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Abstract

Single particle mass spectrometry has proven a valuable tool for gaining information
on the mixing state of aerosol particles. With the Aerodyne aerosol mass spectrome-
ter (AMS) equipped with a light scattering probe, non-refractory components of sub-
micron particles with diameters larger than about 300 nm can even be quantified on5

a single particle basis. Here, we present a new method for the analysis of AMS sin-
gle particle mass spectra. The developed algorithm classifies the particles according
to their components (e.g., sulphate, nitrate, different types of organics) and simultane-
ously provides quantitative information about the composition of the single particles.
This classification algorithm was validated by applying it to data acquired in laboratory10

experiments with particles of known composition, and applied to field data acquired
during the MEGAPOLI summer campaign (July 2009) in Paris. As shown, it is not only
possible to directly measure the mixing state of atmospheric particles, but also to di-
rectly observe repartitioning of semi-volatile species between gas and particle phase
during the course of the day.15

1 Introduction

A mixture of atmospheric aerosol particles can comprise single particles of vastly dif-
ferent chemical composition, size and properties, depending on the particles’ individual
sources and atmospheric processing (Pöschl, 2005). Especially in order to gain direct
information on the mixing state of these particles, the chemical composition of the in-20

dividual particles needs to be analysed. Also particle types present only in low number
might not be detected by analysis of the whole particle ensemble, but only by single
particle analysis. Though rare, they nonetheless could be of interest, e.g. because they
are characteristic for a specific source.

In order to obtain information on the composition of individual particles with high25

time resolution, currently especially laser desorption/ionization (LDI) single particle
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mass spectrometers are being used (Johnston and Wexler, 1995; Noble and Prather,
2000; Hinz and Spengler, 2007). These are able to analyse both refractory and non-
refractory particle components. The drawback of these instruments is that they are typ-
ically not able to provide quantitative information about the particle composition (Noble
and Prather, 2000). Quantitative measurements of ensembles of non-refractory parti-5

cles, on the other hand, can be obtained with the Aerodyne aerosol mass spectrome-
ter (AMS), which applies a thermal desorption/electron impact ionization measurement
scheme. It was originally designed especially for the on-line analysis of ensembles of
submicron particles (Jayne et al., 2000). In conjunction with a time-of-flight (ToF) mass
spectrometer, also with the AMS single particle measurements have become possible,10

though only with very low analysis duty cycle (Drewnick et al., 2005). This duty cy-
cle was greatly improved with the introduction of the light scattering probe (LSP) into
the ToF-AMS (Cross et al., 2009), which enables the quantitative measurement of the
chemical composition of non-refractory, submicron particles on a single particle basis
with the AMS. The lower 50 % cut-off for optical detection typically here is in the order15

of about 300 nm particle diameter (Liu et al., 2013).
Like for single particle mass spectra acquired with LDI instruments (Hinz and

Spengler, 2007), the data analysis of single particle mass spectra acquired with the
AMS is not straightforward. Few attempts have been made so far to analyse AMS single
particle mass spectra from ambient air sampling (Cross et al., 2009; Liu et al., 2013).20

In both cases, the standard fragmentation pattern table (Allan et al., 2004), which was
developed to deconvolute the mass spectral contribution of nitrate, sulphate, ammo-
nium, chloride and organics to ensemble AMS mass spectra, was applied to the single
particle mass spectra. By this means, the mass spectra of only the organic content of
the individual particles were separated. This approach has certain drawbacks: the frag-25

mentation pattern table was developed especially for an ensemble of ambient particles,
i.e. it assumes the measured ensemble to always consist of the five aforementioned
components, with time-varying relative contributions. While this is applicable in most
cases to ensemble data, this cannot be expected per se from single particles, which
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may consist only of one or some of these constituents. Furthermore, with the fragmen-
tation pattern table the relative signal contribution of different species at various mass
to charge ratios m/z are calculated from signal intensities at other m/z (Allan et al.,
2004). This is appropriate for ensemble mass spectra with good signal-to-noise-ratio,
but adds further uncertainty in the mass contributions obtained for the single particle5

mass spectra. Also the organics fragmentation pattern obtained by this means might
be more or less disturbed. This can be problematic especially for particle mass spec-
tra with very unusual fragmentation patterns, which thereby might be easily missed or
misinterpreted.

To gain additional information on the organic mass fraction of individual particles,10

different methods were adopted in the aforementioned publications. Cross et al. (2009)
applied a method derived from principal component analysis (Zhang et al., 2005), Liu
et al. (2013) used k means clustering (Bishop, 2006) to classify different types of or-
ganic aerosol mass spectra. Both methods provided similar results, in that they sepa-
rated OOA-like (oxygenated organic aerosol) and HOA-like (hydrocarbon-like organic15

aerosol) mass spectra. Liu et al. (2013) furthermore separated two subtypes of OOA
that were interpreted to be more and less volatile due to slight differences in the cluster
centroid mass spectra. Both methods, however, have the inherent problem of not yield-
ing comparable results between different datasets. For example, an “HOA-like” cluster
mass spectrum of one dataset might look different from an “HOA-like” cluster mass20

spectrum retrieved for another dataset, and it is within the subjective decision of the
user to decide whether they are similar enough to comprise the same type of organic
matter. In addition, both methods were not able to identify particles present only in low
number fraction. The method used by Cross et al. (2009) is only capable of identify-
ing HOA- and OOA-content, and will not provide information on any other particle type.25

With k means clustering as applied by Liu et al. (2013), in principle it should be possible
to identify also new, so far unknown particle types, as the clustering is not constrained
to any specific mass spectral patterns. However, if these particles are occurring only
in low number fraction (depending on the specific dataset), they might easily be mixed
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into the clusters dominated by other particle types, and thereby be missed. Further-
more, for our datasets presented here we found that this method is typically not able
to separate particles with the same components but in different degrees of mixing, and
therefore can only provide limited information about the particles’ mixing state.

