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Abstract

The derivation of probability estimates complementary to geophysical data sets has
gained special attention over the last years. The information about a confidence level
of provided physical quantities is required to construct an error budget of higher level
products and to correctly interpret final results of a particular analysis. Regarding the5

generation of products based on satellite data the common input consists of a cloud
mask which allows discrimination between surface and cloud signals. Further the sur-
face information is divided between snow and snow-free components. At any step of
this discrimination process a misclassification in a cloud/snow mask propagates to
higher level products and may alter their usability. Within this scope a novel Probabilis-10

tic Cloud Mask (PCM) algorithm suited for the 1×1 km Advanced Very High Resolu-
tion Radiometer (AVHRR) data is proposed which provides three types of probability
estimates between: cloudy/clear-sky, cloudy/snow and clear-sky/snow conditions. As
opposed to the majority of available techniques which are usually based on a decision-
tree approach in the PCM algorithm all spectral, angular and ancillary information is15

used in a single step to retrieve the probability estimates from the pre-computed Look
Up Tables (LUTs). Moreover, the issue of derivation of a single threshold value for a
spectral test was overcome by the concept of multidimensional information space which
is divided into small bins by an extensive set of thresholds. The discrimination between
snow and ice clouds and detection of broken, thin clouds was enhanced by means of20

the Invariant Coordinate System (ICS) transformation. The study area covers a wide
range of environmental conditions spanning from Iceland through central Europe to
northern parts of Africa which exhibit diverse difficulties for cloud/snow masking algo-
rithms. The retrieved PCM cloud classification was compared to the PPSv2012 and
MOD35 collection 6 cloud masks, SYNOP weather reports, CALIPSO vertical feature25

mask version 3 and to MOD10A1 collection 5 snow mask. The outcomes of conducted
analyses proved fine detection skills of the PCM method with comparable or better
results than the reference PPS algorithm.
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1 Introduction

Cloud and snow detection on satellite imagery is a common part of a wide range of
geophysical analysis. Therefore any misclassification introduced at this step have a di-
rect effect on study results and may alter the final conclusions (Gómez-Chova et al.,
2007). This issue has been widely discussed by a number of authors: Jones et al.5

(1996) described a significant diurnal bias in the 0.5◦ spatially averaged ATSR SST
data product over the South Atlantic induced by the residual cloud contamination; Kauf-
man et al. (2005) found that misclassified clouds in MODIS imagery lead to 0.02 bias
in the Aerosol Optical Thickness (AOT) estimates; Hall and Riggs (2007) analysed
the improvements of cloud/snow discrimination in MODIS collection 5 data sets; Pin-10

cus et al. (2012) discussed the differences between cloud climatologies derived from
MODIS and ISCPP data sets induced by different detection sensitivities and treatment
of thin cirrus and partially cloudy pixels. Furthermore inconsistencies in satellite prod-
ucts employed by climate models increase their variability which mostly originate from
the parametrisation of cloud radiative forcing (Houghton et al., 1996). In this respect15

accurate discrimination of cloud and snow covered areas supported by uncertainty es-
timations is required. Some of the existing approaches (Ackerman et al., 1998; Derrien
and Le Gléau, 2005; Khlopenkov and Trishchenko, 2007; Vemury et al., 2001) separate
classification results into few confidence categories (e.g. clear, probably clear, probably
cloudy, cloudy). Nevertheless, implementation of this qualitative information into an er-20

ror budget calculation of higher level products is not straightforward. The solution to this
problem involves derivation of continuous probability estimates of each pixel belonging
to clear, cloudy and preferably snow classes. There are few existing approaches which
provide such a quantitative probability distribution together with classification results.
Some of them are based on classical (Merchant et al., 2005; Uddstrom et al., 1999)25

or Naive (Heidinger et al., 2012) Bayesian theories which combine results of a single
classifier (i.e. spectral/textural test) with a priori assumption on cloud condition in or-
der to obtain posterior classification probability. The a priori knowledge originates from
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additional data sets (e.g. climate model outputs) or collocated satellite observations
(e.g. CALIPSO/CALIOP). Another algorithm proposed by Plummer (2008) expresses
probability of cloud discrimination as a distance between tests results and threshold
values. The final estimate is deemed as a maximum probability value across all per-
formed tests. Other cloud masking method (Tian et al., 2000) involves probabilistic neu-5

ral network classifiers employed to analyse temporal changes in a sequence of images.
The clustering methods based on the Expectation Maximization (EM) technique were
also found to be suitable for cloud probability retrieval (Gómez-Chova et al., 2007).

Derivation of probability estimates for snow discrimination on satellite imagery has
been even less explored than in case of cloud detection. Recently, Hüsler et al. (2012)10

modified aggregated rating approach proposed by Khlopenkov and Trishchenko (2007)
to suite European Alpine area and computed posterior snow classification probabilities
employing logistic regression between ground data and numerical scores generated by
spectral tests.

The main aim of this study was to develop a robust, meaning accurate and computa-15

tionally inexpensive, algorithm that provides consistent probability estimates of a par-
ticular pixel in a satellite scene belonging to clear-sky, cloudy or snow classes. As the
name "Probabilistic Cloud Mask" suggests the main focus of this study is on cloud cov-
erage, however the validation of the snow component is presented as well. The PCM
algorithm is suited for the 1×1 km AVHRR Local Area Coverage (LAC) data covering20

the extensive European region spanning from the northern parts of Africa to Iceland
and the northernmost regions of Norway. The selected study area encompasses a wide
range of ecosystems from desert to boreal vegetation and perenial snow together with
broad illumination conditions including polar day and night. The variety of environmen-
tal conditions reflects different challenges occurring during the satellite cloud and snow25

discrimination.
The next section gives a short overview on existing algorithms for cloud and snow

detection on AVHRR imagery with emphasis on required data sets and types of tests
applied. Section 3 describes principals of the PCM method beginning with the rea-
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soning for the spectral features enhancement by means of the Invariant Coordinate
Transformation (ICS). Further the concept of multidimensional information space is
discussed and the set of required input data together with thresholds values are
introduced. Next the proposed methodology and its numerical implementation are
discussed together with the theoretical algorithm limitations. Section 4 presents the5

comparison between the PCM results and the reference data consisting of PPS
(Polar Platform System) and MOD35 cloud masks, MOD10A1 daily snow mask,
CALIPSO/CALIOP vertical feature mask and SYNOP cloud observations. Section 5
contains the analysis of the acquired results which are concluded in Sect. 6.

2 Overview of existing multi-thresholding algorithms for satellite cloud and10

snow detection

The majority of existing algorithms for cloud and snow detection incorporate a series
of spectral, textural and/or temporal tests (often called features) which are arranged in
a decision-tree scheme. Singular tests are based on a comparison of radiances from
a spectral channel or combination of channels with a threshold value which could be15

static (Bernstein, 1982) or may vary together with angular and atmospheric conditions
(Ackerman et al., 1998; Dybbroe et al., 2005a; Di Vittorio and Emery, 2002; Yang et al.,
2007). The former approach is more robust as the strong influence of atmospheric
concentration of gases and aerosols, bidirectional reflectance, acquisition geometry on
satellite measurements has been widely discussed in the literature (Fraser and Kauf-20

man, 1985; Saunders et al., 1999; Schaaf et al., 2002; Vermote et al., 1997). Further
surface properties such as albedo and emissivity modify spectral contrast and influence
the cloud/snow detection sensitivity (Minnis et al., 2008; Yhann and Simpson, 1995).
It is apparent over dark surfaces such as water in the Near Infrared (NIR) spectrum
where discrimination of clouds is easier than over bright surfaces like deserts or snow25

(Ackerman et al., 1998; Di Vittorio and Emery, 2002). This implies that the thresholds
should also vary across different land cover types. More difficult situations for the accu-

8449

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/8445/2013/amtd-6-8445-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/8445/2013/amtd-6-8445-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 8445–8507, 2013

Probabilistic
approach to cloud

and snow detection
on AVHRR imagery

J. P. Musial et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

rate classification are related to pixels partially covered by snow or thin/broken clouds
where there is a strong contribution from the surface in the measured satellite signal
(Simpson et al., 2001). Furthermore, high aerosol loads in the atmosphere are often
misclassified as cloud due to similar spectral signature (Martins et al., 2002). Thresh-
old parametrization should account for all of the mentioned factors and either it can be5

derived empirically or optimised by means of RT modelling. Then it is stored as Look-
Up Tables (LUTs) to safe computation time during the cloud/snow masking process
(Dybbroe et al., 2005a).

