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Abstract

A current obstacle to the Observation System Simulation Experiments (OSSEs) used
to quantify the potential performance of future atmospheric composition remote sens-
ing systems is a computationally efficient method to define the scene-dependent verti-
cal sensitivity of measurements as expressed by the retrieval averaging kernels (AKs).5

We present a method for the efficient prediction of AKs for multispectral retrievals of
carbon monoxide (CO) and ozone (O3) based on actual retrievals from MOPITT on
EOS-Terra and TES and OMI on EOS-Aura, respectively. This employs a multiple re-
gression approach for deriving scene-dependent AKs using predictors based on state
parameters such as the thermal contrast between the surface and lower atmospheric10

layers, trace gas volume mixing ratios (VMR), solar zenith angle, water vapor amount,
etc. We first compute the singular vector decomposition (SVD) for individual cloud-free
AKs and retain the 1st three ranked singular vectors in order to fit the most significant,
orthogonal components of the AK in the subsequent multiple regression on a training
set of retrieval cases. The resulting fit coefficients are applied to the predictors from15

a different test set of retrievals cased to reconstruct predicted AKs, which can then be
evaluated against the true test set retrieval AKs. By comparing the VMR profile ad-
justment resulting from the use of the predicted vs. true AKs, we quantify the CO and
O3 VMR profile errors associated with the use of the predicted AKs compared to the
true AKs that might be obtained from a computationally expensive full retrieval calcu-20

lation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from
using a single regional average AK to represent all retrievals, which has been a com-
mon approximation in chemical OSSEs performed to-date. For both CO and O3 in the
lower troposphere, we find a significant reduction in error when using the predicted AKs
as compared to a single average AK. This study examined data from the continental25

United States (CONUS) for 2006, but the approach could be applied to other regions
and times.
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1 Introduction

Atmospheric composition Observation System Simulation Experiments (OSSEs) are
valuable for assessing the potential information that would be provided by future satel-
lite measurements and quantifying the impact that these have on air quality charac-
terization and forecasting. These simulations can be used for instrument design and5

mission planning in order to achieve an optimal configuration for the available cost.
Chemical OSSEs have proved particularly useful for demonstrating the benefit of in-
creased spatial and temporal (e.g. hourly) information obtained from geosynchronous
Earth orbits (GEO), as compared to low-Earth orbit (LEO) observations that are gen-
erally limited to a maximum of two observations of the same location twice per 24 h.10

Claeyman et al. (2011) employed OSSEs to investigate the relative performance of dif-
ferent instrument options for a potential European GEO mission to characterize trace
gas distributions. Using simulated measurements over North America from a GEO
orbit, OSSEs have demonstrated significant added capability compared to LEO obser-
vations for characterizing tropospheric CO (Edwards et al., 2009) and O3 (Zoogman15

et al., 2011). A goal of this study is the development of OSSEs for the Geostationary
Coastal and Air Pollution Events (GEO-CAPE) mission (Fishman et al., 2012 and ref-
erences therein), which is considering the use of multispectral measurements for CO
and O3, along with aerosols and other trace gases, for improving air quality models and
understanding the interactions of atmospheric composition and climate change.20

As described by Edwards et al. (2009), chemical OSSEs provide a way of expanding
case-specific sensitivity studies into a more thorough quantification of the impact of fu-
ture measurements in answering a critical science question. The basic procedure is as
follows: (1) a chemical transport model is chosen that best represents the atmosphere
and surface with the appropriate scales and physical processes relevant to the science25

goal. This model is used to perform a Nature Run (NR) that will represent the atmo-
sphere true “nature” that we wish to characterize with the new measurement; (2) an in-
strument simulator is constructed for the candidate instrument concept and observing
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strategy. The instrument simulator is used to sample the NR to produce simulated re-
trieval products with associated errors and measurement characteristics; (3) a Control
Run (CR) is defined to provide an alternative representation of the atmosphere, usu-
ally from a model that is different from the NR. The difference between the CR and
NR atmospheres should be similar to the physical difference that might be expected5

between the prior atmospheric information that would be used as input to a retrieval
scheme, such as a climatology, and the actual atmospheric state. (4) An Assimilation
Run (AR) is performed with the CR as the starting point, in which the simulated mea-
surements are assimilated. This mimics the way that future real data and operational
retrievals might be used in a model analysis and forecast; (5) performance of the AR10

is evaluated by comparing to the CR. This provides a quantitative assessment of how
well the assimilation of the simulated product drives the AR toward the NR.

