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Abstract

This paper demonstrates the capabilities of Chemical lonization Mass Spectrometry
(CIMS) to study secondary organic aerosol (SOA) composition with a high resolution
(HR) time-of-flight mass analyzer (aerosol-CI-ToFMS). In particular, by studying aque-
ous oxidation of Water Soluble Organic Compounds (WSOC) extracted from a-pinene
ozonolysis SOA, we assess the capabilities of three common CIMS reagent ions: (a)
protonated water clusters (H,0),H", (b) acetate CH;C(O)O~ and (c) iodide water clus-
ters I(H,0), to monitor SOA composition. As well, we report the relative sensitivity of
these reagent ions to a wide range of common organic aerosol constituents. We find
that (H,0),H" is more selective to the detection of less oxidized species, so that the
range of O/C and OS. (carbon oxidation state) in the SOA spectra is considerably
lower than those measured using CH,C(O)O~ and I(H,0),. Specifically, (H,0),H"
ionizes organic compounds with OSs < 1.3, whereas CH;C(O)O™ and I(H,0), both
ionize highly oxygenated organics with OS¢ up to 4 with I(H,0),, being more selective
towards multi-functional organic compounds. In the bulk O/C and H/C space, i.e. in a
Van Krevelen plot, there is a remarkable agreement in both absolute magnitude and
oxidation trajectory between CI-ToFMS data and those from a high resolution aerosol
mass spectrometer (HR-AMS). This indicates that the CI-ToFMS data captures much
of the chemical change occurring in the particle and that gas phase species, which are
not detected by the HR-AMS, do not dominate the overall ion signal. Finally, the data
illustrate the capability of aerosol-CI-ToFMS to monitor specific chemical change, in-
cluding the fragmentation and functionalization reactions that occur during organic ox-
idation, and the oxidative conversion of dimeric SOA species into monomers. Overall,
aerosol-CI-ToFMS is a valuable, selective complement to some common SOA charac-
terization methods, such as AMS and spectroscopic techniques. Both laboratory and
ambient SOA samples can be analyzed using the techniques illustrated in the paper.
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1 Introduction

Organic compounds comprise an important subset of atmospheric constituents and
can exist in all atmospheric phases, i.e. gas, particle and aqueous. It is known that or-
ganics play important roles in determining the abundance of atmospheric oxidants and
influencing the properties of suspended particles and aqueous droplets, affecting cli-
mate and human health (Hallquist et al., 2009; Ervens et al., 2011). Global-scale mea-
surements of aerosol particles have assigned 20-90 % of sub-micron aerosol mass to
be organic (Zhang et al., 2007; Jimenez et al., 2009), with much of this material sec-
ondary in nature (i.e. Secondary Organic Aerosol or SOA) having been formed in the
atmosphere through the condensation of oxidation products of volatile precursors or
from in-cloud oxidation processes (Kanakidou et al., 2005; Hallquist et al., 2009; De
Gouw and Jimenez, 2009; Ervens et al., 2011). There are thought to be hundreds to
thousands of organic compounds within SOA, which may undergo chemical processing
in the atmosphere after condensation (Hamilton et al., 2004).

While gas phase oxidation reactions have been studied extensively, there is a grow-
ing demand on advanced analytical techniques which allow for the detection and eluci-
dation of condensed phase organic species and to assist in understanding their trans-
formations, sources and sinks (Duarte and Duarte, 2011; Laskin et al., 2012; Pratt
and Prather, 2012a, b). Such techniques can vary in sensitivity, specificity, and time
response. The ability of such techniques to be deployed in the field is highly desirable
because a comprehensive understanding of organic processing requires both lab and
complementary field measurements.

A wide range of spectroscopic techniques has been utilized to successfully investi-
gate the organic composition of particulate matter (PM) and cloud-, fog- and rain-water,
including Nuclear Magnetic Resonance (NMR) (Decesari et al., 2000, 2007, 2011;
Duarte et al., 2007; Cleveland et al., 2012; Finessi et al., 2012; Santos et al., 2012;
Shakya et al., 2012), Fourier Transform Infrared (FT-IR) (Sax et al., 2005; Duarte et al.,
2007; Polidori et al., 2008; Takahama et al., 2013) and Ultraviolet—visible (UV-Vis) spec-
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troscopy (Decesari et al., 2000; Duarte et al., 2005; Walser et al., 2007; Moosmueller
et al., 2009; Wagner et al., 2009; Shapiro et al., 2009; Bones et al., 2010; Santos et
al., 2012; Gyawali et al., 2012). All such spectroscopic measurements provide informa-
tion on organic aerosol bulk properties with specificity restricted to individual functional
groups. For example, proton NMR (1 H-NMR) directly provides quantitative information
on the amount of aldehydic, hydroxyl and aromatic groups, whereas, ketone and car-
boxylic acid functionalities can be measured indirectly (Decesari et al., 2007) or via
derivatization (Moretti et al., 2008). FT-IR gives more direct quantitative information on
the carbonyl functional groups and has been implemented in PM and cloud studies
(Sax et al., 2005; Duarte et al., 2007; Polidori et al., 2008; Wagner et al., 2009; Russell
et al., 2009; Takahama et al., 2013). However, FT-IR can be prone to inorganic inter-
ferences, which are likely present in atmospheric samples (Duarte et al., 2007; Polidori
et al., 2008). In addition, better resolution of individual constituents requires chromato-
graphic separation prior to analysis (Polidori et al., 2008). UV-Vis has been used for
brown carbon (BrC) measurements (Moosmueller et al., 2009; Wagner et al., 2009).
However, the fact that only multi-conjugated functional groups are detected implies the
need for complementary analytical techniques to characterize the whole organic com-
position. A common limitation of these spectroscopic techniques is the requirement of
a large amount of sample due to low sensitivity, which subsequently results in low time
resolution (Duarte and Duarte, 2011).

