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Abstract

Many modern instruments generate more data than may be fully processed in a
timely manner. For some atmospheric sounders, much of the raw data cannot be pro-
cessed into meaningful observations due to suboptimal viewing conditions, such as the
presence of clouds. Conventional solutions are quick, empirical-threshold filters hand-5

created by domain experts to weed out unlikely or unreasonable observations, coupled
with randomized down sampling when the data volume is still too high. In this paper,
we describe a method for the construction of a sub-sampling and ordering solution
that maximizes the likelihood that a requested data subset will be usefully processed.
The method can be used for any metadata-rich source and implicitly discerns infor-10

mative vs. non-informative data features while still permitting user feedback into the
final features selected for filter implementation. We demonstrate the method by creat-
ing a selector for the spectra of the Japanese GOSAT satellite designed to measure
column averaged mixing ratios of greenhouse gases including carbon dioxide (CO2).
This is done within the Atmospheric CO2 Measurements from Space (ACOS) NASA15

project with the intention of eventual use during the early Orbiting Carbon Observatory-
2 (OCO-2) mission. OCO-2 will have a 1.5 orders of magnitude larger data volume than
ACOS, requiring intelligent pre-filtration.

1 Introduction

Atmospheric composition measurement, like so many modern disciplines, is undergo-20

ing a radical transformation due to new sensors. Ultra-fast, computerized instruments
operate at hyper-spectral resolutions from space-borne platforms that operate over
land and sea, day and night. Each data point was once a precious commodity care-
fully considered by multiple researchers; now an individual is swiftly presented with
millions of observations and their associated metadata. A key challenge to handling25

the increased data volume is the estimation of data quality, to prevent the waste of
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precious human attention. Many remotely-sensed atmospheric data suffer from un-
avoidable confounding aspects such as cloud cover or aerosols yielding distorted or
unusable results given current retrieval algorithms. Certain observing conditions may a
priori pose known problems for the processing algorithm, e.g. bright icy surfaces, dark
oceans, or the complex surfaces of mountains (O’Dell et al., 2011). The instrumen-5

tation also contributes to difficulty in maintaining data quality, with drifting calibration,
reset events, detector saturation or low-level preprocessor version changes making
evaluation difficult. Poorly modeled physical processes also act as confounding forces
in the observations where they dominate over the intended measurement theory dur-
ing retrieval processing. When the data set is small, manual filtering of the data based10

on expert knowledge and past experience is a time-tested method for evaluation. But
when millions of observations are faced, we must resort to an automated rules-based
filtration without the advantage of personal interaction with each sounding.

The traditional method for determining such a filter proceeds by graphing a fully
processed subset of the data versus various data metrics or features from the input15

metadata guided by expert experience. For instance, a spectral measurement may be
categorized by metrics such as its overall intensity, the signal-to-noise ratio observed
in a well-understood region, and known saturation indicators, as well as associated
metadata such as the time, geometry, and various system parameters at the moment
of measurement. The scientist then looks for thresholds in these candidate filtration20

features beyond which the values change from reasonable to unreasonable based on
prior knowledge and visual features in the graph of feature versus desired output. A
key question is how one knows the reasonable from the unreasonable, with the answer
that only in rather egregious cases is the answer clear.

The resultant filter, often constructed from the amalgam of many “reasonability”25

thresholds, produces a cleansed dataset that has flagged as questionable much of
the obviously flawed data outliers. Some iteration is then performed by manually mod-
ifying the individual “reasonability” thresholds to alter the percentage of data passage
to match the immediate needs of the project. This yields a final “fixed” filter with a given
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throughput and performance. The lack of ability to tune the filter in real time to increase
or decrease throughput is one major shortcoming of such filters, as is the complexity
of decoding why a particular data point has been excluded given several interacting
potential filtration rules.

Generally, few scientific datasets are dominated by data that is entirely corrupt or5

acceptable. Instead, shades of acceptability for any particular data result from vary-
ing degrees of influence from confounding forces. Instead of constructing a binary
good/bad filter, we observe the opportunity for a well-constructed data-screening al-
gorithm: the ordering of the data by the statistical likelihood of each observation’s sci-
entific utility. Such an ordering could reproduce the above fixed filter performance by10

fixing the percentage of acceptance; beyond this, it permits the variation of the data
passage rate in real time in a principled manner. In order to construct an estimate of a
given observation’s reliability, we turn to machine learning to emulate the same man-
ual filter-construction process researchers traditionally perform on smaller datasets. By
automatically constructing an ensemble of traditional, fixed filters, we may construct an15

estimate of the reliability of each data point based on the number of fixed filters that
would reject it. It is important to recall we are describing a process that provides a
robust, tunable filter, not merely a single static filter suggestion.