The development of instrument simulators requires expert knowledge of measure-
ment and data processing including instrument characterization, radiative transfer mod-
eling and retrieval methods. Assuming that an optimal estimation approach (Rodgers,15

2000) is used for the retrieval of a trace gas profile from a satellite measurement,
then the vertical sensitivity of the retrieval with respect to the true atmospheric state
is represented by the averaging kernel (AK), which embodies the full physics of the
measurement and a description of the retrieval assumptions.

Following Rodgers (2000), the simulated trace gas measurement profile xsim can be20

written as:

xsim = AxNR + (I−A)xa (1)

where xNR is the “true” atmospheric profile as provided by the NR and xa is the a priori
constraint profile. The averaging kernel matrix A is defined as:

A =
(

KTS−1
e K+S−1

a

)−1
KTS−1

e K (2)25
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where Se is the measurement error covariance, Sa is the a priori error covariance
constraint used in the retrieval, and K is the Jacobian matrix given by:

K =
∂F
∂x

(3)

which represents the sensitivity (weighting function) of forward model radiance F to
physical state parameters x. A useful quantity indicating the information content of the5

measurement is the degrees of freedom for signal (DFS), given by trace (A) (Rodgers,
2000).

For accurate measurement simulation in an OSSE, a full radiative transfer forward
model for radiance and Jacobians would be needed to compute AKs for each atmo-
spheric and surface scene. Since this presents a computational burden, OSSE stud-10

ies will often use average representations for the AK as an approximation (e.g. Ed-
wards et al., 2009; Zoogman et al., 2011). This can lead to a mischaracterization of the
instrument sensitivity, i.e. overestimation of sensitivity for some simulated measure-
ments scenes and underestimation for others with the potential for regional biases in
the OSSE results (Sellitto et al., 2013). Therefore, a method for quickly estimating the15

expected AK, given scene dependent atmospheric and surface parameters for each
simulated observation, is desired. A fast prediction scheme for scene-dependent AKs
has been demonstrated in climate model evaluation with satellite measurements of
deuterated water vapor (HDO) profiles (Field et al., 2012). However, overly simplified
approximations may be insufficient, as shown by Sellitto et al. (2013) in their study of20

the limitations of applying a look-up-table (LUT) approach for estimating O3 averaging
kernels based only on thermal contrast.

Here we use multiple regression analysis of real satellite observations to estimate
scene-dependent AKs. Multispectral retrievals of CO using the MOPITT (Measure-
ments Of Pollution In The Troposphere) 4.6 µm thermal-infrared (TIR) and 2.3 µm near-25

infrared (NIR) channels are available in MOPITT V5 data (Worden et al., 2010; Deeter
et al., 2012, 2013). Multispectral retrievals of O3 retrievals that combine TIR and ultra-
violet (UV) radiances have been shown with simulations (Worden et al., 2007; Landgraf
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and Hasekamp, 2007; Natraj et al., 2011) and recently demonstrated by Fu et al. (2012)
using radiance measurements from the Tropospheric Emission Spectrometer (TES)
and the Ozone Monitoring Instrument (OMI) and by Cuesta et al. (2013) using radiance
measurements from the Infrared Atmospheric Sounding Interferometer (IASI) and the
Global Ozone Monitoring Experiment-2 (GOME-2). Using retrievals over CONUS of5

CO from 2006 and O3 from August 2006, we divide the data into training and test sets,
where the training sets are used in creating the multiple regression tool and the test
sets are used for evaluation of the resulting AK prediction. This technique is presented
as follows: Sect. 2 gives details of MOPITT and TES/OMI data selection, Sect. 3 de-
scribes the SVD processing step, Sect. 4 presents the multiple regression fit of the10

singular vectors as a function of scene dependent parameters, Sect. 5 shows the
procedure for reconstructing predicted AKs from the multiple regression coefficients,
Sect. 6 describes the metrics for evaluating the predicted AKs and the corresponding
results, with conclusions given in Sect. 7.