As a complement to spectroscopic techniques, mass spectrometry is increasingly
being applied for measurement of condensed phase atmospheric organics because it
has the potential to provide quantitative chemical formula information with very high
sensitivity. Approaches vary via their means of vaporizing the constituents, in their ion-
ization methods and in the mass analyzers employed. Widely used instruments are the
Aerodyne Aerosol Mass Spectrometer (AMS), which is based on Electron lonization
(El) with flash vaporization at 600 degrees, and single-particle approaches that use
lasers for both particle vaporization and/or ionization (Murphy and Thomson, 1995;
Gard et al., 1997; Canagaratna et al., 2007; Onasch et al., 2012). AMS instruments
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are field deployable and have emerged as a very powerful tool to study PM (Cana-
garatna et al., 2007; Zhang et al., 2007; Jimenez et al., 2009) and more recently fog
and cloud droplets (Ge et al., 2012; Lee et al., 2012). The attraction of the AMS is
the ability to derive quantitative information of inorganic and organic constituents in an
on-line manner (Canagaratna et al., 2007). While measurements from the AMS have
substantially improved the understanding of PM evolution in the atmosphere, much
molecular information is lost due to significant fragmentation during the hard ionization
by El (Canagaratna et al., 2007).

Electro-Spray lonization (ESI) Mass Spectrometry (ESI-MS) has been used in sev-
eral lab and field studies to elucidate the organic aerosol and fog water composition (Al-
tieri et al., 2008; Perri et al., 2009; Tan et al., 2009, 2010; Schmitt-Kopplin et al., 2010;
Lim et al., 2010; Mazzoleni et al., 2010; Kundu et al., 2012). The advantage of ESI-MS
is the soft ionization of ESI, in which the analyte ion stays intact; as well, the sample is
not heated before ionization. Also, ESI-MS instruments are sometimes equipped with
high resolution Fourier transform ion cyclotron mass spectrometer (FTICR-MS) and
other high resolution instruments, by which molecular level information for individual
species can be drawn from very complex samples (Laskin et al., 2012, 2013). The ap-
plication of ESI-MS in aerosol research has substantially improved the understanding
of aerosol evolution and processing in the atmosphere (Perri et al., 2009; Tan et al.,
2009, 2010; Laskin et al., 2012, 2013). However, in this technique the sample must
be mixed with a solvent that is required to induce ionization, which might lead to un-
wanted bulk reactions between the analyte and the solvent (Bateman et al., 2008).
Most importantly, ESI-(FTICR)-MS instruments are not yet field deployable for on-line
measurements.

While the technique of Chemical lonization Mass Spectrometry (CIMS) has been
used in atmospheric chemistry to make gas phase measurements for decades, it has
only now been applied to the study of organic processing that takes place in atmo-
spheric cloud-,fog- and rain-water, and particles (Thornton et al., 2003; Hearn and
Smith, 2004; Thornton and Abbatt, 2005; Sareen et al., 2010; Ervens et al., 2011; Zhao
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et al., 2012). An advantage of the CIMS over other mass spectrometry techniques is
the ability to use a variety of reagent ions that induce the chemical ionization in order to
selectively detect certain classes of organic compounds of interest. Most importantly,
chemical ionization is a relatively soft ionization technique and thus the analyte ion is
often not fragmented. This is important if information at the molecular level is desired,
such as in mechanistic and kinetic studies. However, as the sample composition be-
comes more complex, the low resolution quadrupole mass analyzer used previously
with CIMS instruments becomes inadequate to resolve the whole organic composition
(Hearn and Smith, 2006), and higher resolution instruments are preferred.

Aerosol studies utilizing the CIMS rely on thermal desorption to volatilize the organic
constituents of the particles, since these organics are of low volatility. For instance,
a multi-orifice volatilization impactor (MOVI) has recently been developed as an in-
terface to CIMS instruments, which allows for on-line separation of gas and particle
phase organics (Yatavelli and Thornton, 2010; Yatavelli et al., 2012). While particles
are collected on the MOVI, gaseous species are detected by the CIMS. After particle
collection ends, the impactor is heated gradually and organics volatilize off depending
on their vapour pressures. Thus, it can also provide vapour pressure information of
the species being analyzed. Another interface that has been previously employed in
aerosol studies is the aerosol-CIMS (or thermal desorption CIMS, TD-CIMS) (Hearn
and Smith, 2004, 2006; Sareen et al., 2010; Zhao et al., 2012). The aerosol-CIMS can
detect both gas and particle phase constituents simultaneously on-line by introducing
a heated inlet to volatilize particle phase components.

This paper illustrates the potential of high resolution time-of-flight aerosol-CIMS (ClI-
ToFMS) to study the composition of a complex organic matrix in the atmosphere,
namely the water soluble organic compounds (WSOC) of a-pinene ozonolysis SOA.
We treat this complex organic mixture and its subsequent aqueous photo-oxidation
components as models to highlight the capabilities of high resolution aerosol-CI-ToFMS
to study organic aerosol composition and processing. We illustrate how a comprehen-
sive analysis can be achieved by choosing the CI-ToFMS reagent ions to selectively
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ionize certain classes of organic compounds within the WSOC SOA. In particular, three
reagent ions: (1) protonated water clusters (H,0),H", (2) acetate anions, CH;C(O)O~
and (3) iodide water cluster I(H,O),, ions were used to explore their selectivity for the
same change in chemical composition occurring during WSOC photo-oxidation. The
results are presented as oxygen-to-carbon atomic ratios (O/C), hydrogen-to-carbon
atomic ratios (H/C), carbon oxidation state (OS¢) and numbers of carbon atoms (#C)
distributions over the course of aqueous phase oxidation for the three reagent ions.
For reference, we compare the data to those simultaneously obtained with high reso-
lution AMS. Furthermore, we illustrate that different chemical classes, corresponding
to monomers and dimers of the a-pinene oxidation products, were observed for the
WSOC in all the three reagent ions CI-ToFMS spectra. The differing rates of oxidation
of the monomer and dimer species illustrate how aerosol-Cl-ToFMS can be utilized to
study chemical change within a chemically complex matrix. The detailed mechanistic
interpretation of the oxidative evolution of the hundreds of peaks within the aerosol-
CI-ToFMS spectra, along with selected kinetics studies of major constituents, will be
presented in a subsequent publication.