The satellite mission driving our development of new data filtering techniques is the
Orbiting Carbon Observatory-2 (OCO-2) set to launch in 2014 with the intention of mak-20

ing atmospheric carbon dioxide (CO2) measurements (Crisp et al., 2004; Connor et al.,
2008; Boesch et al., 2011; O’Brien et al., 2011). OCO-2 will generate 24 soundings per
second with each sounding comprised of ∼3000 spectral radiance measurements,
placing it soundly in the large data limit. The sophisticated physics-based retrieval al-
gorithm (O’Dell et al., 2011) requires approximately 10 CPU minutes to render each25

spectrum into a single retrieved Level 2 column CO2 value. This data volume will out-
pace real-time processing for anything less than ∼14 000 CPU cores, ignoring scaling
inefficiencies that would increase the challenge. Even taking into account progress
made to reduce the runtime of the OCO-2 Level 2 code as well as advances in hard-
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ware capability in advance of the expected 2014 launch date, selecting the “right” data
to process will be critical. To satisfy the mission requirement that at least 6 % of the
soundings be processed in real time, it is likely that we must intelligently pre-select
the soundings we attempt to process. This pre-selection of data with highest scientific
interest and minimal confounding influence is the definition of the sounding selection5

problem. We further wish to ensure we provide sampling criteria that maximize the
utility of the OCO-2 data for estimation of carbon fluxes – the raison d’etre for the
observatory. For instance, it is crucial that we sample CO2 at many atmospheric tem-
peratures, pressures, seasons, and across many different Earth surface types, even if
the current retrieval algorithm struggles in a region defined by such features.10

2 Data: GOSAT/ACOS example, pre-processing, features used

In order to develop and test a method of sounding selector creation for the future
OCO-2 mission, we use measurements of carbon dioxide taken by the Greenhouse
gases Observing SATelite (GOSAT) provided by a joint effort between the Japanese
Exploration Agency (JAXA), the Japanese National Institute for Environmental Studies15

(NIES) and the Japanese Ministry of the Environment (MOE). GOSAT measures in the
same spectral regions as OCO-2 and provides a test bed for the OCO-2 retrieval algo-
rithm (Yokota, 2004). The Atmospheric CO2 Observations from Space (ACOS) project
creates a global carbon dioxide data product from the GOSAT observations. Process-
ing the GOSAT soundings informed OCO-2 software development while the instrument20

was being built and integrated onto the spacecraft. We utilize ACOS/GOSAT soundings
taken between 6 April 2009 and 30 September 2010, resulting in a set of 4.8 million
soundings. We take only data recorded in the GOSAT “high gain” mode (Wunch et al.,
2011; Crisp et al., 2012), as it is the dominant data type in number (86 %) and global
coverage.25

While the OCO-2 Level 2 retrieval software is used on the GOSAT data to generate
the ACOS data set, the GOSAT L1 metadata is utilized directly, consisting of geospatial
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information and estimates of signal-to-noise provided by JAXA. The L1 radiance spec-
tra are not directly used for developing a sounding selection scheme, but are used in
retrieval pre-processing routines that then feed into the sounding selector. The L1 data
are used in a cloud detection scheme (Taylor et al., 2012) and a combination cloud fil-
ter and CO2 quick-look based on a fast non-scattering retrieval algorithm (Frankenberg5

et al., 2005). These two rapid preprocessing algorithms generate a variety of useful
estimates and diagnostics such as albedo, surface pressure, temperature, the ratio of
CO2 estimates as determined by independent regions of the radiance spectrum. Fi-
nally, some statistical measurements of the radiance spectra are also calculated such
as standard deviation, max, min, and mean. Together, these form the metadata and10

metric inputs (features) that we will use to divine a sounding’s likelihood of being suc-
cessfully retrieved. Table 1 shows the quantity, type and origin of the features used.

To guide our filter optimization, we seek to minimize the scatter in the final retrieved
CO2 value produced by the full physics retrieval algorithm (here version B2.10), after
the official cloud filtration algorithm has been applied (see Sect. 3.2.2). We focus on15

the low variation of atmospheric CO2 in the Southern Hemisphere (20◦ to 60◦ S, see
Fig. 1). Applying these criteria results in 40 000 retrievals over land and 24 000 over
ocean for training purposes.

3 Method: hyper-dimensional filter, goal function, and genetic algorithm

In this section we provide an overview of the methods to be used in the general case.20

We start by defining a large set of filters similar to those produced by experts. Each
of these filters may use information from sounding metadata (a priori surface pressure
and temperature, etc.) or direct spectral measurements (e.g. SNR, band ratios, etc.).
We then utilize a genetic algorithm to optimize the thresholds of these filters, seeking
to minimize the scatter in the retrieved CO2 in the Southern Hemisphere while maxi-25

mizing the amount of data passed and minimizing the number of rules required in each
filter. We produce 20 “warn levels” from 19 representative filters that summarize each
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sounding’s acceptability to the larger set of filters, where a high warn level predicts most
filters would reject a given sounding. The warn levels, in addition to spatial coverage re-
quirements, form the basis of the sounding selector itself. The specific implementation
of these methods is provided in Sect. 4 for the GOSAT B2.10 dataset.

3.1 Hyper-dimensional filter5

Following the “human expert” model of filter construction, we define a fixed filter as
the union of a large number of simple threshold cutoffs (sub-filters) each defined by a
maximum and minimum threshold value beyond which data will be rejected (Fig. 2).
One such sub-filter is required for each input feature. Optimizing the high and low
threshold for each sub-filter defines the fixed filter creation problem, and the entire10

list of thresholds (number of input features ×2) uniquely defines a fixed filter and is a
high dimensional parameter space. A human expert generally creates one or two fixed
filters, with the goal of segregating high, medium, and poor data quality or simply pass
and fail. The full sounding selector will be based on an ensemble of 19 fixed filters,
each with their own optimized sub-filters. A guiding diagram is provided in Fig. 3.15