2 Averaging kernel selection15

2.1 MOPITT

For the CO AKs, we use measurements from MOPITT on EOS-Terra, which is in a sun-
synchronous polar low-earth orbit (LEO) with ∼ 10:30 a.m./p.m. local time equator
crossing. The MOPITT instrument uses correlation radiometry (e.g. Tolton and Drum-
mond, 1997; Drummond et al., 2010) to detect atmospheric CO absorption. Here we20

use multispectral CO retrievals designated as MOPITT V5J data (Deeter et al., 2012).
The averaging kernels and corresponding state data used for the training and test sets
are selected from land-only, day-only observations from 25◦ to 50◦ N, −125◦ to −75◦ E
in 2006 (representing all months). To ensure significant measurement information in
the retrievals, data are filtered for DFS > 1.0, cloud index = 2 (where both MOPITT and25

MODIS indicate a clear pixel) and the signal-to-noise (SNR) for channel 6D > 10. We
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also select scenes that were processed with input water vapor profiles (an interferent
gas in the CO retrieval) from NOAA’s National Centers for Environmental Prediction
(NCEP) operational analysis meteorological fields and not the backup climatology that
is used when NCEP data are not available. For MOPITT CO we use AKs for parameters
in log10(q(z)), where q is species abundance and z is the vertical coordinate.5

The results shown here are only for MOPITT observations with surface pressure
> 900hPa. (Lower surface pressures must be treated separately, which we have also
tested with this method.) MOPITT retrievals of CO profiles are reported on layers of
a vertical pressure grid. For MOPITT data with surface pressure > 900hPa, the AK,
A, is a 10×10 matrix corresponding to 100 hPa layers with lower layer boundaries10

from the surface to 100 hPa (listed in Table 4). As an indication of the measurement
sensitivity in the lowermost troposphere (lowest 3 layers), we compute the “surface
DFS” from ΣAi i where i = 1 to 3. Figure 1 shows how this quantity varies for MOPITT
2006 CONUS observations and Fig. 2 shows the MOPITT 2006 CONUS average AK
along with AK rows for the surface and 500 hPa for individual observations. The large15

AK variability shown in Figs. 1 and 2 demonstrates why a single average for the AK
would not represent the range of sensitivity to near-surface CO.

2.2 TES-OMI

TES is a TIR Fourier Transform Spectrometer (FTS) with 0.1 cm−1 spectral resolu-
tion over 650 to 2250 cm−1 for operational nadir observations (Beer, 2006). OMI is20

a nadir-viewing imaging spectrometer that measures backscattered solar radiation in
the ultraviolet-visible (UV-VIS) wavelength range from 270–500 nm (Levelt et al., 2006).
Both TES and OMI are on-board the EOS-Aura platform in a sun-synchronous LEO
with ∼ 13:40 ascending node equator crossing time. The combined TES/OMI retrieval,
described in Fu et al. (2012), uses O3 absorption around 9.6 µm in the TIR and 270–25

330 nm in the UV. Although these retrievals are not yet performed operationally, beta-
version retrievals from TES and OMI observations taken during August 2006 cover-
ing the CONUS area were available for testing this prediction method. We selected
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land-only, day-only, cloud free observations from 23◦ to 55◦ N, −128◦ to −68◦ E. Obser-
vations are considered cloud free if the TES-only retrieval reported an effective cloud
optical depth < 0.1. For TES-OMI O3, we use AKs for parameters in ln(q(z)), where q
is species abundance and z is the vertical coordinate.

Although the TES-OMI O3 profiles and AKs are reported on a 64 level pressure5

grid from 1000 to 0.1 hPa, we found that using only the first 10 levels (surface to
421.7 hPa) gave the most robust performance with a multiple regression fit, i.e. suc-
cessful inversions. These lowest levels represent the vertical range in the troposphere
with the most variability in retrieval sensitivity and therefore of most interest for this
study. For pressure levels from 383 hPa to 10 hPa, we apply the average AK for this10

August 2006 CONUS data in testing our results. Using only retrievals with surface
pressure > 910hPa, we have 10×10 matrices for the TES/OMI AKs corresponding to
pressure levels listed in Table 4. The spatial distribution of TES/OMI sensitivity to O3
in the lowermost troposphere from the surface to 600 hPa, computed with ΣAi i where
i = 1 to 6, is shown in Fig. 3. Figure 4 shows the TES/OMI CONUS average AK for15

pressures from the surface to 10 hPa and from surface to 421.7 hPa, which are used
for this study. Figure 4 also shows AK rows for the surface and 510.9 hPa level for
individual observations to demonstrate the variability in TES-OMI sensitivity over the
CONUS scenes.