Usually a single test provides a binary state of pixel such as cloudy/clear-sky or
snow/snow-free. Further this information might be treated in a variety of ways. Some10

algorithms (Key and Barry, 1989) report cloud whenever one of the tests performed
was successful. Other methods (Dybbroe et al., 2005a; Derrien and Le Gléau, 2005)
arrange features in groups with decreasing detection sensitivity. In order to mark a pixel
as cloudy all tests within a group have to be successful. Alternative approaches are
based on a fuzzy logic where final confidence estimate of a pixel state is expressed15

as a product of singular estimates for each group of tests (Ackerman et al., 1998)
or as a total sum of score values (Khlopenkov and Trishchenko, 2007; Hüsler et al.,
2012). Nevertheless, in the further classification process these continuous confidence
estimates are transformed into discrete classes using thresholds.

2.1 Ancillary data employed by multi-thresholding algorithms20

Cloud and snow discrimination on satellite imagery is mainly based on multi-spectral
measurements however additional ancillary data are required for the thresholds
parametrization. This complementary information might be divided into meteorologi-
cal and surface data sets, first of which feature high temporal variations whereas the
latter ones usually are stable over time or change accordingly to well-known daily and25

annual cycles (Yhann and Simpson, 1995).
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2.1.1 Ancillary meteorological data

An instantaneous atmospheric state can be estimated either by climate models or by
rough approximations based on climatological mean values. Usually such simulations
are of low spatial resolution yet an interpolation to a satellite grid results in significant
bias over areas with rough topography (Zhao et al., 2008) or around zones with high5

temperature gradients such as coastlines. Another source of inaccuracies originates
from temporal sampling of a climate model which may not correspond to satellite ac-
quisition time thus data interpolation between two model steps is required (Khlopenkov
and Trishchenko, 2007; Minnis et al., 2008). The atmospheric variable which signifi-
cantly alters the radiative transfer is the concentration of water vapour often denoted10

as Total Column Water Vapour (TCWV). It expresses the integrated mass of water
vapour per cross-sectional area unit of an atmospheric column (kg m−2). Some of the
sophisticated satellite cloud detection algorithms (Minnis et al., 2008) uses humidity,
temperature and wind profiles instead of TCWV to more accurately resolve the RT pro-
cesses within the atmosphere. The length of optical path related to the sensor viewing15

angle modifies the radiation absorption by water vapour thus it should be considered
during the threshold derivation (Yhann and Simpson, 1995). Saunders and Kriebel
(1988) proposed a split-window approach to account for this effect while discriminating
cirrus clouds on a satellite image. The threshold for this spectral test is retrieved from
the LUT where values are expressed as a function of the 10.8–12.0 µm Brightness20

Temperature Difference (BTD), secant of the sensor viewing angle and the 10.8 µm
Brightness Temperature (BT).

The thermal contrast between surface and cloud tops can be a decisive factor when
the spectral information is not sufficient for confident discrimination between cloudy or
clear-sky conditions. It is derived as a difference between Skin Temperature (SKT) ob-25

tained from a climate model and the 10.8 µm BT. Moreover, the SKT data together with
other atmospheric variables serve as inputs to RT calculations which are used to simu-
late satellite signals measured at specific spectral range for clear-sky conditions. These
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expected values are then compared to real data acquired by sensor and if the devia-
tions are significant a cloud presence might be assumed. Another useful information
for the cloud detection on satellite imagery is the difference between air temperatures
provided at two lowest altitude levels of the climate model. This indicates the presence
of low level temperature inversion which reverses the expected thermal signature of5

clouds and may lead to misclassification (Dybbroe et al., 2005a).

2.1.2 Ancillary surface data

Surface characteristics are of great importance for the cloud/snow discrimination on
satellite imagery, especially the land cover categorization. Therefore the availability of
binary land/water mask is a minimum requirement for application of suitable threshold10

configurations within a classification algorithm. Sophisticated threshold parametriza-
tions (Dybbroe et al., 2005a; Minnis et al., 2008) utilize more detailed land cover in-
formation together with Digital Elevation Model (DEM) data to enhance the detection
accuracy over areas particularly ambiguous for correct classification (e.g. cloud de-
tection over mountains, snow detection under the tree canopy). Additionally to land15

cover periodically updated snow/sea ice coverage data could be utilized for the further
threshold refinements in cloud detection schemes (Dybbroe et al., 2005a; Minnis et al.,
2008; Ackerman et al., 1998). In order to model the measured satellite signal, sur-
face spectral properties such as albedo and emissivity have to be considered (Minnis
et al., 2008). They change systematically over the coarse of a year therefore the RT20

simulation together with threshold parametrisation should feature temporal sampling
(Dybbroe et al., 2005a).

2.2 Features used for satellite cloud/snow detection

Discrimination of cloud and/or snow coverage on satellite imagery is based on specific
spectral properties at particular wavelengths which are utilised regardless the sensor25
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and algorithm employed. Next Subsections describe in details those of them which are
applicable to the AVHRR instrument.

2.2.1 Reflectance tests in the 0.6 and 0.8 µm bands

In the Visible (VIS) 0.6 µm and Near Infrared (NIR) 0.8 µm spectral regions clouds
and snow appear much brighter than underlying background. Furthermore, the spec-5

tral contrast of those surfaces over land is higher in the 0.6 µm channel whereas over
water bodies it is more distinct in the 0.8 µm channel. Nonetheless, discrimination be-
tween snow and cloud cover in both wavelengths is impossible hence additional in-
formation either from the 1.6 or 3.7 µm channel is required. In order to diminish the
influence of illumination conditions on a retrieved reflectance it is divided by a cosine10

of Sun Zenith Angle (SZA) and adjusted for the sun-earth distance variations. These
corrections should be applied to any channel data within the reflective part of the elec-
tromagnetic spectrum. Some approaches (Dybbroe et al., 2005a) utilise reflectance in
the channel 0.6 µm with and without the SZA normalisation, claiming that the latter one
is particularly useful for cloud and snow detection over dark background at low sun15

elevations (<4◦).

2.2.2 Reflectance tests in the 1.6 and 3.7 µm bands

In the 1.6 and 3.7 µm spectra there is a significant reflectance contrast between wa-
ter clouds and snow. This spectral property together with the reflectance at 0.6 µm is
employed by the Normalized Difference Snow Index (NDSI) in order to standardise20

and enhance snow detection. Although high NDSI values are usually associated with
snow covered areas they may refer to ice clouds as well. This ambiguity is difficult to
resolve using only spectral information thus some ancillary data such as Skin Temper-
ature (SKT) should be utilized. Despite the equality of snow and ice clouds spectral
response, one may assume the presence of an ice cloud when the difference between25

SKT and the 10.8 µm BT significantly deviates from 0 K. This situation often occurs
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due to strong convection during the summertime when cloud tops (e.g. Cumulonim-
bus) consist of ice particles while the Earth’s surface remains warm. Even during the
cold part of the year this thermal contrast might be decisive depending on accuracy
and temporal sampling of the SKT data.