3.2 Genetic algorithm

Genetic algorithms (GA) are methods that mimic natural selection to explore high di-
mensional parameter spaces (Periaux and Galan, 1995). They do not guarantee a glob-
ally optimal solution, but given the imprecise definition of perfection in many real-world
optimization problems, such local minima often suffice or can be easily escaped with20

random restarts and well-chosen mutation. GA’s are also quite simple to create and
use, and they lend themselves trivially to highly parallel processing such as multicore
and clustered computer systems. We will use a GA to optimize the high dimensional
parameter space of the sub-filter thresholds that make up each of our fixed filters. A
guiding diagram is provided in Fig. 4.25
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3.2.1 Gene

The first step of defining a GA is formulating the parameters (gene) that encapsulate
the problem to be solved. In our case, we use the full list of sub-filter high and low
thresholds defined in Sect. 3.1 along with a Boolean list of whether each sub-filter is
actively being used. This list will permit us to track and control how many sub-filters are5

actually used in each fixed filter, with the total number of active sub-filters called a fixed
filter’s complexity. Initially, we start with a filter that permits all data and uses no active
sub-filters, thus complexity=0. A gene that only had two sub-filters switched on would
be complexity 2, and all sub-filters active would result in a complexity equal to the total
number of features. Fixed filters constructed by humans are often highly complex by10

this definition, as they can have dozens of active sub-filters.

3.2.2 Fitness and goal function

Next we define the fitness by which each proposed genetic solution is judged. This,
coupled with the definition of the gene in Sect. 3.2.1, fully defines the problem. Opti-
mally, we would attempt to minimize the RMS difference between our retrieved L2 CO215

values and the true CO2 value over the entire globe across many years. Global CO2
observations from satellites exist but are not ideal for comparison to ACOS data and
high quality surface data are spatially sparse (Wunch et al., 2011; Reuter et al., 2011).
Instead, we utilize the southern hemisphere approximation: the annual CO2 variation of
the Southern Hemisphere appears to be relatively small and reasonably approximated20

by a secular trend (linear yearly increase) with a very small sinusoidal seasonal compo-
nent (Wunch et al., 2011). Most of the scatter seen in the southern hemisphere ACOS
data is most likely caused by confounding forces negatively affecting the retrieval algo-
rithm rather than actual CO2 fluctuation (Wunch et al., 2011). We create a metric called
mean monthly standard deviation (MMS):25
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MMS =

∑
monthly_bins

Stdev(CO2)

num_monthly_bins
, (1)

where only monthly bins with more than ten soundings are admitted into the above
average (see Fig. 5 for a graphical example). Measured in parts per million (PPM),
the same unit as CO2, it represents an overall scatter for the entire set of XCO2 mea-
surement from ACOS in the Southern Hemisphere. The monthly grouping is to avoid5

any minor seasonal oscillations present in the data as well as the increase in CO2.
Reducing the MMS through data filtration will be considered our primary goal.

The trivial solution to reduce MMS would be to filter all but a few very consistent
soundings in a single monthly bin. In order to make this trade-off explicit, we will la-
bel fixed filter solutions with the percentage of data passed through the filter (trans-10

parency). Measured to tenths of a percent, this becomes a discrete quantity funda-
mental to the construction of our ensemble. Another goal will be to reduce the number
of active sub-filters necessary to achieve a solution or the complexity (also a discrete
quantity). This allows for the prevention of overly complex fixed filters requiring dozens
of sub-filters when a very small number might perform almost as well. GA’s handle15

multiple goals like these gracefully through the concept of dominance, as discussed in
the next section.

3.2.3 Dominance

When evaluating a new, proposed fixed filter’s fitness, we compute its MMS, trans-
parency, and complexity. Transparency is resolved to 0.1 % resolution, resulting in 100020

bins for the full range of 0 % to 100 %. We then compare its MMS to a small population
of past most-fit solutions called the Gene Pool. Within the Gene Pool past solutions
are grouped by the discrete labels of transparency and complexity, ranked by resulting
MMS. Only if the new proposed fixed filter has a lower MMS for a given complexity
and transparency does it dominate (replace) the prior solution and continue into the25
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next generation. In this way, we are running thousands of simultaneous races, 1000
transparency bins multiplied by the maximum complexity we will tolerate, that being 10
in the GOSAT example.

The net result of this process is not to find a single best fixed filter as a human
expert might seek, but to form a population of dominant solutions that cannot be fur-5

ther reduced without specifying preferences between the three fitness metrics of trans-
parency, complexity, and MMS. This population is known as the Pareto optimal front
in machine learning circles (Jin, 2008). Instead of seeking to arbitrarily judge between
these three conflicting goals, we will preserve the trade-off space of equally fit fixed
filters to help satisfy other requirements of our overall filter solution such as spatial10

coverage and tunability.

3.2.4 Reproduction

Reproduction in the GA describes the creation of new candidate filters, as shown in
Fig. 4. Drawing randomly from the current gene pool of dominant fixed filters, each
with their own MMS, transparency, and complexity, we propagate the chosen parent15

thousands of times. Each propagation is mutated; that is, random, unique changes are
made to its sub-filter thresholds and list of active sub-filters. The fitness of the new
candidate fixed filter is then measured with our three metrics. Most mutations will result
in a less than dominant solution, and those candidates are discarded. A few will result in
new, dominant candidates that will further fill the pool of dominant filters and/or replace20

candidates already within.
Different types of mutations are employed, also randomly. For instance, the mutation

may change many sub-filter thresholds at once or just a single entry. The threshold
change may be a minor incremental alteration up or down, a large change up or down,
or a totally random overwrite of the previous value. Combining many scales of muta-25

tions among the new candidate population permits us to escape local minima through
occasional radical mutations while also permitting fine-tuning of nearly optimal filters
through small mutations. We did not employ crossover operators (Periaux and Galan,
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1995) as simpler mutations were found sufficient. After hundreds of iterations and mil-
lions of candidate fixed filters considered, the gene pool of dominant solutions becomes
stable, that is minimally changing from cycle to cycle, and we achieve Pareto optimality.