2 Experimental

The experiments were carried out in the following sequence: (1) SOA generation and
collection, (2) aqueous phase photo-oxidation of WSOC and (3) detection of photo-
oxidation products using high resolution CI-ToFMS and AMS (Aerodyne Inc.).

2.1 SOA generation and collection

The reaction of ozone with a-pinene was used to generate SOA in a continuous man-
ner in the University of Toronto Mobile Oxidation, Concentration and Aging (MOCA)
chamber (i.e. FEP Teflon bag, 1 m?> volume). An OH radical scavenger was not added
and as a result a-pinene was oxidized by both ozone and OH, and no seed aerosol
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was employed. The experimental setup is illustrated in Fig. 1. The chamber was run
in the dark at room temperature and pressure. Dry (RH ~ <5 %), purified, hydrocarbon
free air, from a pure air generator (Model 737, AADCO), was the carrier gas and flowed
continuously into the chamber before the reagents were introduced. All flows were con-
trolled using mass flow controllers (MKS). Ozone was generated by passing 0.1 LPM
(Liter per minute) of purified air over a mercury lamp. a-Pinene (Aldrich, >99 %) was
injected continuously in 1LPM of air using a 25 L syringe (Hamilton) mounted on a
syringe pump (Harvard Apparatus, Pump11 Elite) at a rate of 0.1 uL min~"'. In order
to reduce the concentration of a-pinene in the chamber, 0.1 LPM of the air carrying
a-pinene was introduced in the chamber while the rest flowed to the exhaust. A nee-
dle valve was placed on the exhaust line to insure sufficient pressure is present to
allow 0.1 LPM a-pinene flow into the chamber (see Fig. 1). Makeup air of 10.5LPM
was added in order to dilute the reagents and to give a residence time of ~ 1.6 h in the
chamber. A pump was connected to the chamber outlet to pull 8.9 LPM of air through
an O3 denuder to remove part of the ozone.

An ozone analyzer (model 49i, Thermo scientific) was used to monitor the O3 con-
centration in the chamber, a-pinene concentration was monitored with a Proton Trans-
fer Reaction-Mass Spectrometry (PTR-MS, lonicon) by following m/z 137 and 81,
and the SOA size distribution was measured using a TSI Scanning Mobility Particle
Sizer (SMPS, 3081 Differential Mobility Analyzer (DMA), 3025A Condensation Particle
Counter (CPQC)). Typical time profiles for the reagents and SOA mass loading (assum-
ing a density of 1.29g mL™") are shown in Fig. 2. When the reagents and SOA loading
reached a stable level (Fig. 2), a Teflon filter (47 mm diameter and 2 um pore size, Pall
life sciences) was placed downstream of the ozone denuder (Fig. 1). SOA was collected
on the filter for 6—8 h and the aerosol mass collected (0.5-0.7 mg per filter) was deter-
mined by an electronic balance before and after SOA collection. Immediately after SOA
was collected, the filter was immersed in ~ 50 mL of purified water (18 mQ cm, Veolia)
in a plastic bottle (Nalgene), which was pre-rinsed with purified water. The immersed
filter was shaken for ~ 15min and then left in the freezer at —30 °C.
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2.2 Aqueous phase photo-oxidation of WSOC

The aqueous phase photo-oxidation reaction was carried out in a photo-reactor (Ray-
onet Reactor, RPR-200) equipped with UV-B lamps (RPR-3000, peak emission at
310 nm) mounted in a circular manner such that they are equidistant from the centre.
A stirring plate and a fan were added to the photo-reactor to ensure adequate solution
mixing and cooling, respectively. The aqueous solutions were placed in a glass bottle
(Wheaton) in the centre of the photo-reactor, and thus light of wavelengths greater than
300 nm was transmitted to the sample. The solution temperature when the lamps were
on was 28 °C. Hydrogen peroxide (Sigma-Aldrich, > 30 % in water, TraceSELECT) was
added to the sample such that a 1 mM concentration is present. The aqueous phase
OH photo-oxidation was initiated by the photolysis of hydrogen peroxide to form OH.
From the decay of species with known rate constants with OH (i.e., cis-pinonic acid), we
estimate that the steady state OH concentration is on the order of (1.1 £0.1) x 1073 M.

Three frozen WSOC solutions were allowed to thaw at room temperature and com-
bined. Purified water (18 mQcm, Veolia) was added to make a 200 mL solution of
~10ug mL™" SOA mass in water. The 200 mL solution was divided into 4 x 50 mL
aliquots. 1 x 50 mL aliquot was used to carry out the OH oxidation and 2 x 50 mL solu-
tions were used for photolysis (i.e. no H,O,) and dark (i.e. H,O, but no light) control
experiments, and 1 x 50 mL was a backup. A volume of 5.13 puL of hydrogen peroxide
was injected in the SOA solution to give a concentration of 1 mM. The oxidation was
initiated by the irradiation of UV-B lamps. The photo-oxidation and control experiments
were allowed to run for 4 h, where the photo-oxidized sample was exposed to a total of
1.6 x 1072 M's of OH.

2.3 Detection of WSOC and the photo-oxidation products

The WSOC solution was atomized using a TSI constant output atomizer (model 3076).
A fraction of the droplets was diluted by a factor of 4 with nitrogen gas (BOC, grade 4.8)
or air (Linde, grade 0.1) before entering the HR-CI-ToFMS (Aerodyne Inc.) (Fig. 3).
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In order to volatilize the organics from the droplets, the diluted flow was heated up to
150 °C by passing it through a 70 cm long Siltek-coated stainless steel tubing (Restek).
The tubing was heated by wrapping it with a heating tape (Omega, STH051) and the
temperature was controlled using a modified temperature controller (Omega, CN1A-
TC). The residence time in the heated line was about 1.4 s. Temperature ramping ex-
periments were carried out where the temperature of the line was ramped from 100°C
to 250 °C in steps of 50 °C. The line temperature (of 150 °C) was selected such that the
signal for the majority of the ions of interest was maximized. These observations were
consistent with Yatavelli et al. (2012), where the thermogram of a-pinene ozonolysis
particle phase showed that the product of m/z 155-357 peaked in signal at tempera-
tures below 150 °C. Approximately 0.8 LPM of the unheated droplet flow was diluted by
air (Linde, grade 0.1) (see Fig. 3) and passed through a diffusion dryer. The flow was
then introduced to the HR-AMS (Aerodyne Inc.) and the SMPS (TSI, 3081 DMA, 3776
CPC). A pump was also connected to the manifold downstream of the dryer in order to
reduce the residence time of the droplets in the tubing downstream from the atomizer.