2.2.3 Brightness temperature difference test between 3.7 and 10.8/12.0 µm5

bands

Contamination of the 3.7 µm signal by the solar component complicates utilization of
this channel during the daytime. Thus usually it is applied during the night to detect
clouds which have lower emissivities and scatters radiation more efficiently at this
wavelength than at 10.8 or 12.0 µm. For optically thick clouds this results in the neg-10

ative BTD between 3.7 µm and the IR channels while for thin clouds, where a lot of
surface radiation is transmitted, the difference is positive. Furthermore, during night the
3.7–10.8 µm BTD was found to be more useful for detection of warm clouds and low
stratus/fog layers (Eyre et al., 1984) whereas the difference between 3.7 and 12.0 µm
has high sensibility to thin cirrus (Dybbroe et al., 2005a). For low radiative temper-15

atures measured by early generations of the AVHRR instrument (prior to NOAA15)
some cloud detection inconsistencies may occur due to periodic noise in the 3.7 µm
channel (Warren, 1989).

2.2.4 Brightness temperature difference test between 10.8 and 12.0 µm bands

The 10.8–12.0 µm BTD is particularly useful for detection of cirrus clouds which are not20

apparent at other wavelengths. It is positive for thin clouds due to higher atmospheric
transmittance at 10.8 µm than at 12.0 µm (Inoue, 1985). Moreover, it heavily depends
on atmospheric water vapour concentration and sensor viewing angle thus a threshold
value for the cirrus detection test should be derived dynamically using radiative transfer
modelling or a robust parametrization (Saunders and Kriebel, 1988).25
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2.2.5 Temperature difference test between Earth’s surface and the 10.8 µm band

The spectral region around 10.8 µm is slightly affected by the absorption of atmo-
spheric gases (so called atmospheric window) thus it well approximates the surface
temperature. Therefore, it can be used together with SKT data derived from climato-
logical records or from climate models. The cloud presence can be assumed if the5

difference between these two variables is sufficiently high. This feature is particularly
useful over ocean during night when water temperature is usually well approximated
by the climate models. However, special attention is required in case of the tempera-
ture inversion when the expected positive difference between SKT and 10.8 µm cloud
top temperature becomes negative. Over barren or sparsely vegetated areas such as10

deserts strong diurnal surface temperature cycle might be poorly represented in the
SKT data (Pavolonis, 2010) which may lead to erroneous test results. Therefore, con-
sidering all of the mentioned aspects the threshold values for this test should be rather
conservative and limited to the detection of relatively cold clouds.

2.2.6 Spatial uniformity tests15

Regardless spectral properties of clouds their appearance on a satellite image is dis-
tinct especially over homogeneous surfaces (Saunders and Kriebel, 1988; Ackerman
et al., 1998). If a texture variation analysed within a small image window (e.g. 5×5
pixels) is significant then the cloud presence may be assumed over the central pixel.
Due to high surface heterogeneity over land this test is usually applied only over water20

bodies using 0.8 µm channel during the day and 10.8 µm channel for the night. When
dealing with polar region the sea ice cover has to be considered as it may exhibit simi-
lar texture variations as clouds. In such a case for the night-time conditions the 3.7 µm
BT or 3.7–12 µm BTD are used to detect cloud edges and to filter out leads (cracks in
ice filled with water) which could be of sub-pixel size (Dybbroe et al., 2005a).25
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2.2.7 Temporal consistency tests

Most of the high frequency positive anomalies of surface albedo or negative thermal
anomalies in a sequence of satellite images can be attributed to clouds. The tempo-
ral consistency tests require derivation and periodical update of a reference clear-sky
radiance statistics accumulated over some time period for various spectral channels5

(Rossow and Garder, 1993). These calculations are usually performed over small spa-
tial domains (e.g. 30×30 km2) for similar land cover types. More sophisticated ap-
proaches (Lyapustin et al., 2008) utilize a spatio-temporal covariance matrix in order to
detect cloud induced changes in spectral and textural signatures at a single pixel level.
While comparing the clear-sky radiances with different acquisition times special atten-10

tion has to be paid to angular and atmospheric effects which alter the surface spectral
response. Some possible solutions to these issues involve: threshold relaxation in or-
der to account for a wide range of conditions; comparison of measurements taken
at similar solar times from corresponding orbits; atmospheric and bidirectional effects
corrections of the reference clear sky composite. Additional data processing employed15

by the temporal consistency tests increases computational demands, yet they feature
valuable detection skills especially for the geostationary satellites.

2.3 Limitations of multi-spectral thresholding algorithms

Detection of clouds and snow on satellite imagery by means of the multi-spectral
thresholding algorithms usually requires estimation of a single threshold value for each20

test which accounts for a wide range of atmospheric, angular and surface conditions
(Yang et al., 2007; Yhann and Simpson, 1995). This complexity results either in re-
duced classification accuracy due to the threshold relaxation or in extensive analysis
of a spectral and ancillary information. However, in each situation any misplacement of
a single threshold value leads to errors which could be depreciated by utilization of a25

fuzzy approach (see score functions in Khlopenkov and Trishchenko, 2007). Further-
more, parametrizations of the multi-spectral thresholding algorithms are mostly derived
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empirically thus their application to other satellite sensors is not straightforward. The
test sequence and design of a decision-tree approach have a crucial significance be-
cause the results of previous steps have an influence on the following ones. Thus any
misclassification at a single test/group of tests level may mislead the algorithm and
lead to wrong results.5

3 Probabilistic Cloud Mask (PCM) algorithm description

The main scientific motivation for the PCM algorithm development was to create a ro-
bust (meaning accurate and fast) classification method which would diminish the main
sources of errors originating from the commonly used multi-spectral thresholding ap-
proach (see Sect. 2.3). Moreover it was supposed to detect snow cover and clouds at10

the same time and to provide classification probability between those categories. The
PCM method stems from the multidimensional analysis of spectral features and ancil-
lary data. Its parametrization is derived on the basis of training data sets composed of
binary cloud and snow masks. In this way the results of two discrimination algorithms
are combined and supplemented with probability estimates without the lost of classifi-15

cation accuracy (see Sect. 4). The described features of the PCM method are unique
amongst other available techniques which substantiate the need for its development.

In the next subsections the description of the PCM algorithm will be presented in
the following order: input data utilised in the study, principals of the spectral features,
concept of the multidimensional information space, methodology of classification, nu-20

merical implementation and post-classification with cloud shadow estimation.