3.2.5 Termination

The GA is permitted to run until the known dominant filters in the gene pool are not5

substantially changing, i.e. the MMS for any particular transparency and complexity
is reducing by less than 0.01 % per hundred GA cycles. In practice, this was a very
stringent condition and looser definitions of termination would have resulted in similarly
acceptable filter solutions.

3.3 Feature selection10

Feature selection is the process of determining which of the input features are useful or
informative for a given problem (Guyon and Elisseeff, 2003). In our example, we seek
to answer which of the initial features aid us in minimizing the southern hemisphere
scatter. The GA has produced several thousand dominant fixed filters that trade off
MMS, transparency, and complexity. By examining the subset of the initial features15

selected by the GA in these dominant filters, we create a list of known informative
features. Those not selected are either redundant, containing the same information as
the chosen set, or are uninformative.

As we did not a priori restrict the choice of data features, each fixed filter might
(but likely does not) employ totally different features in its functioning even for small20

changes in performance metric. This is exacerbated by the presence of highly corre-
lated or equivalent features in our input data, such as the altitude of a sounding using
two differing Earth spheroid estimates or multiple estimates of surface pressure us-
ing differing assumptions. Though the GA considers such nearly equivalent features
as interchangeable and will flutter between them from fixed filter to fixed filter, some25

are often more interpretable than others. For example, two features commonly inter-
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changed are the SNR and the standard deviation of the radiance spectrum. The SNR
is straightforward to interpret, whereas the standard deviation of intensity convolves
the SNR, overall brightness, and other more subtle quantities. Therefore, the set of
informative features resulting from the GA is a superset that likely contains highly cor-
related, interchangeable features. We may take advantage of this apparent nuisance,5

hand-selecting out features from the GA-generated list that are (a) highly informative,
(b) appear many times in the dominant fixed filters, and (c) are most interpretable. A
second run of the GA would then be performed using only this fine-tuned list of de-
sirable features, regenerating the full dominant population with improved interpretabil-
ity and minimized interchangeable feature oscillation. As such, this method is semi-10

autonomous rather than fully automatic, as human intervention has been permitted to
aid in the fine-tuning and sanity checking of the features used in the final, dominant
fixed filter solutions. However, the human expert in this case has already been aided
by the GA’s focus on informative features in a data-driven, empirical manner.

3.4 Warn level15

We now need a way to utilize the knowledge contained in the ensemble of dominant
fixed filters. The human expert standard method would pick a single fixed filter that had
the MMS reduction and transparency desired, using personal judgment to perform the
balance between these goals. We seek to make a more complex, tunable sounding
selector that benefits from more of the information stored in the ensemble than a single20

fixed filter instance. One way to encode this information is to order the dataset from first
to last rejected by the ensemble of filters as we sweep from 100 % to 0 % transparency.
Such an ordering is the very definition of a sounding selector. Unfortunately, it also
requires running several thousand filters on each sounding to generate its rank.

To reduce this computation and complexity load, we can sample the ensemble of25

fixed filters uniformly in transparency, say at 5 % resolution. This makes our ordering
non-unique, instead forming groups of equally trusted data. Each group may be labeled
with the total number of the sampled fixed filters that would block all members within the
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group. We call this label the warn level (WL) of the group and all the data points within.
WL=0 indicates data that is unconditionally accepted by all sampled fixed filters, while
WL equal to the number of filter samples (19) indicates data that is least acceptable.
Relatively high WL indicates the data will likely not process into a useful CO2 value.

The WL values are themselves useful for data investigation, as with them one could5

request all the data that is highly likely or unlikely to process and study the spatial or
temporal distribution, bias with respect to known truths, etc. These distributions will
certainly not all be uniform, given that confounding forces are often local. However, the
WL’s original utility is in assisting sounding selection.

3.5 Spatial coverage10

A required trait of a successful sounding selector is guaranteed spatial coverage. It is
generally required that the globe be populated with representative, reliable data, with
the understanding that certain spatial regions may be more problematic (e.g. cloud
contamination in the tropics limits the number of successful retrievals). A fixed filter
solution will not itself perform this function; in fact, it is unlikely we wish this. It is useful15

information to learn that over the stormy, shiny ice of Antarctica we always perform
poorly relative to the rest of the planet. At the same time, we do not wish to require a
global filter transparency of 80 % or higher before we begin to admit Antarctic data.