2.3.1 HR-CI-ToFMS

A detailed description of the HR-CI-ToFMS can be found in Bertram et al. (2011) and
Yatavelli et al. (2012). The sample flow rate entering the low pressure ion-molecule
reaction (IMR) chamber of the CI-ToFMS was set to 2.0 LPM by a critical orifice.

The reagent ions used in this work were: protonated water cluster (H,O),H", ac-
etate anions CH3C(O)O™ and iodide water clusters I1(H,O),. A fritted glass bubbler
was used to bubble water (18 mQ cm) with 2.2 LPM of nitrogen to generate water va-
por for creating (H,0),H". Acetate reagent ions were generated by a flow of 10 sccm
from the acetic anhydride (Sigma, 539996) headspace contained in a stainless steel
bottle (Swagelok) in room temperature, which was subsequently diluted by 2.2 LPM of
nitrogen. A home-built permeation tube left at room temperature containing methyl io-
dide (Sigma, 18507) was the source required to create the iodide water cluster reagent
ions. Each reagent ion precursor passed through a 21%9pq radioactive cell (NRD, Model
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2031), at a flow of 2 LPM set by a critical orifice, in order to create the ionization reagent
ions. The analyte ionization took place by the following chemical ionization reactions:

Protonated water clusters : (H,0),H* + M — n(H,0) + MH* (R1)
Acetate : CH;C(0)O™ + MH — CH4C(O)OH + M~ (R2)
lodide water clusters : I(H,0), + M — n(H,0) + (M)~ (R3)

The IMR pressure and temperature were adjusted to 96 + 1 mbar and 57 °C, respec-
tively. The pressure of the collisional dissociation chamber (CDC), the chamber fol-
lowing the IMR containing the short segmented quadrupoles (SSQ), was controlled to
2.0+ 0.2 mbar. A nitrogen flow was used to dilute the sample flow in the (H,0),H" and
I(H,0), reagent ion experiments (Fig. 3), while a flow of air was used for the dilution
in the CH3;C(0O)O™ reagent ion experiments. This was essential as the acetate reagent
ion concentration seemed to be sensitive to the amount of oxygen present.

The fields’ strength within the CI-ToFMS controls the amount of gas phase ion clus-
tering and fragmentation. Protonated water clusters and iodide water clusters reagent
ions experiments were run in weak-field mode. This is because fragmentation was
observed for the sample ions in the (H,0),H" experiments when moderate- to strong-
fields were applied. Also, in the I(H,0), case, the analyte ion is detected clustering
with I~ as illustrated in Reaction (R3) and the weak field insures that the cluster stays
intact to maximize the overall signal. In contrast, acetate reagent ion experiments were
run in strong-field mode, because a mixture of deprotonated analyte (Reaction R2)
and analyte clustering with acetate ions were observed in weak-field mode. To mini-
mize complexity of ion assignment, a strong-field insured that the majority of the peaks
in the mass spectra followed Reaction (R2). A list of the voltages in the mass spec-
trometer used to run the experiments is given in Table S1. All experiments were run in
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V-mode with the time-of-flight mass spectrometer, and data were acquired at 1 s time
resolution and averaged to 5 min using the data analysis software, Tofware 2.2.2 (Aero-
dyne Inc.). Peak fitting and ion assignment were performed for all peaks in the spectra
for the three reagent ion up to molecular weight of 300 u. The mass accuracy for all
V-mode experiments was +5uTh Th! (ppm). The ToF resolving power was 4285 (at
m/z301), 4194 (at m/z299) and 4186 (at m/z427) for (H,0),H*, CH;C(O)O™ and
I(H,O),, respectively. More details regarding mass accuracy and resolving power of
the mass spectrometer can be found elsewhere (Bertram et al., 2011; Yatavelli et al.,
2012; Jokinen et al., 2012). Data for the three reagent ions were normalized to reagent
ion signal and background subtracted.

2.3.2 HR-AMS

The aqueous particles passed through a diffusion dryer and were subsequently an-
alyzed by the HR-AMS for determination of non-refractory components. The working
principle of the AMS has been reviewed by (Canagaratna et al., 2007). The HR-AMS
switched between V-mode (1 min) and W-mode (4 min) during the experiments. The
data analysis was performed using Squirrel (version 1.51H) and Pika (version 1.10H).
The standard fragmentation table in Pika with the corrected air fragment column for our
carrier gas were used. The elemental analysis of W-mode data was performed with the
default correction factors for O/C (0.75) and H/C (0.91) in Pika (Aiken et al., 2008).

2.4 Sensitivity evaluation

To evaluate relative sensitivities of different species, the following organic compounds
were used: glyoxal (Sigma, 40wt. % in H,O), methylglyoxal (Sigma, 40 % in H,0),
formic acid (Sigma, 50wt. % in H,O), acetic acid (Fisher, 99.9 %), glyoxylic acid
(Sigma, 50 wt. % in H,0), pyruvic acid (Sigma, 98 %), pinonic acid (Sigma, 98 %), ox-
alic acid (Fisher, 99.9 %), malonic acid (Sigma, 99 %), succinic acid (Fisher, 99.7 %),
levoglucosan (Sigma, 99 %), citric acid (Sigma, >99.5 %) and L-tartaric acid (Fisher,

6158

AMTD
6, 6147-6186, 2013

Focus on formation
of oxygenated
species via aqueous
phase processing

D. Aljawhary et al.

L

Title Page
Abstract Introduction
Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/6147/2013/amtd-6-6147-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/6147/2013/amtd-6-6147-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

>99.5%). Three standard solutions of a combination of the thirteen organic com-
pounds were prepared in purified water (18 mQcm). The concentrations of each of
the organic compounds were 5, 15 and 25 uM. The standard solutions were sampled
as illustrated in Fig. 3, with the CI-ToFMS operating with the three reagent ions sepa-
rately. The sensitivity of each compound was obtained from the slope of the three-point
calibration curve.