3.1 Required input data

The PCM algorithm was suited for the AVHRR instrument which has been operating
aboard the suite of National Oceanic and Atmospheric Administration (NOAA) and Me-
teorological Operating (MetOp) polar orbiting satellites. The selection of this sensor25
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was related to its long data record (30 yr) which serves as a valuable input to short-
range climatological studies conducted by the Remote Sensing Group of the University
of Bern (Hüsler et al., 2011). The proposed methodology is applicable to the AVHRR-2
(NOAA7-14) and the AVHRR-3 (NOAA15 and later, MetOp series) instruments with
the spectral bands centred around: 0.6, 0.8, 1.6 or 3.7, 10.8 and 12.0 µm. For the5

AVHRR-3 sensors channel switching occurs at the illumination transition zone such
as the 3.7 µm measurements are taken during the night while for the sunlit portion of
an orbit channel 1.6 is optionally activated (for some satellites e.g. NOAA18, NOAA19
over Europe this channel is always deactivated). On the contrary, the AVHRR-2 instru-
ments are equipped only with the 3.7 µm channel. Radiances at 1.6 µm include only the10

solar component of the electromagnetic spectrum whereas at 3.7 µm most of the radi-
ation originates from the Earth’s surface with a small contribution of the solar signal.
Nevertheless, this reflective part was retrieved from the 3.7 µm channel by subtract-
ing thermal component approximated by the 10.8 µm BT under the assumption of unit
emissivity (Allen et al., 1990; Khlopenkov and Trishchenko, 2007).15

In this study the 1×1 km Local Area Coverage (LAC) AVHRR measurements cover-
ing the extensive European subset (−34◦ W to 46◦ E, 28◦ N to 71◦ N) were utilized. Dur-
ing the algorithm training phase more than 2000 scenes with the 3.7 µm channel config-
uration acquired by the NOAA16, 17, 18, 19 satellites throughout the years 2009–2011
were employed whereas for the 1.6 µm channel configuration around 400 NOAA1720

scenes from the year 2009 were used. As a result the set of LUTs was derived which
was further utilized by the PCM procedure to classify the collection of NOAA16 im-
ages from the year 2011 and the collection of NOAA17, 18 images from the year 2008.
These data sets were taken as an input to all presented analyses in this study. Due to
the data availability issues time of the training dataset for the NOAA16 satellite over-25

lays with the analysis period. Nevertheless, the results for all of the selected NOAA
platforms stays in a good agreement which indicates that the overlapping period did
not have a significant influence on the computed statistics.
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Apart from the satellite measurements the following ancillary data were used:
land cover obtained from the Global Land Cover 2000 Project (Mayaux et al., 2004;
Bartholomé and Belward, 2005), DEM provided by the United States Geological Sur-
vey (USGS), and the Skin Temperature (SKT) derived from the ECMWF deterministic
forecast with the 3 h step. All data sets were remapped to the Lambert Equal Area5

projection which maintains the pixel size and thus is more suitable for spatial statistics
calculations.

3.2 Spectral features employed in the PCM method

In the majority of cloud/snow masking techniques the multi-spectral information is se-
lectively exploited through the sequence of independent tests. However, when few tests10

give opposite results the final decision can be hard to make. In the PCM algorithm this
issue is resolved by the concept of multidimensional LUT (see Sect. 3.3) which holds
spectral and ancillary information together. Thus, for particular data combination there
is only one possible solution which eliminates the ambiguity between different test re-
sults. The size of the LUT is a limiting factor therefore to reduce its dimensionality the15

Invariant Coordinate System (ICS) transformation is applied (Nordhausen et al., 2008).
It utilises the Principal Component Analyses (PCA) (Mardia and JM, 1979) and two
scatter matrices in order to construct independent components which do not rely on
a distribution mean. The first scatter matrix is a regular covariance matrix while the
second one is a matrix of the fourth moment which describes data rotation within the20

PCA. They are derived on the basis of a randomly selected winter satellite scene with
vast snow cover and utilised throughout the rest of transformations. The ICS technique
is performed for the daytime data to combine reflectances with the thermal contrast
between SKT and the 10.8 µm BT. It is applied selectively only to pixels with probable
cloud contamination (high thermal contrast) which fulfil specific criteria. Thus over wa-25

ter bodies (areas further than 8 km from the shoreline) it is performed for pixels with
the SKT-10.8 µm greater than 8 K to account for warm ocean currents not included in
the SKT data. For the shoreline zones it is applied to pixels with the 0.6 µm reflectance
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higher than 0.3 to account for mixed land/water pixels. Furthermore, regions below
1200 m are only considered if the SKT-10.8 µm is greater than 8 K. For higher altitudes
this threshold is set to 16 K to account for the local thermal variations which cannot be
resolved by a coarse resolution climate model. Over land, pixels which are unlikely to
be overcasted with the reflectance lower than 0.15 at 0.6 µm or with the 10.8 µm BT5

greater than 290 K are not considered. These restriction are meant to improve ice cloud
detection over snow and broken cloud discrimination where the spectral information is
ambiguous but thermal contrast with surface is significant. After the ICS transformation
the size of the LUT is reduced by the SKT dimension. Moreover, if it is not available the
PCM algorithm can still proceed with not enhanced reflectances. A short overview on10

the spectral features employed in the PCM is presented in the next Subsections.

3.2.1 First enhanced spectral feature

The first enhanced spectral feature consists of two components depending on the time
of the day. For the sunlit portion of a scene limited by the Sun Zenith Angle (SZA) of 89◦

it is composed of the second invariant component of the ICS transformation based on15

the SKT-10.8 µm temperature difference and on the reflectance at 0.6 µm over land and
at 0.8 µm over water. This results in the enhanced spectral contrast because thin cirrus
or cold sub-pixel clouds modify thermal signal more efficiently than the short-wave
radiation (see Fig. 1). For the night part of a scene (SZA≥89◦) this feature consists of
the scaled SKT-10.8 µm difference.20

3.2.2 Second enhanced spectral feature

The content of the second enhanced spectral feature depends on the channel config-
uration of the AVHRR sensor and on the time of the day.

– channel 1.6 µm: whenever channel 1.6 µm is activated over the sunlit portion of a
scene this feature consists of the second invariant component of the ICS trans-25

formation based on the SKT-10.8 µm temperature difference combined with the
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reflectance at 1.6 µm. In this situation the thermal difference improves discrimi-
nation between ice cloud and snow which have very similar spectral signature at
this wavelength. However, due to the fact that ice clouds have usually lower tem-
peratures than the snow covered land the SKT-10.8 µm thermal contrast is often
higher for clouds than for cloud-free snow covered areas. For the night time part5

of a scene (SZA≥89◦) this feature does not contain any information.

– channel 3.7 µm: whenever the 3.7 µm channel is activated, the second enhanced
spectral feature is divided into two parts. The first one is computed for the SZA
below 85◦ and it consists of the second invariant component of the ICS transfor-
mation based on the reflective part of the 3.7 µm spectrum and the SKT-10.8 µm10

difference. A combination of the reflectance with the thermal difference informa-
tion enhances the ice cloud/snow discrimination in the same manner as described
before (see Fig. 1). The 3.7 µm reflectance for the SZA>85◦ has a weak signal
and contains a lot of noise. Thus the scaled 10.8–3.7 µm BTD is used for the
twilight conditions (85◦ ≥SZA<89◦) and for the night-time.15

3.2.3 Third spectral feature

The third spectral feature is not incorporated in the ICS transformation and it is com-
posed of the 10.8–12.0 µm BTD which is useful for the thin cirrus cloud detection.

3.3 Multidimensional information space

The main concept of the PCM algorithm is based on the LUT with precomputed clas-20

sification probability estimates in a form of an array composed of multiple dimensions
corresponding to different spectral features, land cover classes and angular conditions.
This array is called multidimensional information space because it holds spectral and
ancillary information together as opposed to the spectral space which contains only
satellite measurements. In order to include continuous data such as spectral features25

or viewing angles in the array they are binned by an extensive set of thresholds. Such
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an approach allows specifying multiple, irregularly distributed threshold values per fea-
ture which resolves the problem of a single threshold estimation existing in the multi-
spectral thresholding methods. Another advantage of the PCM algorithm is the direct
derivation of probabilities from the LUT by means of all available spectral and ancillary
information. Therefore all data are analysed at once in contrast to the decision-tree5

algorithms where features/tests are organised in a sequence.
The information space is composed of 8 dimensions:

– Time of the day divided into: day (SZA<85◦), twilight (SZA≥85◦ and SZA<89◦)
and night (SZA≥89◦).

