Supplementary information

of

High concentrations of N₂O₅ and NO₃ observed in daytime with a TD-CIMS: chemical interference or a real atmospheric phenomenon?

Xinfeng Wang^{1,2}, Tao Wang^{1,2*,} Chao Yan², Yee Jun Tham², Likun Xue², Zheng Xu^{1,2}, Jiaozhi Zha¹

¹ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

² Environment Research Institute, Shandong University, Ji'nan, Shandong, China.

10 *To whom correspondence should be addressed, E-mail: cetwang@polyu.edu.hk, Tel: +852-2766 6059, Fax: +852-2330 9071

1 Interference tests of PAN and HNO₃ to the TD-CIMS

Due to the relatively high abundances and similar pattern of daytime concentration peaks, PAN and HNO₃ are considered as the most possible compounds that had interference to the daytime N₂O₅ signals in this study. After the field campaign, a series of field tests were conducted to examine their interference to the detection of our CIMS.

The interference tests of PAN were performed for four times (Oct. 29, Nov. 8, Nov. 15 and Nov. 23 2012) by adding a stable trace flow (40 sccm) of synthetic PAN into
the ambient air samples. The experimental set-up is illustrated in Fig. S1. PAN was generated by an on-line PAN calibrator (*Meteorologie Consult GmbH*), in which excess acetone carried by ultrapure air was photolyzed with a Penray lamp and then reacted with NO and NO₂. A NO standard containing 4.83 (± 2%) ppmv NO balanced with nitrogen (*Scott-Marrin Inc., California, USA*) was used. The output PAN concentrations were determined by the NO concentration, the production efficiency of PAN and the dilution coefficient with zero air, and finally were quantified by using two gas analyzers of NO_x and NO_y. After standard addition of this synthetized and

highly concentrated PAN to the sample flow, the changes in the signals of PAN at 59 amu and NO₃+N₂O₅ at 62 amu were inspected. Thus the interference of PAN to the

 NO_3^- signal in our CIMS could be determined.

5

5

Fig. S1. Schematic of PAN and HNO₃ interference tests.

The interference tests of HNO₃ were conducted for three times (Nov. 08, Nov. 19, Nov. 23 2012), with similar standard addition method. A MFC-controlled synthetic airflow (40 sccm) was introduced into a bottle filled with nitric acid solution (5%, volume concentration), carrying out the HNO₃ gas volatized. The concentrations of HNO₃ were first quantified with a NO_y analyzer with and without a Nylon filter, and were also simultaneously measured by the NO_x and NO_y analyzers during the standard addition. After this trace flow of HNO₃ was added into the ambient sample flow, the changes in NO₃+N₂O₅ signals at 62 *amu* were examined. Considering that CH₃COO⁻ (the proxy of PAN in TD-CIMS) could react with HNO₃ to produce NO₃⁻ and thus interfere the N₂O₅ measurement, the test by adding both HNO₃ and PAN simultaneously was conducted once on Nov. 23, 2012.

2 Measurements of N₂O₅ by the cold CIMS

In addition to the NO_3^- ion, the cluster ion of $I(N_2O_5)^-$ can also be used to quantify the concentrations of N_2O_5 by using a iodide CIMS with an unheated inlet (Kercher et al., 2009). In the cold CIMS, the N_2O_5 molecules in the sample air directly react with

iodides in the flow tube to produce $I(N_2O_5)^-$ which are then detected by the mass spectrometer at 235 *amu*. Due to the apparent dependence of $I(N_2O_5)^-$ yield/sensitivity on the water vapor mediated cluster formation, a correction should be made for the obtained $I(N_2O_5)^-$ signal based on the humidity of the sample flow (e.g., the $I(H_2O)^-/I^-$

ratio). Because the I(N₂O₅)⁻ ions only come from the N₂O₅, the signals of I(N₂O₅)⁻ are believed to be isolated from interference and accurately reflect the true N₂O₅ concentrations. Given this advantage, this detection scheme has been adopted extensively in recent years (Bertram and Thornton, 2009; Bertram et al., 2009; Riedel et al., 2012; *etc.*). Parallel measurements of N₂O₅ with a cold CIMS and a CaRDS in Boulder, CO on the night of 26 February 2008 have shown excellent agreement between the two principally different instruments (Kercher et al., 2009).

Fig. S2. Mass spectrum of the ambient air in urban Hong Kong at daytime by I⁻ CIMS with an unheated inlet tube.

To re-confirm the observed daytime concentration peaks of N₂O₅+NO₃ by the TD-CIMS, we also operated our CIMS with an unheated inlet tube during 6 – 21 December 2010, immediately after the present campaign. Figure S2 shows a piece of mass spectrum for ambient air sampled at daytime in urban Hong Kong, from which we can clearly see the Γ signal at 127 *amu*, NO₃⁻ signal at 62 *amu*, and I(N₂O₅)⁻ signal at 235 *amu*. The calibration procedure was the same as that for the TD-CIMS as described in the section 2.2 of the manuscript. During the measurement period, the

sensitivity of N₂O₅ from the $I(N_2O_5)$ cluster ion was determined at 0.55±0.003 Hz/pptv, which is smaller than the value of 0.93 Hz/pptv obtained by Kercher et al. (2009), possibly due to a smaller sample flow and stronger electric field in the collisional dissociation chamber (CDC) in our CIMS. Because of strong CDC electric

field and the fast reaction rate, the NO₃⁻ ion acted as the major product of the reaction 5 of N₂O₅ with I instead of the $I(N_2O_5)$ ion. It's should be noted that the $I(N_2O_5)$ signals in this study were not re-scaled according to the $I(H_2O)^{-}/I^{-}$ ratio, because the I^{-} ion at 127 amu was not detected in real-time. Despite this uncertainty, the general variation pattern of N₂O₅ should be correct.