Here, we present a new method to reliably identify and also quantify components5

within single particle mass spectra acquired with the AMS. The algorithm yields un-
ambiguous results, which are comparable between different datasets, and gives direct
information on the quantitative composition of the individual particles and their mixing
state. Furthermore, the algorithm is able to recognize individual particles of specific
types within the dataset, and it can be easily adapted to identify new, so far unknown10

particle types. The algorithm was validated using mass spectra of laboratory-generated
particles of known composition, and applied to single particle mass spectra acquired
during ambient measurements in Paris, France, in summer 2009.1

2 Materials and methods

2.1 Instrument details15

A C-ToF-AMS (Compact ToF-AMS, Aerodyne, Inc.; Drewnick et al., 2005) equipped
with an LSP as described in detail in (Cross et al., 2007; Cross et al., 2009; Liu et al.,
2013) was used in this work. In short, the particle beam entering the instrument is
chopped at its front end by a spinning wheel with two slits to determine the starting point
of the measurement. The light scattering probe is mounted at a distance of 0.265 m20

from the chopper. It consists of an unfocused continuous wave laser (CrystaLaser,
model BCL-050-405, 405 nm, 50 mW) and an elliptic mirror, which focuses scattered
light from particles passing the laser beam onto a photomultiplier tube. At a distance
of 0.395 m from the chopper, the vaporizer is situated. Here, non-refractory material

1 The content of this paper has, in different form, been published previously as part of a PhD
thesis (Freutel, 2012; in German).
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is flash-vaporized and consecutively ionized by electron impact, and the resulting ions
are orthogonally extracted into the ToF mass spectrometer. During measurement in
light scattering mode, time-resolved mass spectra are recorded (here: 250 per chopper
cycle), and if a particle is detected during one chopper cycle at the photomultiplier tube
of the LSP, the time-resolved mass spectra of the whole chopper cycle are saved along5

with the light scattering signal.
To retrieve single particle mass spectra from the measured raw data, the AMS sin-

gle particle data analysis software Sparrow, version 1.04 A (Sparrow, 2013) was used,
modified and extended within this work. Sparrow as well as the classification algorithm
described in this work have been developed within the framework of the scientific cal-10

culation software tool IGOR Pro, version 6.22 A (Wavemetrics, Inc.).
For all measurements, single ion area (Jayne et al., 2000) was determined for the

mass spectrometer on a regular basis to be able to convert the raw measured sig-
nal into number of ions. On-board AP240 thresholding was used during all measure-
ments with a threshold of 4–5 bits. During all measurements, the AMS was oper-15

ated with a vaporizer temperature of ∼ 600 ◦C; only during the first two weeks of the
MEGAPOLI summer campaign (see below), it was set to ∼ 800 ◦C. No indication was
found from comparison to co-located instruments that this difference in vaporizer tem-
perature caused any differences in fragmentation patterns or mass concentration mea-
surements (Freutel et al., 2013).20

In all measurements the standard AMS aerodynamic lens was used, which has
its lower and upper 50 % cut-off at particle sizes of about 70 and 750 nm vacuum-
aerodynamic diameter, respectively (Liu et al., 2007). For LSP detection efficiency,
the lower 50 % cut-off particle size was at ∼ 380 nm volume-equivalent diameter for
the measurements within this work. The detection efficiency reached about 100 %25

for particles≥ 400 nm. The measured number distribution in this size range agreed
well with that from co-located measurements of an optical particle counter during
the MEGAPOLI 2009 campaign (see below). All conclusions drawn from AMS single
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particle data in this work (e.g. on number concentrations or average mass per particle)
are based on this size range.

2.2 Retrieval of single particle mass spectra

Each single particle dataset consists of the time-resolved light scattering signal and
the time-resolved mass spectra, both acquired during one individual chopper cycle.5

In order to extract the single particle mass spectrum from these mass spectra, the
method described by Cross et al. (2009) was slightly modified: first, for each chopper
cycle the temporal evolution of the total ion current (TIC), calculated as the sum of all
significant signals but m/z 18, 28, and 32, was determined. (m/z 18, 28 and 32 were
excluded due to high background signal from water, N2 and O2.) “Significant” here10

means a maximum intensity of more than three times the standard deviation of the
background regions, i.e. the mass spectra at the beginning and the end of the chopper
cycles. The time of detection of the particle in the mass spectrometer is identified from
the maximum in the TIC signal. As ions from this single particle evaporation event are
distributed over several mass spectra around this maximum, all these mass spectra15

need to be summed to obtain the overall mass spectrum of the single particle. To do
so, the summation region is determined around the TIC maximum as all mass spectra
that contain significant signal, including at most five data points in each direction. If
this summation region contains at least two mass spectra, all m/z but 18, 28 and 32
are summed over the corresponding consecutive mass spectra, and the corresponding20

background (average of mass spectra from the background regions) is subtracted. Ion
duty cycle correction (Drewnick et al., 2005) and single ion area are applied to convert
the signal of the resulting mass spectrum into ion duty cycle corrected number of ions.

It was found that these integrated mass spectra on average contain about 80 % of the
total measured mass from the respective single particle event. The remaining 20 % are25

contained within the tailing of the TIC peak (slow vaporization) and are not regarded in
the determination of the summation region due to their insignificant signal.

Of all retrieved mass spectra, only those are used for the further analysis for which:
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– the flight time measured between chopper and detection in the mass spectrom-
eter fits within 20 % to the expected arrival time calculated from the flight time
between chopper and detection of the light scattering signal,

– the sum of (positive and negative) signals in the single particle mass spectrum
is at least 5 ions, and a minimum signal of 5 ions is found at least at one m/z5

between m/z 18 and 200 (both without regarding signal at m/z 18, 28, 32),

– in the light scattering signal, no indication for coincident particles is found (Liu
et al., 2013).

2.3 Particle generation

For the laboratory measurements (Table 1), an aqueous solution (emulsion in the case10

of oleic acid) of the respective substance or mixture of substances was nebulized (neb-
ulizer model 3075, TSI Inc.). The aerosol was dried using two consecutive silica gel
diffusion driers, and led through 1/4′′ stainless steel tubing to a differential mobility
analyser (model 3080, TSI Inc.) for size selection. From there, the aerosol flow was
split and led in parallel to a condensation particle counter (Grimm, model 5.401) and15

the C-ToF-AMS.
Source measurement. For the measurement of engine exhaust particles, exhaust of

an electric power generator (SDMO, SH 15 000 TE) fuelled with gasoline was probed
by measuring directly in the exhaust plume without any further inlet lines in ambient air.
The inlet of the AMS was in about 1 m distance to the generator. To exclude mass spec-20

tra of the ambient aerosol background, all mass spectra were manually inspected. Only
those which clearly resembled literature mass spectra of engine exhaust (Canagaratna
et al., 2004; Schneider et al., 2006) were used for further analysis.

Field measurements. Particles from ambient air were measured in a north-eastern
suburb of Paris, France, during the MEGAPOLI summer campaign (1–31 July 2009).25

Details about this campaign, the sampling of the C-ToF-AMS, and comparison to co-
located measurements can be found in (Freutel et al., 2013). For this dataset, from
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107 734 single particle events, 26 123 single particle mass spectra could be retrieved
after applying the criteria described above. The major reason (in about 90 % of all
cases) for particle events to being excluded was low ion signal.