The OCO-2 project requires that the spatial coverage system must operate on a
per-granule (continuous fragment of an orbit) basis for ease of implementation. We20

segregate these orbital tracks into latitudinal bins of 5 degrees. Within each of these
bins, we may specify how many soundings we wish to accept (see Fig. 6). Generally,
the number of requested soundings per bin is proportional to the cosine of latitude to
prevent an overabundance of soundings near the poles. The spatial coverage system
fills each latitude bin starting with the most trusted data as judged by its WL, accepting25

less trusted soundings as needed until the bin is filled. The list of soundings used to fill
the bins is the output of the sounding selector.
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4 Results

4.1 Trade off curves (land and sea)

Employing the above-detailed GA on the GOSAT data in the Southern Hemisphere
resulted in a trade-off curve set for each of land (nadir mode) and sea (glint mode)
datasets as shown in Figs. 7 and 8. These are the dominant gene pool solutions after5

extensive GA cycling for the two datasets. Approximately 1000 CPU-hours were spent
on each dataset using 3 GHz Intel Xenon processors. Each point on these curves is
an individual, dominant fixed filter. Each is identified by its transparency (x-axis), com-
plexity (color), and the resulting MMS of passed data (y-axis). The land is seen to have
a higher scatter than sea at every transparency, owing to its more varied and complex10

surface.
The slope of the trade-off curve is of vital interest to filter efficiency. Regions of zero

MMS vs. transparency slope would show no effective reduction in southern scatter
as we reduce the amount of data permitted through the fixed filter, or in other words
poor filter performance. Filters with complexity equal to one are seen to possess such15

regions, whereas higher complexity filters do not. MMS instability at the lowest trans-
parencies is normal, as so few soundings are permitted through the filter that low-N
statistics begin to dominate the scatter calculation. High transparency filters are seen
to be extremely efficient by their slope, as it is an easier problem to eliminate the most
egregious outliers initially.20

Higher complexity is seen to reduce scatter at a fixed transparency due to its abil-
ity to more precisely fit the data with more parameters and access additional feature
information; however, using complexities greater than four for land and three for sea
are seen to have strongly diminishing returns. As we desire to maintain a high degree
of interpretability of the sounding selector’s function, we prefer lower complexity. We25

choose to limit our complexity to two at this stage for the GOSAT example, for ease of
graphing our results and interpretability in this example as well as satisfactory filter per-
formance. However, one could in principle use a complexity four filter with only minor
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additional effort. The future OCO-2 mission will likely employ a two to four complexity
filter, as prescribed by its empirical trade-off curves.

4.2 Feature selection

4.2.1 Interpretability vs. utility

The fixed filters populating Figs. 7 and 8 were constructed from the entire set of avail-5

able features provided to the GA. Features that were selected as most informative in
the trade-off curves are shown in Tables 2 and 3. Several new metrics are now defined
to aid in the human semi-autonomous feature selection task. Utility is an estimation of
the discriminating power of a feature to reduce scatter. To calculate it, we examined the
sub-filter thresholds for all fixed filters of complexity four. The percentage of all filtered10

soundings for which a feature is responsible is its utility. This is an over-estimate of a
feature’s true usefulness, as other features may also be capable of filtering a particu-
lar point even if this feature were not present. For this reason, the utilities will sum to
greater than 100 % due to feature filter overlap. Only features with utility greater than
10 % are reported to avoid large numbers of rarely useful features. Interpretability is15

a qualitative measure of the physical meaning of a particular feature. Deep, internal
parameters from a preprocessor can have very opaque real-world connections result-
ing in a low interpretability, whereas physically measurable quantities are immediately
understandable with high interpretability. Interpretability is vital for two reasons: it facili-
tates the future improvement of the retrieval algorithm by communicating to researchers20

some areas of potential difficulty, and it helps explain why some soundings are more
challenging than others to future data users. Restriction is the qualitative tendency for
a feature to eliminate soundings that are likely to be interesting to future analysis, or a
feature that is commonly plotted against. Simple geometric cut-offs are less desirable
for this reason, as researchers often wish to observe the dependence of a measurable25

as a function of various angles or altitudes.
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Comparing Tables 2 and 3 shows two features as highly significant in both land
and sea cases: the CO2 ratio (CO2r, unitless) and Delta Cloud Pressure (dPc, in hPa
units). The first feature derives from the Iterative Maximum A Posteriori Differential Op-
tical Absorption Spectroscopy (IMAP-DOAS) preprocessor in which CO2 concentration
estimates are independently derived for the strong and weak CO2 bands within the ra-5

diance spectrum using a non-scattering algorithm (Frankenberg et al, 2005). These
estimates are not as robust as the GOSAT full physics retrieval algorithm but orders
of magnitude faster to compute. The unitless ratio of CO2 estimates from both the
strong and weak CO2 bands, CO2r, indicates enhanced scattering within the atmo-
sphere when different from 1.0. It is intuitively satisfying that a spectral quality measure10

was selected as most useful. The second significant feature derives from the cloud
filter preprocessor (Taylor, 2012), using the Oxygen A-band to derive surface pressure
and goodness of fit assuming a Rayleigh-only atmosphere. The dPc is the difference
between the preprocessor’s quick-look surface pressure retrieved and the a priori sur-
face pressure as given by the European Centre for Medium-Range Weather Forecasts15

(ECMWF) model. This parameter is critical in the determination of whether a sounding
is too cloudy to process, as reflective cloud tops will retrieve a substantially lower pres-
sure than anticipated. Not only is this reasonable as a sounding selector input, but it
speaks to the diffuse boundary between clear and cloudy sounding determination.

Other features we will not use that still yield insight are the geometric factors of solar20

zenith angle (shallow illumination), cross-track angle (higher air mass), and standard
deviation of the altitude within the sounding (mountainous or highly sloped regions with
ill-defined ray-paths). All of these are highly interpretable and reasonable inputs for a
sounding selector, lending evidence that the GA did indeed select appropriate features
and that our southern hemisphere approximation/scatter reduction proxy for the truth25

is functioning.
Examining the distribution of CO2r versus dPc yields the decision boundary space

fundamental to our future sounding selector (Fig. 9). We observe that the land has a
much more dynamic CO2r range, while the sea shows strong bias in dPc relative to
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land. The cutoff used to determine cloudiness over the ocean is also observable for
values less than −2600 Pascals.