3 SVD processing of the AK matrix20

The number of vertical levels on which tropospheric composition retrievals are per-
formed varies by instrument, and to a certain extent, is somewhat arbitrary. For conve-
nience the retrieval grid may be chosen to match the vertical grid used by the underlying
forward model, as is the case with the TES retrieval. It should certainly be of sufficient
vertical resolution, i.e. contain sufficient levels, to represent vertical structure in the25

background error covariance and retrieved profile. However, the number of retrieval
levels is usually many more than the DFS of the retrieval, and the broad overlapping
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AKs are highly correlated. For this reason, we apply an SVD to the averaging kernels
we use in our training set for the multiple regression. This has the following advantages
for the AK prediction tool: (1) the complexity of the regression is reduced by consider-
ing only the most significant, orthogonal features of the vertical structure in the AK, and
(2) during the OSSE data assimilation step, the assimilation of the leading components5

of the SVD of the AK mitigates the effects of vertical correlation in the retrieval error
covariance. This allows for sequential assimilation of independent retrieval information,
without significant information loss, in addition to significantly reducing the data vol-
ume (e.g. Joiner and da Silva, 1998; Rodgers, 2000; Segers et al., 2005; Arellano and
Edwards, 2013).10

Given an AK matrix A, we compute the SVD as:

A = UΛVT (4)

where the columns of U and V are the left and right singular vectors (respectively) and
the elements of Λ (diagonal matrix) are the singular values. For this work, we use the
SVDC routine from Interactive Data Language, (IDL, 2012). For MOPITT CONUS CO15

AKs, the first 2 singular vectors account for 95 % of the variability on average (with 5 %
standard deviation) while the first 3 singular vectors account for 99.995 %. Similarly,
the TES-OMI O3 AKs up to 400 hPa can be reproduced with high accuracy by the
first 3 leading singular vectors. (Note that for TES-OMI AKs up to 10 hPa, we would
need the first 7 leading singular vectors to reproduce the O3 AK variability through the20

stratosphere.)
For each A, we retain the first 3 ranked singular vectors for U and V, along with the

rotated AK matrix given by R = UTA. Since the SVD results have a potential sign am-
biguity (Bro et al., 2007), we also test for negative orientation in each of the 3 singular
vectors for U, V and R. For example, pU

i = −1 if the absolute value of the minimum25

of Ui ,k is larger than the maximum value of Ui ,k where i = 1, 2 or 3 and k is the col-

umn index, otherwise, pU
i = 1. The sign coefficients, pU

i , pV
i , pR

i are stored with the i th
singular vectors for each scene.
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The training and test datasets of MOPITT and TES-OMI AKs are determined by
a simple selection of even/odd observation indices and we have confirmed that no
spatial bias is introduced. Corresponding state parameters (described below) for each
MOPITT and TES-OMI retrieval are also stored with the training and test sets. As a ref-
erence case, we compute the average AK for the region of interest, i.e. CONUS for5

this study. This provides a comparison for evaluation of the predicted AK variability,
described in Sect. 6, as well as a mean subtraction reference for the training set cases.
We compute the SVD and sign coefficients for the average AK, and store the differ-
ences of the U, V and R singular vectors of each observation of the training set with
respect to the average AK singular vectors, thereby restricting our fit algorithm to the10

vertical structures that are variable from the average AK structure. Figures 5 and 6
show the leading 3 columns of the left singular vector (U) and rows of the rotated AK
(R) along with singular values for the SVDs of the average CONUS AKs for MOPITT
and TES-OMI, respectively.

4 The multiple regression AK prediction tool15

For the training set of average AK-subtracted, leading 3 singular vectors of U, V, R,
at each pressure in the 10 level grid, we perform a multiple regression (MR) fit with
predictors derived from the corresponding state parameters included with the retrievals.
Here we use the IDL routine REGRESS (IDL, 2012) to perform the following fit over the
training set for each singular vector at each pressure denoted by yi :20

yi = c+a1xi ,1 +a2xi ,2 + . . .+aNxi ,N (5)

with resulting constant c and N coefficients a, for N predictors x from the i th obser-
vation in the training set. Some predictors (x) are pressure dependent and some are
independent of pressure. In selecting predictors, we first considered the more important
predictors used in the regression technique for parametrizing MOPITT forward model25

transmittances (Edwards et al., 1999). Pressure independent predictors are listed in
2760
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Table 1 for MOPITT and Table 2 for TES-OMI retrievals, with mean, standard devia-
tion, minimum and maximum values given to indicate the ranges of values covered by
the training data sets. Pressure dependent predictors, atmospheric temperature (T (z)),
thermal contrast (∆T (z) = Tsurface − T (z)), water vapor VMR and retrieval species (CO
or O3) VMR are plotted in Fig. 7 form MOPITT and Fig. 8 for TES-OMI. Here thermal5

contrast is defined with layer average temperatures, while temperature profiles corre-
spond to pressure levels. For MOPITT retrievals, we use the SNR for the difference
signals in the 2.3 µm NIR channel (ch 6D) as a proxy for albedo. For OSSEs with vari-
able albedo, these could be scaled to match the range shown for SNR (ch 6D). Along
with the predictors listed in Tables 1 and 2, we also use MR predictors defined from10

combined parameters such as ∆T 2, cos(θsza)/ log10(CO) and ∆T/ log10(CO). All pre-
dictors were tested individually and all provide improvements to the fit, but with varying
degrees of significance (see below). The resulting coefficients from the training set MR
are stored. These are used below in the evaluation of the tool in for the test dataset
AKs and corresponding predictors derived from their physical parameters.15