3 Results and discussion
3.1 CI-ToFMS sensitivity and Selectivity evaluation

The sensitivity of 13 organic compounds with known concentrations in the aqueous
phase was assessed using the CI-ToFMS with the three reagent ions. This test was
performed in order to evaluate the selectivity of each reagent ion towards known or-
ganic compounds. The organic compounds were chosen such that a variety of func-
tional groups are presented.

Figure 5a shows the sensitivities of the 13 compounds using (H,0),,H™ reagent ions.
The sensitivities obtained for all compounds are relatively low with the exception of cis-
pinonic acid and succinic acid. The proton transfer reaction (R1) is governed by the
gas phase affinity of the organic compounds to protonate. The reaction proceeds if the
gas phase basicity of the analyte is higher than that of the water clusters, (H,O),. The
reagent cluster ions observed in the spectra were with n = 3, 2, 4 listed by descending
intensity, although this may not reflect the nature of the cluster distribution in the IMR
and it is unknown which combination of the water cluster ions ionizes the analyte. The
gas phase basicity of the clusters are 730, 694 and 769 kJ mol ™", respectively (NIST,
2013). Gas phase basicity data are not available for the majority of the organic com-
pounds, except for formic acid (710kJ mol'1) and acetic acid (753 kJ mol‘1) (Hunter
and Lias, 1998). The gas phase basicity of acetic acid is higher than n = 2 and 3 water
clusters. However, formic acid gas phase basicity is only higher than that of the n =2
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water cluster. Formic acid was not observed in the (H,O),H" reagent ion spectra at all
concentrations, unlike acetic acid. This indicates that the proton transfer reaction from
(H,0),H" to formic acid did not proceed. In addition, according to these observations,
(H,0),H" clusters with n > 3 appear to be playing a role in the proton transfer reac-
tion. This also suggests the possibility that the actual distribution of (H,O),H" clusters
is with n >3 in the IMR. The observation of n =2 cluster in the mass spectra was
probably due to fragmentation of higher order clusters yielding n = 2 cluster. However,
this interpretation is based on the data from only two organic compounds and more
information regarding other compounds is required before a conclusive understanding
can be drawn. It appears from Fig. 5a that all the multi-functional organic compounds
have relatively low sensitivities compared to pinonic acid, malonic acid, succinic acid,
levoglucosan and citric acid, all of which contain reduced carbons (-CH,-). This illus-
trates the selectivity of (H,0),H* reagent ions toward compounds that are not highly
oxygenated.

Details about the CH;C(O)O™ ionization method can be found elsewhere (Veres et
al., 2008). lonization takes place if the gas phase acidity of the analyte is higher than
that of acetic acid. It has been found that acetic acid has a low gas phase acidity and
thus most acids can deprotonate via Reaction (R2) (Veres et al., 2008). The sensitivity
of the CI-ToFMS to the organic compounds using acetate reagent ions is shown in
Fig. 5b. All acids were detected in the deprotonated form and all the non-acid bearing
compounds were not detected sensitively, with the exception of levoglucosan, which
was detected as a cluster with CH;C(O)O™. Interestingly, the majority of the acids
have more uniform sensitivities, with less than a factor of 4 difference, when compared
to Fig. 5a and c. In addition, small compounds such as formic, glyoxylic and pyruvic
acids (C <3) and large organic acid compounds show similar sensitivities. The results
demonstrate that CH;C(O)O™ reagent ions are selective to acids in general, in accord
with the work of (Veres et al., 2008). However, compounds with non-acid functionality
(e.g., levoglucosan) can also be observed clustering with CH;C(O)O™.
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I(H,O),, reagent ions data are shown in Fig. 5c. The ionization by Reaction (R3)
has been described earlier (Caldwell and Kebarle, 1984) and used extensively in at-
mospheric studies (Thornton and Abbatt, 2005; Zhao et al., 2012). The ionization de-
pends on the ability of the organic compounds to hydrogen bond with the iodide anion.
In addition, since iodide is a large polarisable anion, compounds with large polarisabil-
ity, such as those with high molecular weight and those containing double bonds, will
be better detected. As can be seen in Fig. 5¢, multi-functional compounds with C >3
can be detected with very similar sensitivities. Those compounds are di-acids, tri-acids
and alcohols, all of which can participate in hydrogen bonding with the iodide and at
the same time are more polarisable by size. Glyoxylic acid, which has aldehydic and
acidic groups, was also detected with a good sensitivity similar to the multi-acids and
unlike its analogues, pyruvic acid. This is possibly due to the fact that aldehydic hydro-
gen in glyoxylic acid is slightly electron deficient and thus can form a hydrogen bond
with the iodide in contrast to the methyl group hydrogens in pyruvic acid. The alde-
hydes, glyoxal and methylglyoxal, were not detected well. These two aldehdyes have
been previously detected in the hydrated gas phase forms after volatilization from a
solution using I(H,0), reagent ions (Zhao et al., 2012). However, these previous mea-
surements using aerosol-CIMS were carried out at lower heated inlet temperatures
(110°C). Thus, it is possible that dehydration of the aldehydes was more efficient at
150 °C, which was the temperature used in this study. As a result, the ability of binding
to iodide was reduced.

Overall, I(H,0),, and CH3C(O)O™ were found to be best in detecting multifunctional
organic compounds which could particularly be useful for detecting oxygenated organic
aerosol (OOA) components that are generally observed in the field.

3.2 WSOC and Aqueous photo-oxidation processing

Four hour aqueous photo-oxidation experiments of the WSOC were followed using

the CI-ToFMS using the three reagent ions. In all cases the control experiments (not

shown) conducted with either H,O, present but not light, or vice versa, showed negligi-
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ble chemical change as compared to the photo-oxdiation results arising from when both
are present. As a result, only data from photo-oxidation experiments are presented.