4.2.2 Targeted rerun

Permitting only CO2r and dPc as input features, the GA is re-run with results in Fig. 10.
The MMS reduction as a function of transparency remains virtually identical to the full-5

feature cases in Figs. 7 and 8, proving the feature selection was successful in isolating
informative features.

4.3 Warn levels

To ensure we adequately represent the trade-off curves of Fig. 10 without having to
compute a thousand filters per data point, we chose to sample the filters every 5 %10

transparency yielding 19 uniformly spaced dominant filters corresponding to the vertical
graph lines of the figure. In Figs. 11 and 12 are shown the matching high and low
thresholds for the sub-filters for both CO2r and dPc as a function of transparency. The
left-most region corresponding to low transparency show considerable noise, as the
low number of data being accepted results in low N statistics for the MMS. Noise in15

the right-most region of the graphs stems from some filter thresholds not being actively
used, as other thresholds dominate this high pass rate region such as for CO2r lower
boundary for land or sea. Other more complex features such as near transparency
90 % in the land case result from the interplay between thresholds. Left of this point,
all four thresholds are cooperatively working to reduce scatter; however, to the right20

only the low threshold for dPc significantly contributes. There is nothing fundamentally
inconsistent or problematic with such structure from the point of view of the GA, as at
each step a filter was generated that satisfied the scatter reduction and transparency
requirements. However, we do require some additional properties for these threshold
curves for a well-behaved sounding selector.25
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The uniformly sampled threshold values taken to implement the warn levels are
shown as black circles in Figs. 11 and 12. Note that while following the general trend of
the GA solutions, they have been made monotone as a function of transparency. This
will partially violate the precise relationship of warn level to transparency percentage,
but will grant a very useful property that we will name selector stability: a selector is sta-5

ble if for a given transparency all the data passed at lower transparencies is included.
This prevents an individual sounding from being included at low transparencies, ex-
cluded at moderate transparencies, then included again at high transparencies. Such
stuttering is admissible to the GA but makes defining a unique data grouping such as
is required for the warn level impossible.10

The final relationship of WL versus MMS and transparency can be found in Fig. 13.
The desired transparency as a function of WL, initially defined as increments of 5 %,
is closely approximated by our monotone filter. The relationship between dPc, CO2r,
and WL for all global data (not merely the southern training data) is made clear in the
decision boundary space of Fig. 14. Higher dimensional filters (complexity > 2) cannot15

be plotted so easily but are still quite useful and not significantly harder to derive by
this same procedure.

Now that we have defined our warning levels, we can discard the ensemble of fixed
filters and construct our sounding selector using only desired spatial coverage and the
WL labels for each sounding. It should be stated that we make an assumption at this20

step that the thresholds we have defined in the Southern Hemisphere will also apply to
the Northern Hemisphere.

4.4 Spatial coverage

As an example, we test our new sounding selector using a desired transparency of
20 % in Fig. 15. Shown in color are the highest (worst) warn levels per regional bin re-25

quired for proper filling, where hot colors represent high quality data and cool suggest
troublesome soundings with confounding factors. Land is shown only, as the sea distri-
bution is dominated by the glint geometry and is not insightful. Note that tropical regions
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with typically high cloudy scene likelihoods show high warn levels, while broad flat re-
gions in the mid latitudes show ease of population with low warn level data. Shorelines
and other highly mixed/complex terrain also show an increase in warn level. The large
unfilled region in Africa is due to the omission of M-gain data from this analysis, not a
failure of the sounding selector. We did not permit the selector to use any warn level5

18 or 19 data, as it was judged of too poor quality to be desirable in any circumstance.
The confounding forces of cloud and complex terrain are well represented by the

features we chose of CO2r and dPc. If we increased the complexity of the fixed fil-
ters admitted into our sounding selector construction above two, we could also use
terrain roughness (filters mountainous regions) and overall spectral intensity (filters icy10

regions) as previously selected by the GA.

4.5 Required data volume, early mission

In this example, we benefitted from several years of ACOS data with which to construct
an optimal sounding selector. However, when this method is applied to the upcoming
OCO-2 mission, little pre-existing data will be available. Figure 16 shows the results15

of constructing sounding selectors deprived of the full ACOS dataset. Hundreds of
subsamples of size two weeks, one month, two months, four months, or one year were
randomly extracted from the dataset, sounding selectors trained on each subset, and
compared with the sounding selector resulting from training on the entire dataset. We
then compare the resulting sounding selector to the full data case in terms of percent20

match for included/excluded soundings. This was done repeatedly, for various selector
transparencies. For low-transparency selectors, agreement was the most challenging
at 85 % using two weeks of data, while high-transparency filters were comparatively
easy to reproduce even with only two weeks of data at 96 % agreement. Additional
training days increased the accuracy of match to within error. We therefore conclude25

that a well-functioning sounding selector can be constructed after fully processing two
weeks of data at the ACOS sampling rate of five seconds. As this sampling rate is sixty
times slower than OCO-2, we should need only initially process 2 % of the incoming
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OCO-2 data for two weeks before the first-pass sounding selector can be produced.
As we anticipate processing 6 %, there should be ample data within a few weeks for
selector construction.