MR predictor significance

The AK, given by Eq. (2), has contributions from instrument sensitivity through the Ja-
cobian (weighting function) matrix K and measurement error Se (Rodgers, 2000). For
a constant a priori error covariance or other constraint, Sa, we expect the parameters
that affect variations in the AK to fall within two basic categories: weighting functions20

and SNR. Since we are considering existing instruments, we are not examining a wide
range in SNR. Therefore, we expect much of the variation in our regression to be ex-
plained by parameters that affect the weighting functions such T , ∆T , retrieval species
abundance (CO or O3), water vapor, etc. Since MOPITT uses log10(VMR) in the CO
retrieval and TES/OMI uses ln(VMR) for O3, following Eq. (3), both of these produce25

weighting functions that have a dependence on q(z) (i.e. VMR) with increasing magni-
tude for increasing VMR:
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∂F
∂ log10q(z)

= (log10e)q(z)
∂F

∂q(z)
and

∂F
∂ lnq(z)

= q(z)
∂F

∂q(z)
(6)

Since the MR predictors are not always independent from each other, their contribu-
tions to the MR fit are not a linear combination. To evaluate whether an individual
predictor improves or degrades the fit, we use the metrics described in Sect. 6, applied
to the cases where each predictor is removed, one at a time. For the MOPITT AKs,5

the most important predictor for accuracy in the lowest levels (highest pressures) is
∆P srf. However, this is an artifact of how we have defined our vertical grid boundaries
and reference to the average CONUS AK. The most significant physical predictors are
CO column and T (temperature profile), followed by CO profile, ∆T 2 and SNR (ch 6D).
Other predictors such as water vapor VMR and surface emissivity added almost neg-10

ligible improvements to the fit, which is to be expected in the case of MOPITT since
these parameters have little impact on the weighting functions or SNR of a gas filter
correlation radiometer. This is due to the fact that their radiative effect is uncorrelated
with that of CO, and to first order, cancels from the radiance signals used by the re-
trieval.15

For the TES-OMI retrievals, the most important predictors (in order) are O3 profile,
∆P srf and T . As for MOPITT, the dependence on ∆P srf is an artifact of how we
specify our grid and reference AK. These are followed by tropospheric O3 column,
surface temperature (T srf), tropopause pressure and ∆T 2. We found that including
water vapor and solar zenith angle (sza) actually degraded the fit in the TES-OMI20

cases, for reasons we do not fully understand, but possibly because our training set
was limited to 453 observations and did not have a sufficient range in these parameters.

Table 3 lists the linear Pearson correlation coefficients for surface DFS (trace of the
AK for the 3 lowest layers) with the predictors that are most important to the MR fit. For
both MOPITT and TES-OMI, we can conclude that MR dependence on either column25

amount or VMR is more important than T or ∆T . For MOPITT TIR-only retrievals, sur-
face DFS has a significantly more correlation with ∆T 2 than the multispectral cases,
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but it is still less than the correlation with CO column. Although TIR-only retrievals rely
on sufficient thermal contrast for retrieval sensitivity in the lower troposphere (Deeter
et al., 2007; Clerbaux et al., 2009), by selecting only retrievals with DFS > 1, we may
have limited the range of thermal contrast such that the correlation with CO column
(due to the use of log(VMR) parameters) is more dominant.5

5 Prediction of averaging kernels for the test dataset

Using the coefficients from the MR and predictors from a test retrieval case, we create
UMR and reconstruct the predicted left singular vector Upred with:

Upred = UMR +pU
avgUavg (7)

where Uavg is the SVD of the average CONUS AK, with sign pU
avg, stored with the coef-10

ficients. Corresponding operations are performed to obtain Vpred and Rpred. Since the
actual SVD-transformed AKs for each test case observation are also available, a direct
comparison of the true and predicted quantities can be made to evaluate the accuracy
of the technique. Figure 9 shows an example of the predicted singular vectors for R
compared to the true R for a single test case observation from MOPITT. Reconstructed15

singular values are estimated using:

Λi i = sqrt
(
Σk [Rpred(i ,k)]2/Σk [Upred(i ,k)]2

)
(8)

where i = 1, 2 or 3 and k is the column index. Using original matrices R and U, the
diagonal values of Λ are reproduced exactly with Eq. (8), while Rpred and Upred produce
reasonable approximations to the singular values in order to reconstruct a full 10×1020

AK matrix with:

Apred = UpredΛVT
pred (9)
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The MR coefficients are used to calculate Upred, Vpred and Rpred for each set of state
parameters corresponding to the AKs in the test data, and Eq. (9) gives a predicted AK
that can be compared to the true AK from the test set. Figure 10 shows the predicted
AK compared to the true AK for the same MOPITT test case example shown in Fig. 9.
Figures 11 and 12 show a test case example for TES-OMI with predicted singular5

vectors for R and reconstructed AK compared to the true values. We compare the
average of test case AKs to the average of predicted AKs for MOPITT in Fig. 13 and
for TES-OMI in Fig. 14.

6 Evaluation metrics and results

As discussed in Sect. 1, chemical OSSEs to-date have usually only considered a very10

limited number of AK conditions, for example, two representative average AKs for
land and ocean scenes. In order to compare the performance of our individual scene-
dependent predicted AKs to a single CONUS average AK, we established a metric for
the error in VMR given by the difference between a reference profile that is smoothed
by either the predicted AK (Apred) or CONUS average AK (Acavg) and the same refer-15

ence profile smoothed by the true AK (Atrue) from each test case. For MOPITT CO, we
compute the following for each test case.

xtrue = log10(COapr)+Atrue[log10(COref)− log10(COapr)] (10)

xcavg = log10(COapr)+Acavg[log10(COref)− log10(COapr)] (11)

xpred = log10(COapr)+Apred[log10(COref)− log10(COapr)] (12)20

∆COcavg=10xcavg−10xtrue (13)

∆COpred=10xpred−10xtrue (14)

where COapr is a global average profile and COref is a CONUS average profile, both
from the climatology used in MOPITT retrievals (Deeter et al., 2010). For TES-OMI O325
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test cases, we use equations similar to Eqs. (10)–(14), except with ln(O3VMR), and
with an a priori profile for the Pacific ocean and a reference profile for CONUS, from
the climatology used in the TES-OMI retrievals (Fu et al., 2012), where we have added
50 ppb at the lowest 3 levels to approximate a polluted boundary layer case. Table 4
lists the CO and O3 a priori and reference profile values.5

Histograms of ∆COcavg for each pressure shown in Fig. 15a. These show that using
a CONUS average AK approximation would give small errors in CO for the middle and
upper troposphere (pressures below 600 hPa), but would not capture the true sensitivity
to CO variability (as compared to the original test case AKs) in the lower troposphere.
For the CONUS average AK approximation, only 49 % of the test cases have CO values10

within 5 ppb of the CO values obtained from using the true AKs in the surface layer.
Figure 15b shows histograms of ∆COpred where we see similar performance in the
middle and upper troposphere and significant improvements for the CO error in the
lower troposphere. For the predicted AKs, the number of cases with CO errors within
5 ppb increases to 82 % in the surface layer.15

TES-OMI histograms for ∆O3 (% errors) are shown in Fig. 16. We use percent er-
ror in order to show the performance of the CONUS average and predicted AKs at all
pressure levels on the same plot. For the TES-OMI predicted AKs, performance was
somewhat worse at pressures below 600 hPa compared to the CONUS average AK.
We therefore adopted a hybrid approach of using the predicted AK rows at pressures20

greater than 600 hPa and the CONUS average AK rows at all lower pressures. Fig-
ure 16a shows a broad distribution in O3 errors for surface to 681 hPa pressure levels
when using a CONUS average AK, while in Fig. 16b, the error histograms at these
same pressure levels have much narrower distributions when using predicted AKs.
Figure 17 shows the CONUS average and predicted AK histograms computed for O325

differences in ppb, for surface to 421 hPa pressures.
We note that the shape and mean values in the CO or O3 error histograms will par-

tially depend on the choice of reference and a priori profiles used for computing this
metric. However, here we are testing the relative performance of the predicted AKs
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compared to the CONUS average AK, which are evaluated using the same a priori and
reference profiles. Using this metric, we can test the performance of the predicted AKs
when removing predictors from the MR (as discussed in Sect. 4.1) and also show how
the predicted AKs improve errors in the lower troposphere over the baseline approxi-
mation of using a CONUS average AK in an OSSE (Figs. 15–17).5