3.2.1 Raw mass spectra

Mass spectra were collected every second for 4 h of oxidation. The mass spectra ob-
tained for the WSOC before oxidation and after 2 and 4 h of oxidation are shown in
Fig. 6. As the reaction proceeds, regions where ions decay are shown in the left spec-
tra and regions where ions form are shown in the right spectra. All spectra before the
oxidation was initiated show two humps, monomers and dimers regions, where the
monomer region corresponds to ions with molecular weight similar to cis-pinonic and
cis-pinic acids i.e. primary oxidation products of a-pinene. Dimeric species are thought
to arise via (1) ester, acetal and peroxy-acetal formation in the aqueous phase, (2) gas
phase oxidation in the chamber before the SOA was collected or (3) droplet evapora-
tion in the heated inlet. It is clear that the dimer region in the three reagent ions spectra
is decaying during photo-oxidation. In addition, the majority of the products formed af-
ter 2 and 4 h of oxidation lie in a lower molecular weight monomer region. This is one
indication that fragmentation (and functionalization) reactions are possibly occurring
within the organic species during oxidation. By comparing the time dependent spectra
of the dimer to monomer region in the I1(H,O),, spectra, it is clear that the dimers decay
at a much faster rate compared to the monomers. This could be due to the fact that
dimer reactions lead to monomers (fragmentation), which subsequently appear as if
the monomers are slowly reacting.

The observation that the I(H,0), spectra are showing the largest and most clear de-
cay compared to CH;C(0)O~ and (H,0),H" spectra may be due to gas phase ion clus-
ter formation for the two latter reagent ions. To illustrate, it was observed (not shown)
in the sensitivity test (Sect. 3.1) the presence of ions for (H,0),H* and in CH;C(O)O~
reagent ions, which was not expected based on Reactions (R1) and (R2). These ions
form by gas phase clustering between ions formed in Reactions (R1) and (R2) with
non-ionized analyte compounds, and thus show up as high molecular weight ions.
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These gas phase ion clusters can be a combination of (1) an analyte ion and another
analyte or (2) an analyte ion and a reagent ion related species such as H,O clusters
or acetic acid/acetic anhydride. Such ions did not show up in the I(H,O),, spectra. As a
result, the dimer region in (H,0),H" and in CH;C(O)O™ contains a combination of real
dimers existing in aqueous solution (or formed during the droplet evaporation process),
such as those that appear in the I1(H,O),, spectra, and those formed by gas phase ion
clusters.

3.2.2 lon Assignment and Speciation

Peak fitting was performed for all three reagent ion spectra covering chemical formu-
las with molecular weights up to 300 u (m/z 301, m/z299 and m/z 427 for (H,0),H",
CH3;C(0)O™ and I(H,0),,, respectively). Peaks higher than 300 u cannot be unambigu-
ously assigned for the (H,0),H", CH;C(O)O~ reagent ions. Chemical formulas were
assigned for odd m/z based on selection criteria governed by the following chemi-
cal formula C,H,,,,0,, where formulas assigned cannot have a number of hydrogen
atoms greater than 2n + 2 for a given carbon number equal to n. Elements other than
C, H and O were not considered in the formula predictions as it was assumed that
those elements were absent from the reagents (WSOC and H,0O,) and purified wa-
ter. The peaks were fit with the minimum number of ions such that a residual area
(un-fitted area) of less than 5% is achieved. Isotopic patterns were used to confirm
ion assignments in some cases. The number of ions assigned were 595, 555 and 428
for (H,0),H*, CH;C(0)O™ and I(H,0),, respectively. The smaller number of ions as-
signed for the same chemical composition with I(H,0O),, compared to the other reagent
ions is an indication of the selectivity of I(H,0),,.

From the ion lists generated for the spectra, hydrogen-to-carbon ratios (H/C),
oxygen-to-carbon ratios (O/C) and the number of carbon atoms (#C) were derived
for the individual chemical formulas. The carbon oxidation state (OS.) was calculated
as described in (Kroll et al., 2011) by the approximation OS; ~ 2 O/C + H/C. The ion
chemical formulas were corrected for the proton added when using (H,0),H*, and
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subtracted in the case of CH3C(O)O™, such that the neutral chemical formula of the
analytes was used for calculations and plotting. Also, gas phase ion clusters cannot be
separated from non-cluster ions that appear at the same m/z as both could have the
same chemical formula. The distribution of the 4 parameters H/C, O/C, OS. and #C for
the ions lists is shown in Fig. 7 as percentile box plots.

The ions assigned in the (H,0),H" spectra cover noticeably narrower H/C, O/C and
OS. ranges as compared to CH3C(O)O™ and I(H,O),,. In addition, the H/C distribution
spans a higher H/C region ranging from 1 to 2 compared to 0.6-2 for the other reagent
ions. Lower O/C and OS, values for all the percentiles are also observed for (H,0),H".
The CH;C(0O)O™ and I(H,0),, percentiles for the 4 parameters are very similar overall.
This indicates that the assigned ions in the two reagent ions spectra are similar, al-
though with some selectivity associated with I(H,0),,. These results are consistent with
the observation in Sect. 3.1, where highly oxygenated multi-functional organics were
detected with high sensitivity with CH;C(O)O™ and I(H,0), but not with (H,O),H". It
is noted also that these two reagent ions (CH3;C(O)O™ and I(H,0),,) can detect some
species with extremely high OS¢, approaching 3.7 and 4, and O/C, approaching 2.75
and 3, respectively.