– First enhanced spectral feature divided by the following thresholds: 0, 0.025, 0.05,10

0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.30, 0.35, 0.40, 0.45, 0.50,
0.60, 0.80, 1.0.

– Second enhanced spectral feature:

– 1.6 µm channel activated: this feature is divided by the following thresholds:
0, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.30, 0.40, 0.50, 0.6,15

0.7.

– 3.7 µm channel activated: this feature is divided by the following thresholds:
0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.30, 0.40,
0.50.

– Third spectral feature divided by the following thresholds: −0.8, −0.6, −0.4, −0.2,20

0.0, 0.1, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5.

– Texture feature which is derived only over open waters by convolution of the
0.8 µm reflectance for the sunlit areas and the 10.8 µm BT during the night-time
with a 3×3 kernel (Eq. 1). The convolution results are scaled to 0–1 range where
high values characterise pixels located at the cloud edges. This feature is divided25

by the following thresholds: 0.05, 0.1, 0.25, 0.5, 1.

8462

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/8445/2013/amtd-6-8445-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/8445/2013/amtd-6-8445-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 8445–8507, 2013

Probabilistic
approach to cloud

and snow detection
on AVHRR imagery

J. P. Musial et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

K =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (1)

– Sensor viewing sectors which are derived by dividing the satellite zenith angle
with the following thresholds: 0, 15, 30, 45, 55, 70.

– Relative azimuth sectors which are derived by dividing the relative azimuth angle,
defined as a difference between sun and sensor azimuth angles (180◦ = forward5

scattering), with the following thresholds: 0, 45, 90, 135, 180.

– Land cover/use developed within the scope of the Global Land Cover 2000
(GLC2000) project (Bartholomé and Belward, 2005). There are three additional
surface categories which are derived internally by the PCM algorithm: coastline
water defined as a 8 km buffer zone from the shore including inland waters, sun10

glint over water and sun glint over desert which are discriminated by the simple
sun/sensor angular dependency described by Ackerman et al. (1998). All these
areas feature significantly higher reflectances due to: specific angular conditions
(sun glint); higher concentration of non-maritime aerosols (Wang and Shi, 2006),
sediments or algae (Wang and Shi, 2005) and shoreline variation induced natu-15

rally by tides or artificially by satellite geolocation problems.

The positions of values within the information space depends on diurnal and an-
nual cycles. First one is driven by the illumination conditions and alters mainly the
reflectance due to bidirectional effects. Therefore separate information spaces were
developed for different satellite overpass times. For morning satellites with the 1.6 µm20

channel activated the acquisition time was divided into two ranges: 00:00–12:00,
13:00–00:00 h UTC whereas for the satellites with the 3.7 µm channel activated the
division was set to: 07:00–10:00, 11:00–14:00, 15:00–18:00, 19:00–06:00h UTC. The
annual cycle is related to changes in albedo and surface emissivity properties induced
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by the vegetation development and soil moisture variations. Thus the informations
spaces were further divided between different seasons: winter (November–January),
spring (February–April), summer (May–July), autumn (August–October). Each possi-
ble daytime/season combination was stored separately for the 1.6 and 3.7 µm channels
configurations which results in 48 LUTs.5

3.4 Methodology of classification

In order to discriminate snow, clear-sky and cloudy pixels on a satellite image with
the PCM algorithm the information space has to be filled with classification probability
estimates. This process is divided into 2 steps. First, a temporary information space
is created which contains one more dimension where the categories: clear-sky, cloudy10

and snow originating from the training dataset are stored. Second, the frequencies
of occurrence of those classes within each bin are transformed into the probability
estimates. The development of the PCM method consists of the following steps:

1. Composition of training dataset which involves collocation of the AVHRR mea-
surements with the snow/clear-sky/cloudy classification which may originate from15

ground data, supplementary satellite data source (e.g. CALIPSO, MODIS prod-
ucts) or from results of another classification algorithm applied to the AVHRR
data. Nevertheless, the data quantity should be large enough to sufficiently sam-
ple the multidimensional array with information acquired under a wide range of
environmental conditions. In this study the training data set was composed of the20

PPS version 2012 cloud masks (Dybbroe et al., 2005a) retrieved from AVHRR
data and merged with the MOD10A1 daily snow masks (Hall et al., 2002) based
on MODIS data. Those algorithms were selected due to their high classifica-
tion accuracy (Dybbroe et al., 2005b; Hall and Riggs, 2007) as well as the data
(MOD10A1) and source code (PPS) availability. More comprehensive comparison25

of available cloud/snow classification techniques is beyond the scope of this study.
However, it has to be emphasized that the mean PCM classification accuracy
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cannot exceed the one associated with the training dataset. To improve the qual-
ity of the training dataset it was first visually inspected and low quality scenes
were removed. Then significant misclassifications occurring in the remaining im-
ages were corrected by means of the supervised classification. This procedure
was applied to the extensive data set (∼2400 scenes) acquired over Europe be-5

tween 2009–2011 by different AVHRR sensors mounted on board NOAA satellites
denoted with numbers: 16, 17, 18, 19.

2. Formation of temporary information spaces which involves computation of all
spectral or textural features for the selected AVHRR training images. Further the
frequencies of occurrence of clear-sky, snow and cloudy classes originating from10

the training data for each combination of dimensions (i.e. features, angular and
ancillary data) are inserted into the information space. Therefore a single value
within the temporary information space corresponds to numerical count of all pix-
els embedded into a 9-dimensional bin composed of the following elements: time
of the day, three spectral features, texture feature, viewing and azimuth sectors,15

land cover, PPS/MOD10A classification. In other words this array might be treated
as a 9-dimensional histogram. This procedure was repeated 48 times for each in-
formation space characterised by the different channel configuration (1.6/3.7 µm),
acquisition hour and season.

3. Derivation of classification probability which is based on numerical counts from20

the temporary information spaces which are first rearranged in the descending or-
der for every multidimensional bin. Further the probability is computed as a simple
ratio between counts of the most frequent classification category within a bin and
the total number of counts in this bin. The retrieved value is described as a classi-
fication probability between the two most frequent classes within the bin. Similar25

analysis in a two-dimensional space is presented in Fig. 2. The PCM classification
contains probability estimates for the following combination of categories: snow-
free/snow, clear-sky/cloudy, snow/cloudy. For the sake of visualisation obtained
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values are recoded according to Eq. (2). For the bins which were not filled by the
training dataset probability estimates are retrieved by the nearest neighbour inter-
polation of existing values within the array. At the last stage all information spaces
containing probability estimates are compressed and stored in the NetCDF4 for-
mat as the LUTs.5

P ∈


0 ≥ P ≤ 100 probability of 0–100 % between clear-sky and snow conditions

100 ≥ P ≤ 200 probability of 0–100 % between snow and cloudy conditions
200 ≥ P ≤ 300 probability of 0–100 % between cloudy and clear-sky conditions

(2)

4. Classification of a satellite image is a procedure very similar to the construc-
tion of temporary information spaces because it requires preparation of the same
spectral and ancillary data (binned values of spectral features, angles, etc.). How-
ever, further this information is directly used to retrieve probability estimates from10

a LUT. The bottleneck of this process is related to localisation of all input data
associated with a large satellite scene within a LUT which itself has more than
60 million values. This issue is resolved by the fast Approximate Near Neighbour
(ANN) searching method (Arya et al., 1998) which is performed for each dimen-
sion separately.15