7 Summary and conclusions

We have demonstrated a method for predicting scene-dependent, cloud-free AKs for
tropospheric retrievals of CO and O3 using coefficients from a multiple regression fit
of AK singular vectors and predictors formed from the state parameters of multispec-
tral observations. This tool provides a fast approximation for the instrument simulator10

component of a chemical OSSE that could be used for determining how much informa-
tion is added from the observational perspective of GEO compared to existing satellite
measurement capability from LEO. We used CONUS observations from existing LEO
satellite measurements of CO (from Terra/MOPITT) and O3 (from Aura/TES and OMI)
that have shown increased sensitivity to the lower troposphere in some scenes with15

retrievals that combine multispectral radiances. After applying an SVD to the averaging
kernels, we performed a multiple regression fit on the leading three singular vectors
of U, V and rotated AK R for our training set of observations. We then used the co-
efficients of the MR to create predicted AKs using predictors derived from the state
parameters of our test observations. By comparing the adjustments to reference CO20

and O3 profiles from applying the true, predicted and CONUS average AKs, we eval-
uated the relative performance of the predicted AK in terms of VMR error. We found
that the predictors most important for reproducing the variability in the lowermost tropo-
sphere for MOPITT and TES-OMI multispectral AKs were species abundance (column
or VMR profiles) followed by temperature and thermal contrast. We have shown that25

using this AK prediction tool in a chemical OSSE would provide a significant improve-
ment in accuracy compared to an OSSE that uses a single CONUS average AK. For
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our reference CO and O3 profiles, the percentage of cases that would have VMR er-
rors less than 5 ppb in the near-surface layer increased from 49 % to 82 % for CO and
from 65 % to 92 % for O3 from applying the predicted AKs as compared to the CONUS
average AK. The next step in this work will be the implementation of the AK prediction
tool in the data assimilation environment of chemical OSSEs to evaluate CO and O35

multispectral retrieval performance for the Decadal Survey GEO-CAPE mission. Sub-
sequent work will explore the extension of the method for the measurement simulation
of other GEO-CAPE trace gas and aerosol products.
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Table 1. Non-pressure dependent parameters for MOPITT CO AK multiple regression f (2006
CONUS data sample, all seasons, number of scenes in training set = 15952).

Parameter Mean Std. deviation Min. value Max. value

θ sza (deg.) 39.2 13.8 14.5 74.4
SNR (ch. 6D) 88.3 64.7 10.0 767
Emissivity 0.956 0.04 0.78 1.0
Latitude (deg.) 38.1 6.3 25.0 50.0
T srf (K) 287.6 15.3 217.5 334.6
∆P srf (hPa) 0.0 31.4 −72.7 59.4
CO column 2.21 0.36 0.95 6.91
(1018 moleculescm−2)
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Table 2. Non-pressure dependent parameters for TES-OMI O3 AK multiple regression fit (Au-
gust 2006 CONUS data, number of scenes in training set = 453).

Parameter Mean Std. deviation Min. value Max. value

θ sza (deg.) 32.3 6.4 20.5 48.1
Albedo (OMI ch.2) 0.050 0.025 5×10−5 0.16
Emissivity 0.986 0.012 0.931 1.0
Latitude (deg.) 41.5 8.6 23.1 55.7
T surface (K) 303.5 9.8 280.0 328.9
∆P surface (hPa) 0.0 27.3 −60.8 30.2
Tropopause pressure (hPa) 141.5 45.0 75.0 261.0
Trop. O3 column 1.36 0.25 0.79 3.27
(1018 moleculescm−2)
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Table 3. Linear Pearson correlation coefficients for surface DFS (lowest 3 layers) vs. state
parameters with highest impact to MR fit. For T atmos, ∆T 2, and O3 VMR, the average values
for the lowest 3 layers are used.

Parameter MOPITT TES-OMI
Surface DFS correlation Surface DFS correlation

∆P surface 0.37 0.13
CO total column 0.25
T atmos. −0.22 0.27
∆T 2 0.03 0.47
Trop. O3 column 0.42
O3 VMR 0.76
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Table 4. A priori and reference and profiles for evaluating CO and O3 errors in predicted or
CONUS average AKs.