3.2.3 The Van Krevelen diagram

The intensity of each ion together with the H/C and O/C values were used to calculate

the intensity weighted average elemental ratios, H/C and O/C. This allows plotting

the time dependent H/C and O/C for the photo-oxidation reaction in a Van Krevelen
diagram (Heald et al., 2010; Ng et al., 2011). One question of interest is the degree
to which Van Krevelen diagram is similar to data that are derived from the AMS in-
strument. Figure 8b expands the Van Krevelen diagram to emphasize the differences
between the data for the CI-ToFMS three reagent ions and the AMS. As a reference
point, it is interesting that the slope of the linear fit of the AMS data is —0.48, which is
essentially the same as the slope of —0.5 found by Ng et al. (2011) from a compilation
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of aerosol ambient and chamber SOA data affected by aging. As well, Fig. 8a illustrates
that the CI-ToFMS and AMS data largely overlap in the H/C and O/C spaces, with the
CI-ToFMS data lying within the accuracy range of the AMS data. This close agreement
is somewhat surprising given the use of uncalibrated CI-ToFMS ion intensity, which
is not necessarily a good approximation to the true analyte abundances. As well, the
AMS detects only particle phase organics, while the aerosol-CI-ToFMS detects both
gas and particles phase components.

Figure 8b highlights the differences between the three CI-ToFMS reagent ions. The

data show that the maximum O/C obtained with (H,0),H" was 0.53, while CH;C(0)O™~
and I(H,0), maxima were 0.75 and 0.71. This illustrates the inability of (H,0),H"
reagent ions to efficiently ionize highly oxygenated organics, especially those present at

the end of the oxidation reaction. Correspondingly, the trajectory of the (H,0),H"O/C
and H/C data series always lags in time behind those for CH;C(O)O™ and I(H,0),.
While CH;C(O)O™ and I(H,0),, follow a similar path in O/C as the reaction proceeds,

their H/C values slightly diverge at O/C of 0.6, where the I(H,0), data stay closer
to the AMS data. As discussed in Sect. 3.1 (i.e., sensitivity evaluation), CH3C(O)O™
reagent ions allow for efficient detection of carboxylic acids in general and show no
discrimination in ionizing small acids, which are relatively volatile (or semi-volatile) and
are not detected by the AMS. Thus, more volatile species with higher H/C may be
detected by CH;C(O)O™ causing a divergence from the AMS data. For instance, Fig. 5b
shows that CH3;C(O)O™ allows detecting formic acid (H/C =2) in similar sensitivity as
other multifunctional acids such as citric acid (H/C = 1.3). On the other hand, Fig. 5¢
illustrates that formic acid sensitivity is approximately an order of magnitude less than
that of citric acid with I(H,0), reagent ions. Formic acid is relatively volatile and is
not detected by the AMS unlike citric acid, which can form particles detected by the

AMS. Thus, the signal of formic acid is masked in the H/C calculation for the I1(H,0),,
case making the H/C and O/C trajectories similar to those from the AMS. Thus, it
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is reasonable that the I(H,0),, data converge to those from the AMS, given that the
CI-ToFMS data are likely dominated by particle-phase species (i.e., less volatile, large
acids and multifunctional organics).

3.2.4 The Difference Kroll Diagram

The 2-D space of the other two parameters OS and #C, the so-called Kroll diagram,
can also be used to obtain more informative evidence on the nature of chemical change
(Kroll et al., 2011). In a typical Kroll diagram, the OS, is plotted as a function of #C.
Here, the CI-ToFMS is advantageous over the AMS as it provides carbon number in-
formation directly for individual ions. This feature of CI-ToFMS arises from the soft
ionization ability that frequently retains the ions intact without fragmentation. In addi-
tion, the CI-ToFMS provides a means by which bulk or individual compound OS; and

#C values can be obtained. The OS; and #C are the intensity weighted averages of
OS¢ and #C summed over all individual ions.

In order to observe a change in the OS and #C distribution for individual compounds
over the 4 h of photo-oxidation, a difference-Kroll diagram was constructed as shown in
Fig. 9. In the difference-Kroll diagram the intensities of ions with the same co-ordinates
on the plot are summed at time 0 and 4 h. The Kroll diagram information at time 4 h is
subtracted from that at time 0. Coordinates with positive intensity are those that decay
away and are marked in light coloured solid circles. Negative intensities indicate coordi-
nates where ions have formed after 4 h of photo-oxidation and are marked in solid dark
coloured circles. The highest OS;, in the difference Kroll diagram for (H,0),H" is 1.33.
On the other hand, the plots for CH3;C(O)O™ and I(H,0),, clearly show many occupied
coordinates with OS, ranging from 2 to 4, i.e. very highly oxidized species, with #C
less than 10. All three reagent ion difference Kroll diagrams show that the majority of
the ions formed after 4 h of oxidation have a lower carbon number and higher oxidation
state compared to the original state, consistent with a large degree of functionalization
and fragmentation occurring in the reaction (Kroll et al., 2009). In addition, the verti-
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cal distribution (OS) of the ions in the I(H,O),, Kroll diagram is narrower compared
CH3;C(O)O™, which is consistent with the selectivity observed for [(H,0),, in Sect. 3.1.

The OS; and #C reflect how the whole distribution is moving over 4 h of oxidation.

The change in OS; and #C is most obvious with CH3;C(0)O™ and I(H,0),, reagent ions
while a small change is observed in the (H,0),H* Kroll diagram, in large part because
this latter reagent ion is insensitive to many of the more highly oxidized species that are

forming. In all three cases, the OS¢ and #C trajectory indicates that both fragmentation
and functionalization reactions are taken place. Note that one caveat in comparing
overall intensities of one coordinate on the Kroll diagram to another is that the sensitivity
may vary from species to species. As illustrated in Sect. 3.1 through our sensitivity
analyses, this variation is expected to be much less for CH;C(O)O™ and I(H,0O),, than
for (H,0),H".