3.5 PCM numerical implementation

The PCM algorithm has been implemented in the R statistical language (Team,
2012) and the source code with help files and test cases are available on the web:
http://pcm.r-forge.r-project.org/. The flow-chart of the method is depicted in Fig. 3. The
input data sets to the PCM method require few pre-processing steps which consist of:20

discrimination of shallow water defined as a 8 km buffer zone from a shore, Earth dis-
tance correction of reflectances, and up-scaling of the SKT estimates. The last process
involves bi-linear and temporal interpolation of two SKT estimates closest to the satel-
lite overpass time. They are usually of much coarser spatial resolution than the AVHRR
grid and correspond to certain hours. However, the up-scaled data do not resolve well25
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the temperature variation in the rough topography terrains such as high mountains. To
account for this effect a constant, temperature correction is derived by multiplying the
lapse rate of 0.6 K/100 m with the altitude difference between the 1×1 km Digital El-
evation Model (DEM) provided by the USGS and the bi-linearly up-scaled 0.2◦ ×0.2◦

DEM (geopotential at surface) originating from the ECMWF model. This correction is5

added to the final SKT estimates.
At the first stage of the PCM algorithm the required data: AVHRR reflectances and

brightness temperatures, View Zenith Angle (VZA), Sun Zenith Angle (SZA), Relative
Azimuth (RAZ), land cover, upscaled Skin Tempaerature (SKT) and the Digital Ele-
vation Model (DEM) are ingested and no-data values are removed. Further, several10

processes are performed:

– division between day, twilight and night (see Sect. 3.3).

– derivation of reflectance from the 3.7 µm BT.

– identification of sun glint areas (after Ackerman et al., 1998) over water and desert
which are incorporated into the land cover data.15

– kernel convolution and derivation of the texture feature from the 0.6 and 10.8 µm
channels.

Further reflectances and the thermal difference between SKT and 10.8 µm channel
are fetched into the Invariant Coordinate System (ICS) transformation separately suited
for the 1.6/3.7 µm channels. For the daytime data its results consist of two enhanced20

spectral features where first one together with the 10.8–12.0 µm BTD are the same
for both channel configurations. For the night-time the first two features contain scaled
SKT-10.8 µm and 3.7–10.8 µm thermal differences respectively. Such processed spec-
tral information, together with the texture feature, acquisition angles and expanded land
cover data are located within the threshold values (see Sect. 3.3) by means of the ANN25

procedure. This leads to determination of indexes along each of the eight dimensions
of the information space which are merged into two separate tables depending on the
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3a/3b channel availability. Finally the index tables are used to retrieve classification
probability estimates from the LUTs for every pixel in the satellite scene.

3.6 Post-classification and cloud shadow estimation

The majority of geophysical analyses require a binary cloud and/or snow classifica-
tion thus the continuous PCM probability estimates are recoded to the discrete classes5

assuming clear-sky pixels for the value ranges from 0 to<50 and from >250 to 300;
cloudy pixels for the >150 to ≤250 range and snow pixels from ≥50 to ≤150. Com-
plementary to the acquired results the cloud shadow mask is computed on a basis of
simple geometrical relationships (Fig. 4). This procedure consists of several steps: first,
a rough approximation of the cloud height h is estimated from the SKT-10.8 µm thermal10

contrast assuming the constant temperature lapse rate of 0.6 K/100 m. Second, the ac-
quired altitude values are processed by the maximum value filter with a 5×5 window
to enhance reliability of the estimates at the cloud edges where the thermal contrast
is smaller due to fractional cloud cover. Further, the computations are performed only
for pixels located at cloud edges and initially involve calculation of a shadow length15

L expressed as cloud height divided by the tangent of sun elevation angle (90◦-SZA).
Next the Sun Azimuth angle (SAZ) is reduced to 0–90◦ range (SAZred) and the Xscale,
Yscale are derived according to convention described by Eq. (3). Finally the end of the
shadow (x2, y2) is estimated on the basis of known coordinates of the cloud edge pixel
centre (x1, y1) and displacement vectors along x and y axis computed as a ratio of20

shadow length and sine and cosine of SAZred respectively (Eq. 4).
After the derivation of a cloud shadow mask it is incorporated together with the land

cover data into the PCM binary output to compose a discrete classification which con-
sists of the following categories: no data, clear-sky water, clear-sky land, clear-sky
snow, pixel adjacent to cloud over water, pixel adjacent to cloud over land, pixel ad-25

jacent to cloud over snow, cloud shadow over water, cloud shadow over land, cloud
shadow over snow, cloud. An example of the PCM output (Fig. 5) presents the NOAA17
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AVHRR scene acquired over the Alps on the 1st January 2008 together with the prob-
ability estimates and discrete classification mask.

SAZred =


SAZ ∈ 0 ≥ SAZ ≤ 90; Xscale = −1; Yscale = −1
SAZ − 90 ∈ 90 > SAZ ≤ 180; Xscale = −1; Yscale = 1
SAZ − 180 ∈ 180 > SAZ ≤ 270; Xscale = 1; Yscale = 1
SAZ − 270 ∈ 270 > SAZ ≤ 360; Xscale = 1; Yscale = −1

(3)

x2 = L × sin (SAZred) × Xscale + x1
y2 = L × cos (SAZred) × Yscale + y1

(4)5

3.7 Limitations of the PCM algorithm

Regardless the advantages of the PCM method such as: determination of the classifi-
cation probability for clear-sky, snow and cloudy conditions; automatic algorithm train-
ing phase there are some limitations which originate from the proposed methodology
of probability derivation. Although, the algorithm provides a great flexibility over other10

classification methods in terms of values and number of thresholds their choice is still
matter of subjective decision. Nevertheless, it is possible to determine an arbitrary
number of regularly distributed thresholds for each feature and still the algorithm will
feature considerable detection skills. The approach applied in this study assumes the
higher density of thresholds around the value ranges associated with uncertain pix-15

els (e.g. low reflectance values related to broken/cirrus clouds). Furthermore threshold
quantity modifies the probability values as wider bins within the information space are
more likely to contain a mixture of classes in comparison to smaller bins. Thus a high
threshold density assures better classification accuracy at the price of bigger LUT size
which itself is a limiting factor.20

The quality of the PCM results mostly depends on the accuracy of clear-
sky/snow/cloud mask used during the algorithm training step. Moreover the quantity of
this data set should be large enough to sufficiently sample the multidimensional array
with information acquired under a wide range of environmental conditions. Although,
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in this study a broad set of ecosystems was considered (from deserts to tundra and
perennial ice) the performance of the method over other regions than Europe is still to
be determined as well as the applicability to older AVHRR sensor (prior to NOAA16).