It was found that the shape of the number size distribution of those particles for
which mass spectra were retrieved was very similar to that of all particles detected by5

the LSP. Only the largest particles were slightly underestimated, likely due to increas-
ing bounce-off from the vaporizer, as also found e.g. for impactors (Hinds, 1999). For
a comparison of mass size distributions, the time-resolved TIC of all single particle
events was used. The summed time-resolved TIC of all single particle events, after
applying the necessary conversion factors, was in agreement with ensemble size dis-10

tribution measurements in the range of optimum LSP detection efficiency. Also the sum
of the time-resolved TIC of all single particles was compared to that of only the particles
for which mass spectra were retrieved. This comparison showed that only about 20 %
of the total measured mass was not included within the particle events used for the
further analysis. All in all, the time-resolved TIC from all particles was comparable to15

that of only the particles used in the analysis. Only for the largest particle sizes, a slight
underestimation of the retrieved particle mass compared to the whole measured mass
was found, due to delayed vaporization events which are not included in the analysis
(see above). From these comparisons, it therefore is assumed that the analysed sub-
set of data is representative of the whole particle population, and that the majority of20

particles not included in the analysis due to missing mass spectra are of comparable
composition to the ones investigated.

In order to obtain typical single particle mass spectra of oxygenated organic aerosol
(OOA), from all single particle mass spectra sampled those resembling internal mix-
tures of OOA, nitrate and/or sulphate were extracted as follows: for each single particle25

mass spectrum, the signal at m/z 30 and 46 was summed as a proxy for the nitrate
content, and the signal at m/z 48, 64, 80, 81, and 98 as a proxy for the sulphate
content. The signal at the remaining m/z (without m/z 16, 17, 18, 28, and 32) was
summed as a proxy for the content of organics. A potential interference of chloride with
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this calculated organic content was considered insignificant as its average mass con-
centration was negligible during this campaign (Freutel et al., 2013). From these values,
for each single particle mass spectrum the relative contribution of organics to the total
ion signal was calculated. All single particle mass spectra containing similar organic
contributions were averaged. Inspection of these average single particle mass spec-5

tra showed that for particles with less than 80 % organic content (by ion number), the
average mass spectrum resembled that of an internal mixture of OOA and inorganics.
For particles with higher organic content, the average mass spectrum resembled pure
hydrocarbon-like organic aerosol (HOA; examples of mass spectra from both types of
organic aerosol can be found e.g. in Zhang et al., 2011). Therefore, all particles with10

less than 80 % of organic content were classified as “OOA-containing”. Out of those,
10 % were randomly chosen for the development and testing of the classification al-
gorithm described in Sect. 3.1. To ensure sufficient signal-to-noise-ratio, only mass
spectra with absolute organics signal of at least 50 ions were used, which resulted in
a total of 822 single particle mass spectra used for the further analysis described in15

Sect. 3.1.

3 Results and discussion

3.1 Development and validation of a classification algorithm

3.1.1 Working principle of the classification algorithm

From the single particle measurements listed in Table 1, average reference single par-20

ticle mass spectra of ammonium nitrate and sulphate, glucose, oleic acid, engine ex-
haust, and OOA (internally mixed with ammonium nitrate and sulphate) were deter-
mined. Ammonium nitrate and sulphate are commonly found in atmospheric aerosol,
as well as engine exhaust organic aerosol and OOA (Zhang et al., 2007). Glucose,
the building element of cellulose, is used here as a proxy for cellulose-derived sugars25
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and anhydrosugars originating from biomass or biomass burning organic aerosol parti-
cles (Simoneit, 2002). Oleic acid is used as a proxy for cooking-related organic aerosol
particles (Allan et al., 2010). A simplified scheme of the developed classification al-
gorithm is shown in Fig. 1. An exemplary application of the algorithm on one single
particle mass spectrum containing OOA, nitrate and sulphate is shown in Fig. 2. The5

algorithm compares each single particle mass spectrum via linear correlation to the
reference mass spectra and additionally checks for the presence of signal at specific
marker m/z (Table 1). If a compound is unambiguously detected by both methods, the
reference mass spectrum is scaled accordingly and subtracted from the single particle
mass spectrum (Fig. 2). The needed scaling factor (SMS-retrieval) for doing so is deter-10

mined by fitting a linear regression line (with intercept = 0) to the scatter plot of the
so-called “marker-MS” of the measured and reference single particle mass spectra.
These “marker-MS” do not include all m/z, but only some characteristic and signal-
intensive m/z of the respective substance (Table 1). Note that the m/z used for the
“marker-MS” are not necessarily identical to the marker m/z used for identification of15

the substance (see Table 1).
As shown in Fig. 1, the algorithm first only checks for the presence of the inorganic

compounds nitrate and sulphate, before organic compounds are tested. This order
was selected because if inorganic compounds are present, they usually dominate the
single particle mass spectrum, so they need to be removed first in order to be able to20

reliably identify the organic components. For the subsequent correlation of the organic
compounds, depending on the number of components already subtracted from the
single particle mass spectrum, different thresholds of the squared Pearson’s correlation
coefficient R2 are used as indication for positive detection of the substances (Fig. 1).
This is supposed to enable the detection of minor components in a mixture, without25

causing too many erroneous detections. The R2 threshold values are based on typical
R2 values obtained for correlation of mass spectra from single particles containing the
respective substance with the reference mass spectra. For the lowering of the threshold
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with each subtraction, an arbitrary value was chosen. These R2 values might still be
optimized by validation with more laboratory datasets.

For each component identified, the corresponding number of ions subtracted from
the mass spectrum (excluding m/z 14–17 to avoid influence of ammonium and water)
is saved as quantitative information regarding the contribution of this substance to the5

total mass spectrum measured (Fig. 2). Compounds are only considered detected if
their quantitative contribution exceeds a number of at least five ions, such that the
relative counting statistics uncertainty is below 50 %. At the end of this procedure,
if no further component is detected, the remaining signal is saved as residual mass
spectrum.10

Calculation of mass per particle

Similar to the calculation of AMS ensemble mass concentrations from the measured
number of ions as described e.g. in (Jimenez et al., 2003), the retrieved number of ions
Iions of the different components can be converted into the mass per particle of these
species (Mspecies) using the equation15

Mspecies =
Iions ·Sions, species ·MWNitrate

NA ·RIEspecies · IE
. (1)

MWNitrate is the molecular weight of nitrate (62 gmol−1), NA Avogadro’s number (6×
1023 mol−1), RIEspecies the relative ionization efficiency of the respective species, and
IE the ionization efficiency of nitrate which is determined routinely in laboratory calibra-
tions using ammonium nitrate. Sions, species is a scaling factor for the respective species20

which accounts for the fact that m/z 14–18, 28, and 32 are not included for the calcu-
lation of Iions from the single particle mass spectra due to the influence of high back-
ground signal at these m/z. Using the average reference mass spectra, the fractional
contribution of mass spectral signal at the neglected m/z can be calculated. From this,
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the resulting scaling factors Sions, species were found to be 1 for nitrate, and 1.1 for sul-
phate and for organic species. The latter was calculated as average scaling factor from
those derived for oleic acid and glucose. For the calculation of Sions, glucose, the signal
at m/z 16, 17 and 18 in the glucose mass spectrum was calculated from the mass
spectral signal at m/z 44 (analogous to the ensemble fragmentation pattern table) to5

account for the presence of water of crystallization. A conservative estimate of the un-
certainty of Sions, species (∆scaling) is 10 %, determined from the variation observed for the
organic substances investigated. To further reduce this uncertainty, Sions, organics should
be determined for a larger variety of different organic substances.