5 Summary

We have presented a procedure by which a sounding selector may be generated using5

the output of a genetic algorithm (GA) that seeks to reduce the mean monthly scatter
(MMS) in the Southern Hemisphere. The sounding features selected as most infor-
mative by the GA are hand-reviewed to optimize interpretability and reject undesired
distortion of the data, making the method semi-autonomous. Any number of informative
features may be selected at this point; in the ACOS example, more than four was found10

to add negligible new information. Adding features (higher complexity) reduces the sim-
plicity of the sounding selector but can encompass additional confounding forces and
better fit the data. A uniform selection of fixed filters as a function of filter transparency
(19 in the ACOS example) is then taken, and the thresholds of their sub-filters are
made monotone in transparency to preserve selector stability. This ensures that any15

data point permitted at a lower transparency will still be permitted at a higher trans-
parency. The ensemble of uniformly sampled fixed filters is then used to define a warn
level for each sounding equal to the number of filters that would reject it. Finally, we
couple these warning levels to a spatial coverage routine that fills latitudinal bins with
the lowest warn levels available. The final product is a sounding selector with a tunable20

transparency that maximizes the likelihood of valid CO2 retrievals from the selected
soundings while guaranteeing spatial coverage.

This method is data-driven and agnostic to instrument. Any dataset in which a goal
function can be identified (i.e. the minimization of southern CO2 scatter in our case) and
informative measurement features are present can be addressed in the same manner,25

even if the identities of the informative features are not known beforehand. Further, the
execution of this method has been used to shed light onto the particular confounding
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forces acting upon the measurements by examining the selected most informative fea-
tures and examining their spatial and temporal distribution. This same technique is now
also implemented as a sounding quality estimation using post-retrieval features as well
as those included here.
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Table 1. Features considered as input to the GOSAT sounding selector construction.

Quantity Type Example Source

8 Physical Tsurf, Psurf Cloud Filter Pre-process
5 Signal Characteristics SNR Cloud Filter Pre-process
5 Physical CO2density IMAP-DOAS Pre-process
12 Spectral Stats Stdev(radiance) Spectral math on radiance spectra
30 Signal Characteristics SNR JAXA
43 Geometry Azim, Alt, fractionland JAXA
103 Total
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Table 2. Features chosen by the genetic algorithm to reduce scatter over Land (Nadir mode).

Utility Interpret Restrict Name Source

59 % Med Low CO2 ratio IMAP-DOAS Pre-process
53 % Med Low Delta Pressure Cloud Cloud-filter Pre-process
40 % High Med Solar Zenith JAXA Geometry
9 % Med Low H2O ratio Frankenberg Pre-process
9 % High Med STDEV(Sounding Altitude) JAXA Geometry
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Table 3. Features chosen by the genetic algorithm to reduce scatter over Sea (Glint mode).

Utility Interpret Restrict Name Source

67 % Med Low Delta Pressure Cloud Cloud-filter Pre-process
39 % Med Low CO2 ratio IMAP-DOAS Pre-process
27 % High Med Sounding cross-track angle JAXA Geometry
13 % High Low Min(weak CO2 radiance S-polar) Spectral math
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 1 

Figure 1. The land and sea data used in the southern hemisphere approximation. This region is 2 

observed to have very low seasonal CO2 fluctuation relative to the north. 3 

4 

Fig. 1. The land and sea data used in the southern hemisphere approximation. This region is
observed to have very low seasonal CO2 fluctuation relative to the north.
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Fig. 2. Two-dimensional feature example. Yellow lines represent the max and min thresholds
for each of the two sub-filters, with only data satisfying the union (green) accepted by the filter
and all other data (red) rejected.
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Fig. 3. A guiding diagram for the discussion of filters and the final sounding selector.
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 1 

Figure 4. The genetic algorithm (GA) cycle. A parent is selected from the dominant gene 2 

pool, mutated into thousands of offspring, and any new dominant solutions are added back 3 

into the pool while the others are discarded. This cycle can be run massively in parallel, with 4 

each process contributing to the same ever-improving gene pool. 5 

6 

Fig. 4. The genetic algorithm (GA) cycle. A parent is selected from the dominant gene pool,
mutated into thousands of offspring, and any new dominant solutions are added back into the
pool while the others are discarded. This cycle can be run massively in parallel, with each
process contributing to the same ever-improving gene pool.
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 1 

Figure 5. A heat map of the retrieved values of CO2 for the entire southern hemisphere over 2 

land is shown. The blue bars identify the monthly bins within which the standard deviation 3 

will be taken. The MMS is the mean of each of the standard deviations of these 18 bins. 4 

5 

Fig. 5. A heat map of the retrieved values of CO2 for the entire Southern Hemisphere over land
is shown. The blue bars identify the monthly bins within which the standard deviation will be
taken. The MMS is the mean of each of the standard deviations of these 18 bins.
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 1 

Figure 6. On the left, a sample GOSAT track overlaid upon 5 degree latitude bins. The 2 

sounding selector would be applied to this track individually, with a user-specified fraction of 3 

the soundings selected for processing. On the right, an example distribution for the user-4 

specified number of soundings per latitude bin desired.  5 

6 

Fig. 6. On the left, a sample GOSAT track overlaid upon 5 degree latitude bins. The sounding
selector would be applied to this track individually, with a user-specified fraction of the sound-
ings selected for processing. On the right, an example distribution for the user-specified number
of soundings per latitude bin desired.
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 1 