4 PCM cloud and snow classification results

The accuracy assessment of the PCM algorithm was divided into 4 parts where first5

the results were compared to the original PPS cloud mask version 2012 in order
to verify the difference between training data set and the acquired output. Then the
MODIS cloud mask (MOD/MYD35 collection 6 products) and daily snow cover com-
posite (MOD10A1 collection 5 product) were used as a reference to compare the
PCM results with the other robust classification algorithms suited for modern sensor10

with higher radiometric resolution than AVHRR. Further, the PCM output was validated
against ground-truth data originating from more than 4000 SYNOP stations (both au-
tomatically and manually operated) which provide detailed cloudiness observations.
Finally, it was validated against the vertical feature mask version 3 derived from the
CALIPSO/CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar measure-15

ments. All of the mentioned data sets feature a discrete form therefore the continuous
PCM probability estimates coded according to the convention described in Sect. 3.4
were transformed to a binary form. This was achieved assuming the clear-sky pixels
for the coded probability values between 0–50 and 250–300; cloudy pixels for the 150–
250 range and snow pixels for the 50–100 range.20

4.1 Inter-comparison with the PPS cloud mask

In order to evaluate discrepancies between the PCM and PPS algorithms the total
cloud cover estimates expressed as 100 %× cloudy pixels

total pixel count over each satellite scene
were computed. The acquired results for both methods were then linearly regressed
and the basic statistics of the distribution of differences were derived (Fig. 6). It was25
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found that both methods are in good agreement regardless the image acquisition time
being morning satellites NOAA16, 17 and the afternoon one NOAA18 as well as the
channel configuration: 1.6 µm for NOAA17 and 3.7 µm for NOAA16,18. The total cloud
cover differences between PCM and PPS outputs are low −0.5–1.0 % at average with
standard deviations not exceeding 3.6 % and with correlations ≥0.93.5

Further relationships between the PCM-PPS differences and angular/thermal condi-
tions (Fig. 7) as well as land cover (Fig. 8) were investigated. This involved derivation
of annual histograms (grey shading in Fig. 7) for the selected variables from all of the
available images and computation of total cloud cover within each bin. As far as the
sun zenith angle is concerned PCM reports more clouds for higher angles than PPS.10

This relation starts to decrease again above the angle of 85◦ which determines the twi-
light conditions. For the satellite zenith angle the PCM-PPS difference distribution fea-
tures characteristic “saw-shape” pattern which originates from the dependency of the
probability estimates on the angular sectors. The variation of discrepancies increases
towards oblique angles but the values stay within −2–2 % range. On the contrary, the15

relative azimuth angle between Sun and a satellite does not influence the difference in
a systematic way. It seems that most of the variation can be associated with the num-
ber of observations acquired at specific angular conditions. The relationship between
the PCM-PPS total cloud cover differences and the thermal contrast between SKT
and the 10.8 µm channel features a distinct pattern. For negative values (SKT lower20

than 10.8 µm) associated with a temperature inversion or with underestimated SKT
prediction the PCM method tends to report more clouds than PPS (up to 8 %). This
situation often occur during the night over sparsely vegetated areas (Sahara desert,
Spain) where climate models poorly represent rapid radiative cooling which lead to er-
roneous temperature inversions. This changes the PPS parametrization and probably25

result in lower total cloud cover (Fig. 10). For small positive thermal contrast 0–5 K PPS
reports more clouds but just beyond this range the relation changes rapidly and around
10 K there is a positive peak where PCM detects more clouds. Above this value the
total cloud cover differences are getting smaller as high thermal contrast between the
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surface and satellite measurements is usually associated with the overcasted condi-
tions. Considering the land cover classes (Fig. 8) PPS method reports more clouds
over water bodies (up to 2 %) and desert (up to 5 %) while PCM detects more clouds
over land (up to 2.5 %) especially over perennial snow/ice (up to 5 %) but only for satel-
lites without the 1.6 µm channel activated. Over the vegetated areas the differences are5

the most pronounced (up to 4 %) for the needle-leave forest class which covers high
latitudes zones and mountainous regions. For the broad-leave forest the discrepancies
are slightly lower however they are still 1–1.5 % higher than for crop-lands or shrubs.
This may indicate that the PCM method is more sensitive to cloud cover over dark
dense vegetation in comparison to PPS.10

The next step of conducted analysis involved computation of annual total cloud cover
composites over Europe separately for the day and night-time conditions in order to
investigate distinct spatial patterns. The results presented on Figs. 9 and 10 for the
NOAA18 satellite reveal some artefacts on the PPS image i.e. areas with unreliably
high cloud-coverage over desert or Spain which are significantly less pronounced on15

the PCM composition. These areas are related to land cover categories distinguished
by the USGS classification (Anderson, 1976) and utilized by the PPS which do not
reflect well the local spectral properties of the surface. On the other hand PCM takes
as input GLC2000 classification (Bartholomé and Belward, 2005) which discriminates
more categories with more uniform spectral signature and therefore does not lead20

to cloud overestimation. Another problematic regions are associated with mountains
where PPS reports less clouds especially during the night-time due to the cloud conser-
vative threshold (−22 K) in the 10.8 µm-SKT test. This effect is particularly noticeable
over Norway and the Alps. Nevertheless, most of the spatial cloud coverage patterns
visible on the PPS image are also present in the PCM composite which confirms a25

good agreement between these two methods.
Finally the spatio-temporal aspect of the PCM-PPS total cloud cover discrepancies

was analysed as a function of latitude and time (Fig. 11). For all selected satellites and
both years 2008, 2011 it could be seen that the temporal pattern of differences does not
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change over the coarse of the year. In comparison to the PPS method PCM tends to
detect more clouds for the latitudes between 30–40◦ and 50–60◦ while for the latitudes
between 40–50◦ and 60–70◦ it reports less of them. This pattern corresponds to the
spatial distribution of land and water over Europe where PCM reports more clouds
over land whereas PPS reports more of them over water (Fig. 8).5

4.2 Inter-comparison with MODIS cloud and snow mask

The PCM classification consists of the cloud and snow components thus to assess its
accuracy two types of products derived from the MODIS data were used as reference.
First one – MOD35/MYD35 – consists of a cloud mask (Ackerman et al., 1998) gen-
erated from a 5 min swath segment recorded by the TERRA and AQUA satellites. In10

order to compare the cloud masks derived from the MODIS and AVHRR data, image
acquisition times had to be collocated as the cloud cover dynamics requires a small
interval between the observations. In this study the maximum time difference between
observations was set to 15 min. Out of the three selected NOAA platforms only the
one labelled with number 18 has a sufficiently close orbit to the TERRA and AQUA15

satellites to perform such a comparison. Over Europe for the year 2008 after the im-
age collocations the joined AVHRR/MODIS data set consisted of 118 TERRA scenes
and 238 AQUA scenes for both day and night conditions. Furthermore, the MODIS
product was modified to exclude the uncertain pixel category and to reclassify the con-
fident/probably clear categories to clear-sky class as well as the confident/probably20

cloudy categories to overcasted class.
Regarding the MOD/MYD35 comparison, the analyses were performed analogically

to the ones described in the previous subsection. First the total cloud cover over each
scene was computed for both cloud masking algorithms to compose a scatter plot
(Fig. 12a). It occurs that on average the MODIS product reports 4.4 % more clouds than25

PCM remaining at the same time with the high correlation of 0.95. Further the PCM-
MODIS total cloud cover discrepancies were analysed as a function of land cover, sun
zenith angle as well as the SKT-10.8 µm thermal contrast (Fig. 12b, c and d). The results
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show that the PCM constantly reports less clouds regardless the land cover class with
the highest difference for the perennial snow/ice areas (up to 12 %). As far as the sun
zenith angle is concerned the absolute differences increase almost linearly and the best
agreement between the methods (±2.5 %) is reported for the SZA<55◦. On the other
hand for the twilight conditions (SZA>85◦) total cloud cover discrepancies between5