RIEspecies are the relative ionization efficiencies also used for the calculation of en-10

semble mass concentrations of nitrate, sulphate and organics (standard RIEspecies val-
ues: 1.1, 1.2, and 1.4, respectively; Canagaratna et al., 2007). For the specific in-
strument employed in this work, an RIEsulphate of 0.76 and an RIEorganics of 1 was
used. These values were derived from calibration measurements using NH4NO3 and
(NH4)2SO4 in the case of sulphate, and from the comparison to a co-located AMS dur-15

ing two measurement campaigns in the case of organics (Freutel et al., 2013; Crippa
et al., 2013). RIEorganics therefore in this case is associated with a higher uncertainty
(∆RIE). This uncertainty is estimated to 20 % from the range of values of RIEorganics
observed, instead of 10 % as for RIEnitrate and RIEsulphate. If the RIEspecies value of
a certain species is not known, RIEspecies is set to 1, and a nitrate-equivalent mass of20

this species is obtained.

Uncertainty estimate of calculated mass per particle

The uncertainty ∆mass of the different substances’ relative mass contributions to the
single particle mass spectrum can be estimated as

∆mass =
√
∆2

scaling +∆2
MS-retrieval

+∆2
RIE, (2)25
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with ∆MS-retrieval the relative uncertainty for the subtraction of the reference mass spec-
tra from the single particle mass spectra (i.e., the uncertainty in the determination of
SMS-retrieval). This uncertainty is dominated by counting statistics. ∆MS-retrieval can be
estimated from the standard deviation of average residuals after the subtraction of
the reference mass spectra from the single particle mass spectra of pure substances5

(ammonium nitrate, ammonium sulphate, glucose, and oleic acid) to about 20 % for
a single particle mass spectrum. For a larger number of single particle mass spectra
n, ∆MS-retrieval is scaling with 1/

√
n.

Note that ∆mass is the overall uncertainty of the relative mass contribution. ∆mass can
be estimated using Eq. (2) to 25 % for inorganics and 30 % for organics. For a larger10

number of mass spectra, the uncertainty is reduced to about 15 % for inorganics and
25 % for organics. The absolute mass concentration is subject to additional uncertain-
ties (e.g. the uncertainty of IE).

3.1.2 Application to laboratory generated mass spectra

Validation of classification15

For validation purposes, the classification algorithm was applied to the single particle
mass spectra of known composition detailed in Table 1. The resulting classification is
shown in Fig. 3. For each particle type, the classifications assigned by the algorithm are
divided into three separate bars: one shows the fraction of correctly assigned particles
(left bar), one the fraction of particles for which one or several components could not20

be identified (false negatives, middle bar), and one the fraction of particles for which
one or several components were erroneously identified (false positives, right bar).

For pure substances (particles with 400 nm mobility diameter) and particles from
a single source, generally more than 90 % of all particle mass spectra were correctly
assigned; the number of false positive detections typically was very low (< 1 %). The25

only exception were the engine exhaust mass spectra, for which only about 80 % of
all mass spectra were correctly assigned; the remaining mass spectra were to a large
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part incorrectly assigned as “oleic acid”. This is due to the fact that both oleic acid
and engine exhaust mass spectra exhibit typical patterns of hydrocarbon-like organic
aerosol (R2 for correlation of reference mass spectra is 0.76), so a distinction between
these two species is difficult.

For mixtures of different substances, the fraction of completely correctly assigned5

particle mass spectra was decreasing with increasing number of components: for mix-
tures of nitrate and sulphate, about 80 %, and for mixtures of nitrate, sulphate and
glucose, about 60 % of all mass spectra were correctly assigned to all components.
The remaining fraction of particles for the most part consisted of false negatives. For
all laboratory measurements, particles of the same size (400 nm mobility diameter)10

have been used. Therefore, an increasing number of components in the particles led
to a decreasing absolute signal for the individual components, which complicates their
detection. This demonstrates the limitation of detection due to counting statistics, since
the retrieved number of ions in AMS measurements scales linearly with the number
of molecules per particle (Jayne et al., 2000). Further work is needed to determine15

estimates of the limits of detection for the different compounds.
For the particles consisting of a mixture of OOA, ammonium nitrate and sulphate, the

exact composition is not known as they are retrieved from ambient aerosol sampling
(see Sect. 2). Therefore, all particles were classified as assigned correctly for which
at least one of these components was identified by the algorithm, which is the case20

for about 90 % of all particles (Fig. 3). In about 60 % of all particle mass spectra, all
three components were detected. Only for a small fraction of particles (< 8 %), other
components than OOA, nitrate and sulphate were found; these are (short of knowing
the exact composition) considered false positives in Fig. 3.

Pure succinic acid particles were also tested. This particle type was not integrated in25

the classification algorithm, and is used here as an example of an “unknown” particle
type which should not be classified by the algorithm. Indeed, no false positives are
found for this “alien” particle type, demonstrating the ability of the algorithm to also
separate hitherto unknown particle types.
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Validation of quantification

The correctness of quantification was investigated through the comparison of single
particle and ensemble measurements. For this, the measurements of laboratory gen-
erated, internally mixed particles of ammonium nitrate and sulphate, and of ammonium
nitrate, ammonium sulphate and glucose were used. At the investigated particle size5

of 400 nm mobility diameter, all particles of the same type can reasonably be assumed
to have the same relative composition. For both measurements, the average relative
composition was retrieved from the single particle mass spectra using the described al-
gorithm and compared to the composition measured simultaneously in ensemble mode
(Table 2). Since ensemble and single particle measurements are not directly compa-10

rable, different methods for the calculation of the relative composition obtained from
single particle measurements were evaluated:

– ratio of averages,

– average ratios, and

– Gaussian fit to the distribution of ratios observed.15

For the ratio of averages, averages were determined

– for only a subset of particles sampled – namely only for particles in which both
substances were identified whose ratio is calculated (termed “identified” in Ta-
ble 2), and

– for all particles of the respective dataset (termed “all” in Table 2). In this case, if20

a substance was not detected within a particle, the content is assumed to be zero.

