records from OMI on board NASA EOS-Aura and SCIAMACHY on board ESA Envisat.
Precise cloud screening is a challenge at the TROPOMI spatial resolution of 7×7 km2

and without thermal infrared measurements available. TROPOMI will fly in constella-20

tion with the Visible Infrared Imager Radiometer Suit (VIIRS) from the US NPOESS
Preparatory Project (NPP) mission. VIIRS provides cloud imagery. Preliminary inves-
tigation of temporal co-registration between the VIIRS measurements of clouds and
TROPOMI atmospheric measurements have been analysed by Genkova et al. (2012).
To apply the developed NN cloud screening for TROPOMI only minor modifications25

have to be made. The VIIRS instrument information about clouds can be used for the
TROPOMI pixel. The TROPOMI radiance spectrum consists not only of the VIS band
but also of the Oxygen A-band. While the VIS band can be processed as described
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here, the A-band may need separate treatment because of its high information content
about clouds.

As the NN is developed to provide cloud fraction or cloud screening independently
from the location and time of the measured radiance, the training dataset has to include
different climatologies with different seasonal coverage. These demands are outside5

the scope of the method description and initial testing described here but they will be
addressed in future testing and validation.
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Fig. 1. Neural-network feedforward topology.xn represents the n-th input unit, and y represents the
output unit.
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Fig. 1. Neural-network feedforward topology. xn represents the n-th input unit, and y represents
the output unit.
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Fig. 2. Block diagram of the proposed approach for training the neural network. The training dataset is
composed of the target data represented by the MODIS cloud fraction re-gridded onto the OMI orbit, the
compressed OMI reflectance vector data, and additional datasuch as climatological data (OMLER), the
solar zenith angle and the computed small-pixel variance. These data form the input vector which is fed
to the neural network. The neural network response is a predicted cloud fraction for the given orbit.
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Fig. 2. Block diagram of the proposed approach for training the neural network. The training
dataset is composed of the target data represented by the MODIS cloud fraction re-gridded
onto the OMI orbit, the compressed OMI reflectance vector data, and additional data such as
climatological data (OMLER), the solar zenith angle and the computed small-pixel variance.
These data form the input vector which is fed to the neural network. The neural network re-
sponse is a predicted cloud fraction for the given orbit.
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Fig. 3. Comparison of BackPropagation and Extreme Learning Machine accuracy in predicting cloud
fraction for each single observed orbit.
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Fig. 3. Comparison of BackPropagation and Extreme Learning Machine accuracy in predicting
cloud fraction for each single observed orbit.
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Fig. 4. Comparison of BackPropagation and Extreme Learning Machine performance in predicting cloud
fraction for divided land and ocean pixel when ice/snow pixel are discarded.
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Fig. 4. Comparison of BackPropagation and Extreme Learning Machine performance in pre-
dicting cloud fraction for divided land and ocean pixel when ice/snow pixel are discarded.
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Fig. 5. Summary of results of cloud fraction estimation from ELM and BP algorithms when all
four orbits are included in the training dataset.
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Fig. 6. Density plots between ELM NN predicted cloud fraction and reference MODIS cloud fraction.
The images are organized in a matrix where the two columns divide land (left) from water (right) pix-
els, and the four rows represent the four analysed orbits presented in this order starting from the top:
2004m1028t0755, 2005m0828t1257, 2006m0912t0828, and 2006m0113t1325. The density plots show
the correlation between the cloud fraction estimated by neural networks and the MODIS data. A good
correlation is observed for the the orbits in the first and last row, respectively orbit 2004m1028t0755
and orbit 2006m0113t1325, and particularly over ocean pixels. Low correlation are found for orbits
2005m0828t1257 and 2006m0912t0828, both on land and ocean.
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Fig. 6. Density plots between ELM NN predicted cloud fraction and reference MODIS cloud
fraction. The images are organized in a matrix where the two columns divide land (left)
from water (right) pixels, and the four rows represent the four analysed orbits presented in
this order starting from the top: 2004m1028t0755, 2005m0828t1257, 2006m0912t0828, and
2006m0113t1325. The density plots show the correlation between the cloud fraction esti-
mated by neural networks and the MODIS data. A good correlation is observed for the the
orbits in the first and last row, respectively orbit 2004m1028t0755 and orbit 2006m0113t1325,
and particularly over ocean pixels. low correlations are found for orbits 2005m0828t1257 and
2006m0912t0828, both on land and ocean.

1675

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/1649/2013/amtd-6-1649-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/1649/2013/amtd-6-1649-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 1649–1681, 2013

A NN method for
cloud screening

G. Saponaro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2004m1028t0755 2005m0828t1257 2006m0912t0828 2006m0113t1325
0

20

40

60

80

100
C

or
re

ct
ly

 d
et

ec
te

d 
pi

xe
ls

 [%
]

Ocean Pixels

 

 

THR 60%−Cloudy
THR 30%−Cloudy
THR 60%−Clear
THR 30%−Clear

2004m1028t0755 2005m0828t1257 2006m0912t0828 2006m0113t1325
0

20

40

60

80

100

C
or

re
ct

ly
 d

et
ec

te
d 

pi
xe

ls
 [%

]

Land Pixels

 

 