4 Significance and conclusions

Given the widespread use of CIMS in the atmospheric chemistry community, it is im-
portant to assess how well CIMS can be used to determine the chemical nature of
aerosol composition, especially SOA (Sareen et al., 2010; Yatavelli and Thornton,
2010; Yatavelli et al., 2012; Zhao et al., 2012). In this paper, we have focussed on
two aspects of this analysis, taking advantage of new instrumental advances in the
field, especially a high resolution time-of-flight that can readily be deployed to the field
(Bertram et al., 2011). In particular, we have addressed how the composition of a com-
mon WSOC SOA material is analyzed using three common CIMS reagent ions, mon-
itoring both the starting material but also the changes that arise during an aqueous
OH oxidation process. To our knowledge this is the first illustration of the comparative
abilities of these common reagent ions to study the composition of complex organic
mixtures, such as SOA. As well, while it was convenient for us to monitor change
occurring during aqueous phase oxidation in the laboratory, we stress that the same
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general behavior is likely to be observed from chemical change being driven by gas
phase or heterogeneous OH oxidation. It is hoped that these characterization experi-
ments will form the foundation for similar analyses of aging processes observed in the
field as well. For example, these methods could be used for studying cloudwater oxida-
tion (Lee et al., 2012) or atmospheric aerosol processing as observed using the MOVI
interface (Yatavelli and Thornton, 2010; Yatavelli et al., 2012).

Specific findings include:

— Complex organic composition of atmospherically relevant WSOC samples can be
resolved with high resolution aerosol CI-ToFMS.

— The monomer and dimer regions of a-pinene SOA WSOC can be resolved and
observed with CI-ToFMS, most clearly with I(H,O), reagent ions. The chemical
change of these two regions can be followed on-line with the dimers degrading
more rapidly than the monomers.

— The simplicity in the switching of the CI-ToFMS reagent ions allows for a more
comprehensive understanding of chemical change.

— This also illustrates that care must be taken when choosing the reagent ions with
which to operate depending on the targeted analysis. For instance, (H,0),H"
reagent ions are shown to be more selective towards the more reduced organic
compounds with WSOC SOA, while CH;C(O)O™ and I(H,0),, allow for the detec-
tion of more highly oxygenated compounds with 1(H,O),, being more selective to
multifunctional compounds. In general, the range of sensitivities for the latter two
reagent ions is far less than with the more selective (H,0),H".

— Despite these potential differences in sensitivity to different analytes, we point
out that the data arising from a combination of the (H,0),H" data and either the
CH3;C(O)O™ and I(H,0), results yield a van Krevelen analysis that is remarkably
similar to that measured simultaneously by high resolution AMS, despite the AMS
being only sensitive to particle phase species and the CI-ToFMS to both gas and
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particle phases. Thus, the demonstrated ability of AMS data to study aging of
organic aerosol using van Krevelen analysis can also be applied using CI-ToFMS
data.

— Aerosol-CI-ToFMS clearly can monitor the functionalization and fragmentation
processes that occur with SOA as it is oxidized by OH, generally giving rise to
more functionalized products that are of lower carbon number and higher oxida-
tion state.

— A potential source of data analysis complications is the presence of gas phase
ion clusters, specifically in the cases of (H,0),H" and CH,C(O)O~ reagent ions.
In addition, dehydration of organics in the heated inlet or ions fragmentation in the
CI-ToFMS can increase the difficulty of the identification of the unknown analyte
present in the aqueous solution.

To finish, we note that the SOA aerosol-CI-ToFMS spectra also contain an enormous
amount of detailed mechanistic information, related to the formation and decay of spe-
cific chemical species. An analysis of these spectra in that context will form the basis
of a subsequent publication.

Supplementary material related to this article is available online at:
http://www.atmos-meas-tech-discuss.net/6/6147/2013/
amtd-6-6147-2013-supplement.pdf.
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Fig. 4. The setup used to operate the CI-ToFMS. Sample flow was introduced to the IMR
through the heated inlet. (H,O),H", I(H,0), and acetate reagent ions were generated by pass-
ing a flow of nitrogen gas carrying (a) water (b) methyl iodide and (c) acetic anhydride through a
219p0 radioactive cell, respectively. One reagent ion was used at a time. Bolded circles indicate
points of attachment of the reagent ion flows on the right to the manifold on the left. Sccm refers
to Standard Cubic Centimeters per Minute.
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Fig. 5. The sensitivity of 13 organic compounds in units of CPS (counts per second)/uM in
solution. The sensitivities were obtained by operating the CI-ToFMS with the three reagent
ions (a) (H,0),H", giving rise to protonated molecular ions, (b) CH;C(0)O™, giving rise to
deprotonated species aside from levoglucasan which was detected as a cluster with acetate,
and (c) I(H,0),, giving rise to clusters with iodide. The error bars reflect the standard error in
the slopes of the 3-point calibration curves. Also, the total ion count (TIC) is shown for each
reagent ion.
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Fig. 6. Mass spectra of the photo-oxidized SOA using the three reagent ions, protonated water
clusters (H,0),H", acetate CH,C(O)O™ and iodide water clusters I(H,0),, at time 0, 2 and 4 h.
The spectra on the left show the m/z regions where the intensity decreased indicating loss of
signal. The spectra on the right show the m/z regions where the intensity increased for some
ions illustrating products formation. Monomer and dimer regions were observed in the spectra
of the three reagent ions, most clearly in the I(H,O),, spectra.
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Fig. 8. Van Krevelen diagram of the AMS and CI-ToFMS data for the WSOC aqueous phase
photo-oxidation using the three reagent ions. The plot on the right is an expanded view of the
plot on the left. The time scale covers the 4 h of photo-oxidation moving from light to dark bolded
symbols. The dark blue dashed lines are the parameterized O/C and H/C from the triangle plot
compiling a large dataset of ambient and laboratory data as described in (Ng et al., 2011). Note
that although AMS measurements were conducted for each experiment, for clarity sake only
one set of data is plotted here; the other experiments gave similar results. The linear fit for the
AMS data, which is shown in orange, had a slope of —0.48. The error bars of the AMS H/C and
O/C are shown in gray obtained from the H/C and O/C accuracies of 10 % and 30 % reported
in (Aiken et al., 2007).
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Fig. 9. Difference Kroll diagrams for the WSOC before oxidation and after 4h of oxidation
using the three reagent ions; (H,0),H", CH,C(O)O~ and I(H,0),. Light bolded circles indicate
coordinates where ions formed while dark bolded circles indicate ion losses. The average OS;
and #C are also shown over 4 h of oxidation. The size of marker indicates the magnitude of the
subtracted intensity.
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