These two methods give slightly different results. Compared to the results for only the
“identified” particles, when including “all” particles, the average content is underesti-
mated strongly for sulphate and slightly for glucose. This is due to the fact that all
particles with content below a threshold of 5 ions are assumed to contain none of the25
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respective substance (compare Figs. 1 and 3). This lowers the calculated ratio of sul-
phate to nitrate and of sulphate to glucose, and increases the ratio of nitrate to glucose
(Table 2). This demonstrates the limitation of quantification on a single particle basis
due to the threshold of minimum number of ions for positive detection. Further work is
needed to determine the limits of quantification for the different substances in detail.5

Also the average ratio and Gaussian fit to the distribution of ratios yield slightly dif-
ferent results (for both methods, only particles were used in which both respective
substances were identified): due to the fact that the distribution of ratios is not symmet-
rical, the value obtained from the Gaussian fit is typically smaller than the average ratio
(Table 2).10

The deviation from the average value obtained from simultaneous ensemble mea-
surements (as a measure of accuracy) varies between about 5 and 20 % for the differ-
ent methods (Table 2). In this comparison, the uncertainty of the single particle mea-
surements is dominated by ∆scaling (see Sect. 3.1.1 and footnote c in Table 2). Thus,
a relative uncertainty of about 15 % is expected for the ratios obtained from single15

particle measurements, which therefore on average seem to be in agreement with en-
semble mode measurements. For the different ratios, from all three methods (regarding
only identified particles) it seems like the sulphate to nitrate ratio is well represented
within the uncertainties, while the sulphate to glucose and nitrate to glucose ratios show
some larger, systematic deviations. These seem to indicate a slight overestimation of20

the glucose content within the particles. This could possibly be due to an additional sys-
tematic error in the determination of the scaling factor for the reference mass spectrum,
SMS-retrieval (see Sect. 3.1.1), which is not included in the statistical error calculated for
∆MS-retrieval. In further work, this potential source of error should be investigated in more
detail and, if possible, quantified.25

Also the average standard deviation (an indication for the scatter of values observed
for the single particles around the average value; as a measure of precision) shows
systematic differences between the different methods. While the standard deviation
obtained from the Gaussian fit is smallest, the standard deviation of the average ratios
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is slightly larger, since also the largest ratios which do not influence the standard devi-
ation from the Gaussian fit are included here. These standard deviations of about 45 %
reflect the uncertainty for the ratio obtained from one single particle mass spectrum.
This uncertainty is somewhat larger than what can be estimated from Eq. (2), and
therefore likewise points to the fact that not all uncertainties (especially of ∆MS-retrieval)5

might be identified yet. The standard deviation from the ratio of averages is even larger,
since here not only the distribution of the ratios plays a role, but also the distribu-
tion of the particle sizes (even though monodisperse particles were investigated, these
show a distribution around the average value). Finally, the average standard deviation
is largest when including all values for the ratio of averages, since here also the most10

extreme values (0 ions detected) are included.
This broadness of distribution shows that the quantification of substances within an

individual particle is subject to high uncertainty. However, the reasonable agreement
for average values from single particle with ensemble measurements presented in Ta-
ble 2 shows that quantitative information regarding the average content of the individual15

particles can be obtained using the described algorithm. The uncertainty of this aver-
age content is mostly due to ∆RIE, ∆scaling and likely an additional systematic error in
∆MS-retrieval, which needs to be investigated in more detail.

3.2 Single particle measurements in the field

3.2.1 Application of the algorithm to field data20

In Sect. 3.1.2, we have shown that the developed classification algorithm is capable of
providing qualitative and quantitative information about the composition of single par-
ticles. For an application to single particle mass spectra acquired from measurements
of ambient air, it has also to be accounted for the fact that particle types might exist in
the atmosphere which the algorithm is not able to recognize. Therefore, the following25

approach for the analysis of single particle mass spectra acquired in field measure-
ments is suggested: first, the classification algorithm is applied to the whole dataset of
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single particle mass spectra, after which ideally all spectra of unknown particle types
remain unclassified. In a second step, all mass spectra which could not be classified
by the algorithm are clustered either manually, or by using clustering algorithms like
k means (Bishop, 2006) or fuzzy c means clustering (Bezdek et al., 1984). If by this
procedure new particle types or components are found, the classification algorithm can5

be adapted accordingly, in order to detect these as well. The modified algorithm then
is applied again to the whole dataset, and this is repeated until no new particle types
can be found in the particle mass spectra not classified by the algorithm. Using this
approach it is possible to detect not only known particle components, but also new,
foreign particle types, even if they are present only in low number.10

This approach was tested on a dataset acquired during measurements of ambient air
in Paris during the MEGAPOLI summer 2009 campaign (see Sect. 2). When applying
the original classification algorithm on the whole dataset of 26 123 single particle mass
spectra, already 86.4 % of all mass spectra were classified into one of the following
groups:15

– “cooking” (only oleic acid detected),

– “traffic” (only engine exhaust detected),

– “biomass (burning)” (only glucose detected),

– “OOA and inorganics” (OOA and/or sulphate and/or nitrate detected), and

– “mixed organics” (organics other than OOA mixed with inorganics and/or another20

type of organics detected).

The mass spectra not identified by the algorithm were clustered using the fuzzy c
means algorithm. Two new particle types were found by this means: particles contain-
ing potassium (i.e., mass spectra dominated by m/z 39; these are present during the
fireworks around 14 July), and particles dominated by contaminations of silicone (m/z25

73, 147; Schneider et al., 2006). The algorithm was adapted to identify these particle
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types as well. Furthermore, 535 mass spectra were identified which were dominated
by electronic noise within the instrument. These mass spectra were removed from the
dataset.

On the remaining 25 588 mass spectra, the modified algorithm was applied again.
The resulting classification is shown in Fig. 4a. The 2945 unidentified particle mass5

spectra were manually sorted (Fig. 4b). About two thirds of these particle mass spectra
contained too little signal to allow any identification also by manual sorting. The manu-
ally identified mass spectra mostly were classified as “OOA and inorganics” or “HOA”
(which could be both, due to cooking or engine exhaust). Several more mass spec-
tra with unusual fragmentation pattern (high signal at m/z 45; HOA with high signal at10

m/z 44) were found. Also several mass spectra with high signal at m/z 60 and 73 were
found; these were classified as biomass (burning) organic aerosol (Alfarra et al., 2007;
Schneider et al., 2006). Furthermore several more potassium containing mass spectra
and additionally ammonium chloride containing mass spectra were found, which both
occurred during the fireworks around 14 July.15

Calculation of particle number concentrations

To calculate hourly particle number concentrations of a particle type i (Cnumber, i ),
Eq. (3) was applied:

Cnumber, i =
#MSi

Q · t ·DC ·Seff · f#MS,i
. (3)