THR 60%−Cloudy
THR 30%−Cloudy
THR 60%−Clear
THR 30%−Clear

Fig. 7. Summary of accuracy of ELM NN in predicting cloud fraction once it has been trained with
dataset composed of all observed orbits.
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Fig. 7. Summary of accuracy of ELM NN in predicting cloud fraction once it has been trained
with dataset composed of all observed orbits.
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Fig. 8. Comparison of NN estimated cloud fraction and reference data for orbit 2005m0828t1257. (a)
Computed MODIS geometrical cloud fraction re-located ontoOMI grid. The color-code ranges from 0
(cloud free) to 100 (total cloud cover). (b) At those areas where the neural network fails in predicting
cloud fraction, the corresponding MODIS RGB granule imagesare selected. In this case the MODIS
image shows the presence of dust as the reason of failure. (c)Absolute difference between the MODIS
geometrical cloud fraction and the NN predicted cloud fraction. The color-code ranges from 0 (perfect
match) to 100 (complete mismatch).
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Fig. 8. Comparison of NN estimated cloud fraction and reference data for orbit
2005m0828t1257. (a) Computed MODIS geometrical cloud fraction re-located onto OMI grid.
The color-code ranges from 0 (cloud free) to 100 (total cloud cover). (b)At those areas where
the neural network fails in predicting cloud fraction, the corresponding MODIS RGB granule
images are selected. In this case the MODIS image shows the presence of dust as the rea-
son of failure. (c) Absolute difference between the MODIS geometrical cloud fraction and the
NN predicted cloud fraction. The color-code ranges from 0 (perfect match) to 100 (complete
mismatch).
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Fig. 9. Comparison of NN estimated cloud fraction and reference data for orbit 2006m0912t0828. (a)
Computed MODIS geometrical cloud fraction re-located ontoOMI grid. The color-code ranges from 0
(cloud free) to 100 (total cloud cover). (b) At those areas where the neural network fails in predicting
cloud fraction, the corresponding MODIS RGB granule imagesare selected. In this case the MODIS
image shows the presence of sun glint or ice as the reason of failure. (c) Absolute difference between the
MODIS geometrical cloud fraction and the NN predicted cloudfraction. The color-code ranges from 0
(perfect match) to 100 (complete mismatch).
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Fig. 9. Comparison of NN estimated cloud fraction and reference data for orbit
2006m0912t0828. (a) Computed MODIS geometrical cloud fraction re-located onto OMI grid.
The color-code ranges from 0 (cloud free) to 100 (total cloud cover). (b) At those areas where
the neural network fails in predicting cloud fraction, the corresponding MODIS RGB granule im-
ages are selected. In this case the MODIS image shows the presence of sun glint or ice as the
reason of failure. (c) Absolute difference between the MODIS geometrical cloud fraction and
the NN predicted cloud fraction. The color-code ranges from 0 (perfect match) to 100 (complete
mismatch).
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Fig. 10. Comparison of NN estimated cloud fraction and reference data for orbit 2006m0113t1325. (a)
Computed MODIS geometrical cloud fraction re-located ontoOMI grid. The color-code ranges from
0 (cloud free) to 100 (total cloud cover). (b) Absolute difference between MODIS geometrical cloud
fraction and NN predicted cloud fraction. The color-code ranges from 0 (perfect match) to 100 (complete
mismatch).
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Fig. 10. Comparison of NN estimated cloud fraction and reference data for orbit
2006m0113t1325. (a) Computed MODIS geometrical cloud fraction re-located onto OMI grid.
The color-code ranges from 0 (cloud free) to 100 (total cloud cover). (b) Absolute difference
between MODIS geometrical cloud fraction and NN predicted cloud fraction. The color-code
ranges from 0 (perfect match) to 100 (complete mismatch).
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Fig. 11. Comparison of NN estimated cloud fraction and reference data for orbit 2004m1028t0755.
(a) Computed MODIS geometrical cloud fraction re-located onto OMI grid.The color-code ranges from
0 (cloud free) to 100 (total cloud cover). (b) Absolute difference between MODIS geometrical cloud
fraction and NN predicted cloud fraction. The color-code ranges from 0 (perfect match) to 100 (complete
mismatch).
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Fig. 11. Comparison of NN estimated cloud fraction and reference data for orbit
2004m1028t0755. (a) Computed MODIS geometrical cloud fraction re-located onto OMI
grid.The color-code ranges from 0 (cloud free) to 100 (total cloud cover). (b) Absolute difference
between MODIS geometrical cloud fraction and NN predicted cloud fraction. The color-code
ranges from 0 (perfect match) to 100 (complete mismatch).
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Fig. 12. Independent validation performed for orbit 2006m0113t1325. In both images the color-code
ranges from 0 (cloud free) to 100 (total cloud cover). (a) Computed MODIS geometrical cloud fraction
re-located onto OMI grid. (b) ELM predicted cloud fraction performed independently from training
phase.
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Fig. 12. Independent validation performed for orbit 2006m0113t1325. In both images the color-
code ranges from 0 (cloud free) to 100 (total cloud cover). (a) Computed MODIS geometrical
cloud fraction re-located onto OMI grid. (b) ELM predicted cloud fraction performed indepen-
dently from training phase.
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