MOPITT A priori Reference TES-OMI A priori Reference
Pressure CO profile CO profile Pressure O3 profile O3 profile
(hPa) (ppb) (ppb) (hPa) (ppb) (ppb)

Surface 97.0 131.0 Surface 27.3 98.8
900 90.0 122.0 908.51 32.0 10.0
800 89.0 102.0 825.40 37.6 102.2
700 85.0 95.0 749.89 44.1 55.9
600 82.0 91.0 681.29 51.8 60.1
500 80.0 88.0 618.97 55.3 63.5
400 80.0 86.0 562.34 59.0 67.0
300 78.0 82.0 510.90 61.9 70.2
200 70.0 67.0 464.16 65.1 73.7
100 45.0 42.0 421.70 69.4 78.7
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Fig. 1. MOPITT V5J sensitivity to near surface CO, given by the trace of the AK for the lowest 3
layers, in 0.5◦ ×0.5◦ bins. Only land scenes with surface pressure > 900hPa are included, with
higher altitudes, water and missing data indicated by grey or white.
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Fig. 2. MOPITT CO AKs for 2006 CONUS observations. (a) CONUS average AK, with colors
corresponding to pressure levels indicated on the left. (b) Individual AK rows for 31 904 CONUS
observations for the surface (red lines) and 500 hPa (blue lines) and average surface AK (black
line).
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Fig. 3. TES-OMI sensitivity to lower tropospheric O3, given by the trace of the AK for the lowest
5 layers. Only land scenes with surface pressure > 900hPa are included; each oval represents
a single observation.
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Fig. 4. TES-OMI O3 AKs for August 2006 CONUS. (a) CONUS average AK from surface to
10 hPa, with colors corresponding to pressure levels indicated on the left. (b) CONUS average
AK from surface to 421 mb. (c) Individual AKs for 906 CONUS observations for the surface (red
lines) and 510.9 hPa (blue lines) and average surface AK (black line).
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Fig. 5. (Left) Left singular vector (U) from the SVD of the MOPITT 2006 CONUS average CO
AK (1st 3 ranked columns). (Right) 1st 3 rows of the rotated average AK (R) with corresponding
singular values.
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Fig. 6. Same as Fig. 5, but for the SVD of the TES-OMI CONUS average O3 AK.
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Fig. 7. Pressure dependent state parameters for MOPITT CONUS 2006 training set. Black
lines indicate mean values. Green areas show mean± standard deviation.
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Fig. 8. Same as Fig. 7 but for TES-OMI pressure dependent state parameters.
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Fig. 9. Example of a test case to evaluate the prediction for singular vectors (SV) for the rotated
AK (R) for a single MOPITT observation. Solid lines indicate the true rows of R from the test
case observation; dotted lines indicate the results of the prediction using MR coefficients from
the training set and the state parameters from the test case observation as input.
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Fig. 10. Example of original MOPITT test case AK and corresponding predicted AK using the
results of the MR prediction shown in Fig. 9 to reconstruct the predicted AK. Difference between
predicted and original AKs is shown on the right.
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Fig. 11. Same as Fig. 9 but for TES-OMI test case and prediction.
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Fig. 12. Same as Fig. 10 but for TES-OMI test case AK and prediction.
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Fig. 13. Comparison of the average CO AK for MOPITT test cases and average of correspond-
ing predicted AKs. Difference between average predicted and average test case AKs is shown
on the right.
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Fig. 14. Same as Fig. 13 but for TES-OMI test cases.
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Fig. 15. (a) Performance of CONUS average AK compared to true AKs for MOPITT test cases.
(b) Performance of predicted AKs compared to true AKs for MOPITT test cases. Histograms
of error in CO are plotted for each pressure (indicated by colors on the right). Listed on the far
right, are the percentages of test cases that fall within 5 and 10 ppb CO error for each pressure.
See text for description of error calculation.
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Fig. 16. (a) Performance of CONUS average AK compared to true AKs for TES-OMI test cases.
(b) Performance of predicted AKs compared to true AKs for TES-OMI test cases. For pressures
below 600 hPa, the CONUS average AK is applied. Histograms of error in O3 are plotted for
each pressure (indicated by colors on the right). Listed on the far right are the percentages of
test cases that fall within 2 % and 5 % O3 error for each pressure.
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Fig. 17. (a) Performance of CONUS average AK compared to true AKs for TES-OMI test cases.
(b) Performance of predicted AKs compared to true AKs for TES-OMI test cases. For pressures
below 600 hPa, the CONUS average AK is applied. Histograms of O3 error in ppb are plotted
for each pressure (indicated by colors on the right). Listed on the far right are the percentages
of test cases that fall within 2 ppb and 5 ppb O3 error for each pressure.
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