3 Measurements of CINO₂ in western Hong Kong 10

20

Another field application of CIMS is to detect the nitryl chloride (CINO₂), a product of N₂O₅ hydrolysis on surfaces of chlorine-containing aerosols. ClNO₂ can react with iodides to produce ICl⁻ ions and I(ClNO₂)⁻ cluster ions, the latter of which can be used to quantify the concentrations of ClNO₂ (Kercher et al. 2009). As ClNO₂ is relatively 15 stable to heating, it can be detected by the TD-CIMS with the inlet tube heated to around 180°C (Mielke et al., 2011). A follow-up field study was conducted at a suburban site (Tung Chung) in western Hong Kong during 2011-2012. The same TD-CIMS was deployed with the same configuration as that at the HKPU site. During that study, CINO₂ was concurrently measured from the I(CINO₂)⁻ cluster ion (at 208 amu) with the $N_2O_5+NO_3$ (at 62 amu). The sensitivity for ClNO₂ was determined, after the field campaign, using the most common calibration method by passing a known concentration of N₂O₅ through NaCl slurry (Behnke et al., 1997; Roberts et al., 2009). Figure S3 illustrates the experimental setup for the ClNO₂ calibration. A small

OD = 4.2 cm; volume = 69 cm³) quarter-filled with NaCl slurry and then mixed into 5 25 SLPM stream of humidified zero air. The loss of N₂O₅ concentration after reacting with NaCl slurry was assumed to be converted into ClNO₂ (Kercher et al., 2009). The average response factor of ClNO₂ via the I(ClNO₂)⁻ cluster ion at 208 amu was 0.43 \pm 0.03 (mean \pm SD) Hz/pptv for the campaign. Prior to the ClNO₂ calibration, we

flow (150 sccm) of N_2O_5 was introduced through a Teflon chamber (length = 5 cm;

worried that there may be shift in the equilibrium between N_2O_5 , NO_2 , and O_3 in the calibration system as the N_2O_5 being used up to synthesize ClNO₂ and contribute to new formation of N_2O_5 from the excess NO_2 and O_3 through the sampling inlet. So, we also monitored changes of NO_2 during the whole calibration process, but no indication of such phenomenon occurred in our calibrations.

Fig. S3. Experimental setup for CINO₂ calibration.

To further confirm our measurement of $CINO_2$, we also measured the ambient isotopic ions of $I({}^{37}CINO_2)^-$ at 210 *amu*. The signal of 210 *amu* well correlated with that of 208 *amu* and the ratio between them was quite close to their concentration ratio in the ambient air (as shown in Fig. S4).

Fig. S4. Scatter plot between the signal of 210 amu and that of 208 amu.

15 **References**

10

15

Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of CINO2

from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102, 3795-3804, doi: 10.1029/96JD03057, 1997.

- Bertram, T. H., and Thornton, J. A.: Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water,
- chloride, Chem. 9, 8351-8363, nitrate and Atmos. Phys., doi: 10.5194/acp-9-8351-2009, 2009.
 - Bertram, T., Thornton, J., Riedel, T., Middlebrook, A., Bahreini, R., Bates, T., Quinn, P., and Coffman, D.: Direct observations of N₂O₅ reactivity on ambient aerosol particles, Geophys. Res. Lett., 36, L19803, doi: 10.1029/2009GL040248, 2009.
- Kercher, J., Riedel, T., and Thornton, J.: Chlorine activation by N₂O₅: simultaneous, 10 in situ detection of ClNO₂ and N₂O₅ by chemical ionization mass spectrometry, Atmos. Meas. Tech., 2, 193-204, doi: 10.5194/amt-2-193-2009, 2009.
 - Mielke, L. H., Furgeson, A., and Osthoff, H. D.: Observation of ClNO₂ in a mid-continental urban environment, Environ. Sci. Technol., 45 8889-8896, doi: 10.1021/es201955u, 2011.
- 15
 - Riedel, T. P., Bertram, T. H., Ryder, O. S., Liu, S., Day, D. A., Russell, L. M., Gaston, C. J., Prather, K. A., and Thornton, J. A.: Direct N₂O₅ reactivity measurements at a 12, 2959-2968, polluted coastal site, Atmos. Chem. Phys., doi: 10.5194/acp-12-2959-2012, 2012.
- 20 Roberts, J. M., Osthoff, H. D., Brown, S. S., Ravishankara, A., Coffman, D., Quinn, P., and Bates, T.: Laboratory studies of products of N2O5 uptake on Cl containing substrates, Geophys. Res. Lett., 36, L20808, doi: 10.1029/2009GL040448, 2009.

5