#MSi is the number of particle mass spectra from type i for the respective averaging20

period, Q the inlet flow rate (here 1.29 cm3 s−1), t the duration of the averaging period
(one hour), and DC the chopper duty cycle (2 % in this work). Seff is the saving effi-
ciency, and f#MS,i a scaling factor to account for the fact that not all particles for which
mass spectral data were saved are used in the analysis (see below). The saving ef-
ficiency Seff is defined as the number of particles for which mass spectral data were25
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saved (#Psaved) divided by the total number of particles detected by the LSP (#Pdetected)
during a one hour saving cycle:

Seff =
#Psaved

#Pdetected
. (4)

While Q, t and DC remain constant, both #MSi as well as Seff vary with time, as both
depend on the actual number concentration of particles present.5

f#MS,i is defined as the ratio of total number of mass spectra of particle type i used
in the analysis (#MSi ) to the number of all particles of this type for which mass spectral
data were saved (#Psaved, i ):

f#MS,i =
#MSi

#Psaved, i

∼=
#MS

#Psaved
. (5)

Since #Psaved, i is not known, it is assumed here that f#MS,i is comparable to the ratio of10

all mass spectra used in the analysis (#MS, the sum of all #MSi ) to the total number
of particles for which mass spectral data were saved (#Psaved, Eq. 5). This yields an
estimate for f#MS,i of 0.22 for this dataset. The underlying assumption is only valid if
refractory particles contribute only little to the whole number of particles for which data
were saved, and if different particle types i do not show significant differences in their15

degree of bouncing off the vaporizer. Especially the latter is only a rough approximation
(see e.g. Matthew et al., 2008). However, as f#MS,i is a constant factor, the uncertainty
of its determination will only affect the absolute number concentration obtained, not the
relative courses of diurnal cycles as discussed in Sect. 3.2.2.

3.2.2 Results from single particle analysis20

Cooking- and traffic-related HOA

Average diurnal cycles of the measured number concentrations of particles classified
as “cooking” and “traffic” are shown in Fig. 5. Also shown is the diurnal cycle of “HOA
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ensemble”, which was retrieved from ensemble organics mass spectra using positive
matrix factorization (Freutel et al., 2013). This “HOA ensemble” is assumed to contain
both traffic- and cooking-related HOA, as suggested by its mass spectral pattern and
diurnal cycle.

For the number concentrations of particles classified as “cooking” and “traffic”, two5

very different diurnal cycles are observed, demonstrating the ability of the algorithm to
sufficiently reliably distinguish between these two types of particles despite the simi-
larity of their mass spectra (see Sect. 3.1.2). For the “cooking” particle type, a peak
in the evening and a smaller one around noon are observed, consistent with typical
time periods for cooking activities. The diurnal cycle of number concentrations of par-10

ticles classified as “traffic”, on the other hand, shows a distinct peak only during the
evening rush hour, while in the morning barely any enhanced number concentrations
are observed. This is consistent with the diurnal cycle of “HOA ensemble”, which also
shows only a very broad and weak peak during the morning rush hour. Likely, evening
peaks of both “traffic” and “cooking” related particles are much more distinct due to15

the superimposed modulation of the boundary layer height: boundary layer height is
lower during the night than during the day, leading to a night-time increase of primary
pollutant concentrations.

These results for the first time give direct evidence of the presence of externally
mixed particles consisting of different types of HOA in an urban surrounding from mea-20

surements with the AMS. Although from AMS ensemble measurements it is possible to
distinguish between cooking- and traffic-related HOA by positive matrix factorization of
ensemble mass spectra (e.g., Allan et al., 2010), those results are not completely un-
ambiguous, and depend partially on subjective decisions by the operator. From single
particle analysis with the algorithm presented here, much more unambiguous results25

are obtained.
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Mixed nitrate/sulphate/OOA

Two very distinct air masses were sampled during the field campaign: during the
first three days, air masses from the north-east were advected (“Central Europe” air
masses), while for the remaining time, air masses originated from the Atlantic Ocean
(“Atlantic” air masses) (Freutel et al., 2013). For these two types of air masses, average5

diurnal cycles of number concentrations of particles classified as “OOA and inorgan-
ics” were calculated individually (Fig. 6a). Furthermore, for both types of air masses,
the diurnal cycles of average mass per particle of OOA, nitrate and sulphate within the
particles classified as “OOA and inorganics” are shown (Fig. 6b and c).

For both types of air masses, maximum number concentrations are observed during10

the later morning hours. Average number concentrations are much higher for “Cen-
tral Europe” air masses than for “Atlantic” air masses, consistent with enhanced mass
concentrations of OOA, nitrate and sulphate observed from ensemble mode AMS mea-
surements during the sampling of “Central Europe” air masses (Freutel et al., 2013).

The diurnal cycles of mass per particle of OOA, nitrate and sulphate within the par-15

ticles classified as “OOA and inorganics” for both air masses show an increase of
nitrate and a decrease of OOA and sulphate in the morning hours. During “Atlantic” air
masses (Fig. 6c), the average nitrate content of the particles is comparably low dur-
ing the whole day, with an increase during the morning hours (nitrate content varies
from less than 5 to about 20 % during the day). In contrast, during the “Central Europe”20

air masses, a large increase of nitrate content during the morning hours is observed,
leading to a diurnal variation of nitrate content from less than 5 % to about 60 %. At
such nitrate mass fractions of more than 50 %, an increased AMS collection efficiency
should be expected (Matthew et al., 2008), which however could not be confirmed from
ensemble mode measurements (Freutel et al., 2013). From ensemble mode measure-25

ments, a maximum nitrate content of about 35 % was observed during “Central Europe”
air masses (for all particles, not just “OOA and inorganics”), so possibly the absolute
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fraction of these nitrate-dominated particles was not large enough to alter the overall
AMS collection efficiency significantly.

The aforementioned relative compositions retrieved from the results of the classifi-
cation algorithm were validated by comparison with the relative compositions derived
using an independent method. For all particles classified as “OOA and inorganics”, the5

diurnal cycles of average mass spectra were calculated separately for “Atlantic” and
“Central Europe” air masses. The diurnal cycles of nitrate, sulphate and organic con-
tent were calculated from these average mass spectra by using only typical marker
m/z for nitrate (m/z 30 and 46) and sulphate (m/z 48, 64, 80, 81, and 98) and by
calculating organics as sum of all m/z without nitrate, sulphate, and m/z 14–18, 28,10

and 32. The fractions obtained by this means were found to agree within 10 % with the
results given above, which further validates the procedure for retrieval of quantitative
information using the described algorithm.