Figure 7. The Pareto-optimal trade-off curves for dominant Land fixed filters in the southern 2 

hemisphere using all available features. Note that beyond a complexity of four, there is little 3 

filtration improvement. 4 

5 

Fig. 7. The Pareto-optimal trade-off curves for dominant Land fixed filters in the Southern Hemi-
sphere using all available features. Note that beyond a complexity of four, there is little filtration
improvement.
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 1 

Figure 8. The Pareto optimal trade-off curves for dominant Sea fixed filters in the southern 2 

hemisphere using all available features. Note that beyond a complexity of three, there is little 3 

filtration improvement. 4 

5 

Fig. 8. The Pareto optimal trade-off curves for dominant Sea fixed filters in the Southern Hemi-
sphere using all available features. Note that beyond a complexity of three, there is little filtration
improvement.
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 2 

Figure 9. Land/sea sounding distributions for Delta Pressure Cloud (dPc) versus CO2 ratio. 3 

Fig. 9. Land/sea sounding distributions for Delta Pressure Cloud (dPc) versus CO2 ratio.
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 1 

Figure 10. Using only the two chosen features CO2 ratio (CO2r) and Delta Pressure Cloud 2 

(dPc), the complexity=2 filters for land and sea are re-derived. Performance of the new 2-3 

feature trade-off curves is similar to those using all-features, proving our feature selection was 4 

successful. The small dip observed in the “Sea, All Features” curve near 5% transparency is 5 

merely a sub-region where the cross-track sounding angle paired with CO2r was slightly more 6 

efficient than dPc plus CO2r. 7 

 8 

9 

Fig. 10. Using only the two chosen features CO2 ratio (CO2r) and Delta Pressure Cloud (dPc),
the complexity=2 filters for land and sea are re-derived. Performance of the new 2-feature
trade-off curves is similar to those using all-features, proving our feature selection was suc-
cessful. The small dip observed in the “Sea, All Features” curve near 5 % transparency is
merely a sub-region where the cross-track sounding angle paired with CO2r was slightly more
efficient than dPc plus CO2r.
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 1 

Figure 11. Land data sub-filter thresholds for dPc (top) and CO2r (bottom). Black circles 2 

show monotonic, hand-smoothed final sub-filter values. 3 

4 

Fig. 11. Land data sub-filter thresholds for dPc (top) and CO2r (bottom). Black circles show
monotonic, hand-smoothed final sub-filter values.
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 1 

Figure 12. Sea data sub-filter thresholds for dPc (top) and CO2r (bottom). Black circles show 2 

monotonic, hand-smoothed final sub-filter values. Note that the high threshold for dPc was 3 

not needed, as can be explained in Fig. 7, bottom. 4 

5 

Fig. 12. Sea data sub-filter thresholds for dPc (top) and CO2r (bottom). Black circles show
monotonic, hand-smoothed final sub-filter values. Note that the high threshold for dPc was not
needed, as can be explained in Fig. 7, bottom.
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 1 

 2 

Figure 13. The selector performance for transparency and scatter as a function of inclusive 3 

warn levels. Permitting only warn level = 0 data (left of graph) is the most restrictive mode of 4 

the filter, while accepting everything up through warn level 19 permits all the data to the 5 

right. Note the deviation from original transparency as a function of warn level, caused by 6 

enforcing monotonicity of filter thresholds, is very small. 7 

8 

Fig. 13. The selector performance for transparency and scatter as a function of inclusive warn
levels. Permitting only warn level=0 data (left of graph) is the most restrictive mode of the
filter, while accepting everything up through warn level 19 permits all the data to the right.
Note the deviation from original transparency as a function of warn level, caused by enforcing
monotonicity of filter thresholds, is very small.
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 2 

Figure 14. The definition of warn level as a function of CO2r and dPc. The optimal values of 3 

CO2r ~ 0.99 and dPc ~ 800 hPa are different from 1.0 and 0.0 due to imperfect spectroscopy. 4 Fig. 14. The definition of warn level as a function of CO2r and dPc. The optimal values of CO2r
∼0.99 and dPc ∼800 hPa are different from 1.0 and 0.0 due to imperfect spectroscopy.
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 1 

Figure 15. Selector spatial coverage, color-coded by worst selected warn levels required for 2 

each five degree latitude region for an example 20% transparency setting. Note that cloudy 3 

regions near the equator and highly mixed terrain such as shorelines are more problematic 4 

than large, flat regions. The unfilled regions in Africa are due to the omission of M gain data 5 

from this analysis. 6 

7 

Fig. 15. Selector spatial coverage, color-coded by worst selected warn levels required for each
five degree latitude region for an example 20 % transparency setting. Note that cloudy regions
near the equator and highly mixed terrain such as shorelines are more problematic than large,
flat regions. The unfilled regions in Africa are due to the omission of M gain data from this
analysis.
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 1 

Figure 16. Using only two weeks of randomly selected training data, at least 85% and up to 2 

96% of the optimal sounding selector was reconstructed. Note that the x-axis has been shifted 3 

by a few days for each successive transparency for readability. 4 

Fig. 16. Using only two weeks of randomly selected training data, at least 85 % and up to 96 %
of the optimal sounding selector was reconstructed. Note that the x-axis has been shifted by a
few days for each successive transparency for readability.
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