From ensemble mode measurements, also a night-time increase of nitrate mass con-
centration was found. However, from these measurements it is not possible to distin-15

guish between influence of lower boundary layer height during the night, and of nitrate
partitioning into the particle phase. The latter can be directly observed from the single
particle measurements: the increase of nitrate mass per particle gives direct evidence
of nitrate partitioning to the particle phase. Also the number of measured particles
increases during night-time (Fig. 6a), which could be an indication for the additional20

influence of the lowering of the boundary layer height. However, also another fact can
contribute to this increase in observed number concentration: as nitrate condenses
onto pre-existing particles, small particles which up to then were below the detection
limit of the light scattering probe can grow to sizes where they are detected, increasing
the number of detected particles. This effect could also explain the decreasing mass25

per particle of OOA and sulphate with increasing nitrate mass per particle (Fig. 6b and
c). This smaller mass per particle of OOA and sulphate reflects the contributions of
these species to the previously smaller particles which did not change by the conden-
sation of nitrate. The diurnal cycle of OOA and sulphate mass per particle therefore
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can also be explained by the diurnal cycle of nitrate partitioning. However, the rate of
increase of OOA exceeds that of sulphate mass per particle in the hours after noon.
This can be explained by additional condensation of OOA, formed from photooxida-
tion of gaseous precursors, onto the pre-existing particles. The relative fraction of this
additional, freshly generated OOA however is apparently too low to alter the observed5

single particle mass spectral patterns significantly.

Fireworks around 14 July

From the application of the revised algorithm and the manual clustering of the uniden-
tified particles, in total 82 particles containing potassium and 25 particles containing
chloride were found, all during the time period of the fireworks around 14 July, the10

French National Day. Potassium and chloride were detected in separate particles, and
not in mixtures with each other. Both particle types furthermore contain small amounts
of sulphate, organics and ammonium and/or water. The average mass spectrum of
the potassium containing particles furthermore shows a large signal at m/z 30, which
likely corresponds to nitrate. However, due to the small m/z 46 to 30 signal ratio we15

assume that this nitrate derives from potassium nitrate instead of ammonium nitrate.
An enhanced ratio of m/z 30 to m/z 46 (both likely from nitrate) was also observed
in the average mass spectrum of the chloride containing particles, where however no
other potential cations than ammonium were measured.

Although the fireworks aerosol was found to be acidic from ensemble mode measure-20

ments (Freutel et al., 2013), no single particles dominated by sulphuric acid (instead of
ammonium sulphate) were identified. This could be due to the fact that pure sulphuric
acid particles were too small to be detected by the light scattering probe. Furthermore,
sulphuric acid might be easily missed when condensing onto pre-existing, ammonium
sulphate containing particles, as the accuracy of quantification of ammonium is limited25

due to large background values. Further laboratory work is needed here in order to
investigate into the ability of the LSP-AMS to differentiate between sulphuric acid and
ammonium sulphate in different mixing states (i.e., different degrees of neutralization).
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4 Summary

A new classification algorithm was developed for the analysis of single particle mass
spectra acquired with the AMS. It retrieves both, information on particle types and
quantitative information about the chemical composition of the individual particles by
comparison to reference mass spectra of compounds and proxies of compound classes5

typically found in ambient aerosol. Both qualitative and quantitative retrieval were tested
and validated in the laboratory using mass spectra from particles of known composi-
tion. The uncertainty of the relative chemical composition derived from one single par-
ticle mass spectrum was estimated to be about 25 % for inorganic, and about 30 % for
organic substances. The uncertainty decreases slightly (to about 15 and 25 %, respec-10

tively) when averaging over a larger number (≥ 25) of mass spectra. Incorporation of
additional reference mass spectra like from ammonium chloride, sulphuric acid, am-
monium bisulphate, or additional organic species and determination of detection limits
for the various substances will extend the applicability of the algorithm further.

The algorithm was applied to a dataset of single particle mass spectra acquired dur-15

ing ambient aerosol measurements in a suburb of Paris during July 2009. The algorithm
identified about 90 % of all particle mass spectra successfully; the remaining mass
spectra to the most part contained too little signal to be identified even by manual in-
spection. New particle types (potassium, silicone contaminations, ammonium chloride)
were found in the unidentified mass spectra. This possibility to identify new particle20

types and incorporate their detection easily into the existing algorithm is an important
feature in order to adapt to new, foreign particle types found in ambient aerosol sam-
ples.

The analysis showed that not only information on mixing state (like in the case of
fireworks aerosol sampled around 14 July) can be retrieved from the single particle25

analysis. It was also possible to unambiguously differentiate between hydrocarbon-
like organic aerosol of different sources (cooking- and traffic-related emissions). This
is only under favourable conditions possible by positive matrix factorization of organic
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mass spectra from ensemble AMS measurements. The separation based on a constant
set of reference mass spectra also ensures the direct comparability of results between
different datasets.

Analysis of mass per particle within the particles containing OOA and/or nitrate
and/or sulphate showed a clear diurnal cycle with nitrate mass per particle increasing5

during night-time, giving evidence of nitrate partitioning into the particle phase. Such
direct information is not available from AMS ensemble measurements. From the single
particle measurements, it was also found that number concentration of particles classi-
fied as “OOA and inorganics” increases during night-time, which however can have two
causes: the increase of particle number concentrations due to the decrease of bound-10

ary layer height, and/or hitherto smaller particles growing into the detectable size range
of the LSP-AMS. This lower cut-off of the measurable size range due to decreasing de-
tection efficiency is an important limitation which has always to be kept in mind when
interpreting single particle data acquired with the LSP-AMS. Furthermore, in the after-
noon, an increase of OOA mass per particle is observed, likely due to condensation of15

newly formed OOA after photooxidation of gaseous precursors.
Especially in combination with complementary information from ensemble AMS mea-

surements, the analysis of the chemical composition of individual particles can give
valuable new and more substantiated information about various processes in the at-
mosphere than when relying on one of the methods alone. Therefore, a combined20

analysis of both AMS single particle and ensemble measurements is a promising ap-
proach to gain more complete information from the data acquired with both methods
from one single instrument.
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Table 1. Measurements of reference single particle mass spectra.

Substance Reagent grade
and manufacturer

Particle mo-
bility diame-
ter/nm

Number of
single par-
ticle mass
spectra re-
trieved

Number of ions in
single particle mass
spectruma (average
and standard devi-
ation)

Marker
m/z

m/z in
marker-MS

Laboratory measurements (10 s/20 s/30 s in MSb/PToFc/LSd mode)
NH4NO3 p.a., Labor-

Service GmbH
400 180 nitrate: 123±46 30, 46e 30, 46

(NH4)2SO4 p.a., Merck 400 80 sulphate: 67±35 48, 64, 80,
81, 98e

48, 64, 80,
81, 98

internally mixed
NH4NO3/(NH4)2SO4

see pure sub-
stances

400 106 nitrate: 68±33
sulphate: 25±17

– –

glucose α-D-(+)-glucose
monohydrate,
≥ 99.5 %, Roth

400 313 glucose: 347±181 31, 60f 29, 31, 43,
60, 73

internally mixed
NH4NO3/(NH4)2SO4/
glucose

see pure sub-
stances

400 864 nitrate: 42±21
sulphate: 17±13
glucose: 96±43

– –

oleic acid vegetable, extra
pure, Merck

400 476 oleic acid: 295±245 55f 41, 43, 55,
69, 83

succinic acid ≥ 99 %, Alfa Aesar 400 188 succinic acid: 101±72 – –
Source measurement (10 s/20 s/30 s in MS/PToF/LS mode)
gasoline engine
exhaust

– polydisperse,
(300±100)g

53 exhaust: 884±1785 57f 41, 55, 69,
83

Ambient measurement (20 s/20 s/20 s in MS/PToF/LS mode)
OOA internally
mixed with nitrate,
sulphate

– polydisperse,
(560±90)g

822 OOA: 104±56
nitrate: 43±58
sulphate: 36±33

44f 44, 55

a m/z 14–18, 28, 32 not regarded; sulphate, nitrate calculated as sum of all respective marker m/z.
bMS: mass spectra mode. Yields the ensemble mass concentrations of organics, nitrate, sulphate, ammonium, and chloride. See e.g. Canagaratna
et al. (2007).
cPToF: particle time of flight mode. Yields the ensemble mass size distributions for the species listed under b. See e.g. Canagaratna et al. (2007).
dLS: light scattering mode. Yields the single particle mass spectral data as described e.g. in Cross et al. (2009).
eSum of signal at all m/z needs to be≥ 5 ions for positive detection (see Fig. 1).
fSignal at each m/z needs to be≥ 1 ion for positive detection (see Fig. 1).
gVacuum-aerodynamic diameter; maximum and standard deviation σ of Gaussian fit to single particle number size distribution.
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Table 2. Comparison of relative composition from single particle and ensemble measurements
of internally mixed particles of nitrate and sulphate, and of nitrate, sulphate and glucose. In
case of ensemble measurements, ratios of average mass concentrations are given. For the
single particle measurements, the average ratios and standard deviations (σ) were determined
using three different methods: ratio of the averages, average ratios, and a Gaussian fit to the
distribution of ratios observed. All: all particles of this type; identified: only for particles of this
type in which both respective substances were identified; avg.: average; unc.: uncertainty.

Mass fraction Ratio of averages Average ratios Gaussian fit Ensemblea

all identified identified identified avg.±unc.b

Nitrate & sulphate
Sulphate/nitrate:
Avg. ± unc.c: 0.62±0.10 0.67±0.11 0.68±0.10 0.68±0.10 0.76±0.05
σ: 0.56 0.44 0.33 0.28 –

Nitrate, sulphate & glucose
Sulphate/nitrate:
Avg. ± unc.: 0.65±0.09 0.78±0.11 0.82±0.12 0.76±0.11 0.84±0.03
σ: 0.66 0.51 0.40 0.34 –

Sulphate/glucose:
Avg. ± unc.: 0.25±0.04 0.29±0.04 0.36±0.05 0.29±0.04 0.38±0.02
σ: 0.26 0.18 0.15 0.16 –

Nitrate/glucose:
Avg. ± unc.: 0.39±0.06 0.36±0.05 0.45±0.06 0.36±0.05 0.45±0.03
σ: 0.29 0.23 0.17 0.12 –

Deviationd 22.5 % 15.7 % 4.8 % 15.9 % –
Scattere 92.8 % 64.7 % 44.4 % 43.2 % –

aEnsemble mass concentrations are calculated using a slightly modified organics fragmentation pattern table
(frag organics[30]= 1.49· frag organics[44]; frag organics[39]= 39; frag organics[41]= 41) inferred from the
average ensemble mass spectrum of pure glucose.
bThe uncertainty range is estimated from the standard deviation of the average, and from additional uncertainties
of 1 % and 4 % for the mass concentrations of nitrate and glucose, respectively, conservatively estimated from
the range of values derived with and without changes in the fragmentation pattern table (changes in the organics
pattern described under a, and changes due to corrections from measurements of particulate-free air).
cThe statistical uncertainty of the average (Gaussian fit: obtained from the fitting procedure; else: standard
deviation of the average) and ∆scaling (10 %) of sulphate, nitrate and glucose are considered in the uncertainty
range given. ∆RIE was not regarded as it affects results from single particle and ensemble measurements in the
same way.
dAverage deviation from ensemble average relative to the ensemble average.
eAverage relative standard deviation.
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Fig. 1. Schematics of the developed classification algorithm. SO4: sulphate; NO3: nitrate; Org:
organics; MS: mass spectrum; &&: logical AND.
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Fig. 2. Example for the application of the algorithm on one single particle mass spectrum
containing OOA, sulphate and nitrate. MS: mass spectrum.
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Fig. 3. Qualitative validation of the algorithm. On the x-axis the different particle types of known
composition (compare Table 1) are shown. For each particle type, the left bar shows the frac-
tion of correctly assigned particle mass spectra, the middle bar the fraction of false negatives,
and the bar on the right hand side the fraction of false positives. The border colour of the bars
represents the identified inorganic content, the fill colour the identified organic content. Parti-
cles in which no component was identified are shown in black. For the particles of the OOA
type, the exact content of nitrate, sulphate and OOA is not known, therefore, all particle mass
spectra have been regarded as correctly assigned where at least one of these components
was detected.

5688

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/5653/2013/amtd-6-5653-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/5653/2013/amtd-6-5653-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 5653–5691, 2013

A new AMS single
particle classification

algorithm

F. Freutel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Application of the classification algorithm on an ambient dataset. Cont.: containing.
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Fig. 5. Average diurnal cycles of number concentrations of particles classified as “cooking”
and “traffic” (left axis), and of the mass concentration of the HOA factor (right axis) retrieved
via positive matrix factorization of ensemble organics mass spectra (Freutel et al., 2013). Error
bars represent the standard deviations of the averages; error bars for “HOA ensemble” (relative
uncertainty of 20 % from PMF analysis; Freutel et al., 2013) are omitted for clarity.
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Fig. 6. Average diurnal cycle of the number concentration of particles classified as “OOA and
inorganics”, separated for “Central Europe” and “Atlantic” air masses (a). Standard deviations
of the average values are shown as light shaded areas. Average diurnal cycles of mass per
particle of nitrate, sulphate, and OOA within the particles classified as “OOA and inorganics”
for “Central Europe” (b) and “Atlantic” air masses (c). Error bars as calculated from Eq. (2) are
shown for nitrate, and only exemplarily for clarity for OOA and sulphate.
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