PPS and MOD35 reach 10 %. Their relationship with the SKT-10.8 µm thermal contrast
(Fig. 12d) resembles the one from the PPS comparison. When the surface temperature
is lower than satellite measurements PCM reports more clouds (up to 5 %). For the
thermal difference between 0–5 K range the PCM-MOD10A absolute discrepancies
increases (up to 18 %), then they diminish rapidly and above the 10 K both algorithms10

reports the same amount of clouds.
The MOD10A1 product (Hall et al., 2002) utilised as a reference for the PCM classifi-

cation consists of daily snow cover composites retrieved from the TERRA satellite data.
As it is one of the few globally available snow cover data with high spatial and temporal
resolutions in this study it was regarded as a ground-truth information. On the basis15

of the MOD10A1 and PCM products the contingency table was constructed (Eq. 5)
which allows computation of the following classification quality indicators (Eqs. 6–11):
Probability Of Detection (POD), False Alarm Rate (FAR), Hit Rate (HR) and Kuiper’s
Skill Score (KSS). The acquired results indicates that the difference in estimated snow
cover between the PCM and MOD10A algorithms is significant (Fig. 14). Consider-20

ing the PCM snow detection skills the highest POD≈0.6 is reported for the NOAA17
which has the 1.6 µm channel activated. On the other hand the AVHRR sensors with
the 3.7 µm channel constantly operating aboard NOAA16, 18 satellites feature lower
snow detection skills POD≈0.4. The extremely high POD and low FAR for the clear
conditions as well as high HR are related to the fact that clear conditions are predomi-25

nant over the year in comparison to the snow cover. As a result the proportion between
these categories in the contingency table is uneven and voids the usability of these
indicator. In such a case the KSS indicator allows estimating the objective overall al-
gorithm performance which clearly indicates higher snow detection accuracy for the
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1.6 µm channel configuration. Further the total snow cover scatter plots, derived ana-
logically to the ones from the cloud coverage analyses, were computed (Fig. 13d, h
and l). The obtained results show that PCM reports significantly less snow cover (up to
9.5 % at average) than MOD10A1 with a moderate correlation coefficient (0.5–0.7) and
a high standard deviation (up to 17 %). The absolute PCM-MOD10A1 total snow cover5

difference rises with the sun zenith angle up to 85◦ where it slightly decreases due to
separate treatment of the twilight conditions (Fig. 13a, e and i). In turn the relationship
with the satellite zenith angle indicates that PCM reports more snow at high angles
possibly due to increasing instrument Field Of View (FOV) but only for the NOAA16,
17 platforms. The opposite trend for the NOAA18 satellite is not easily explainable and10

it might be related to geographic distribution of snow in Europe which is the most per-
sistent over the Alps and Scandinavia. These regions are located around the centre
of a swath of the NOAA18 satellite overpass thus the amount of snow pixels across
the scan is not even. The PCM-MOD10A1 total snow cover differences vary with the
relative azimuth angle according to a pattern mostly related to quantity of the available15

observations. Nevertheless, for the NOAA18 there is a significant increase of discrep-
ancies around the azimuth angle of 60◦ (towards forward scattering) which again might
be associated with combined geographical and angular conditions rather than the al-
gorithm’s configuration.

counts PCM clear PCM snow
MODIS clear a b
MODIS snow c d

(5)20

PODsnow =
d

c + d
(6)

PODclear =
a

a + b
(7)

25

FARsnow =
b

b + d
(8)
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FARclear =
c

a + c
(9)

HR =
a + d

a + b + c + d
where 0 ≥ HR ≤ 1 (10)

5

KSS =
a × d − c × b

(a + b) × (c + d )
where −1 ≥ KSS ≤ 1 (11)

4.3 Validation against SYNOP weather reports

The global network of SYNOP stations (Fig. 16a) provides detailed cloud cover obser-
vations acquired in automatic or manual way at high temporal resolution (up to one
hour). They are collected in a consistent manner during day and night for a long period10

which makes them an excellent validation source for the satellite based products. In
this study SYNOP total cloud cover observations expressed in octants were compared
to the PCM cloud probability which was recoded to 0–100 % range where 0 % denotes
confident clear/snow class and 100 % indicates confident cloudy category. In order to
maintain the coherence between these two data sets the PCM outputs in binary form15

(clear/cloudy) as well as the cloud probability were averaged over the 30 km buffer zone
around each station. This area should correspond to the sky extent usually visible to
an observer who performs the measurements (Karlsson, 1995). Analogically to the
comparison with the MOD/MYD35 data, the satellite and ground cloud observations
were collocated within the 15 min time interval. Next the mean PCM cloud probabil-20

ity was computed as functions of the SYNOP cloud amount and daytime from all of
the collocated stations and satellites in the selected years. (Fig. 16b–d). The acquired
probability distributions span from around 12 % for completely clear-sky SYNOP ob-
servations to 90 % for fully overcasted conditions regardless the daytime. Furthermore,
the histograms of annual normalised probability distributions for clear, cloudy and snow25

conditions were computed (Fig. 15). Their shape very well corresponds to other prob-
abilistic cloud mask distributions enclosed in the studies of Gómez-Chova et al. (2007)
and Heidinger et al. (2012).
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In order to compute the quality indicators (Eqs. 5–11 with cloudy instead of snow) the
PCM and PPS cloud fractions derived over the 30 km buffer zone together with the
SYNOP observations were transformed to a binary form assuming overcasted condi-
tions over 25 %/2 oktants cloud amount. The obtained results proved fine cloud detec-
tion skills of both algorithms (high POD, HR, KSS and low FAR) without any substantial5

differences between them. The overall accuracy during the night is a bit lower than dur-
ing the day which is to be expected provided the availability of the thermal information
only. Considering the selected satellites the NOAA17 platform with 1.6 µm configura-
tion provides the most reliable cloud coverage data during the day whereas for the
night time the best results are obtained by the NOAA18 platform. Nevertheless, the10

differences in cloud detection skills between different satellites are small for both PCM
and PPS algorithms.

4.4 Validation against CALIPSO/CALIOP lidar feature mask

The last part of the performed analysis involved validation of the PCM and PPS cloud
masks against CALIOP vertical feature mask (CAL_LID_L2_VFM). The CALIOP lidar is15

an active system which is able to detect even very thin cloud layers with high horizontal
resolution of 333 m. This makes it an extremely valuable source for validation of any
medium resolution satellite cloud mask (Karlsson and Dybbroe, 2010). Nevertheless,
before such a comparison is possible satellite observations have to be collocated in the
space and in the time domains. In this study the approach applied to this issue consists20

of three steps. At first, CALIOP observations with a time interval lower than 15 min
as compared to the AVHRR acquisition time were selected. Next, the vertical profile
containing the feature mask was transformed to a vector with a binary flag present
whenever a cloud layer was reported within an atmospheric column. Finally, the location
of acquired samples within the 1×1 km AVHRR grid was determined by means of the25

nearest neighbour technique. The CALIPSO satellite share the same orbit as AQUA
platform with the MODIS instrument thus according to the arguments given in Sect. 4.2
only comparison with the NOAA18 satellite was possible.
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From the collocated CALIOP/NOAA18 observations the quality indicators of the PCM
and PPS cloud detection skills were computed. The acquired results (Fig. 18) confirm
the good performance of both algorithms with slightly better indicators in case of the
PCM algorithm. The absolute values of computed quality indicators slightly differ from
those presented in the AVHRR/SYNOP validation, however the relationships between5

them remain the same. The POD for cloudy conditions is lower by around 0.05 for
the nigh-time acquisitions in comparison to the day ones while the FAR features a
reverse trend. This in turn results in higher FAR for the clear conditions during night.
Nevertheless, all of those differences are small thus overall cloud detection accuracy
for the PCM and PPS algorithms expressed by the KSS indicator is almost the same10

for day and night conditions.

5 Discussion

The performed analyses aimed at assessing the accuracy of the PCM algorithm from
the perspective of cloud and snow detection skills. Considering that all of the ref-
erence data sets feature discrete form, the provided probability estimates between:15

snow-free/snow, snow/cloudy and cloudy/clear-sky conditions were transformed to bi-
nary classes using thresholds described in the Sect. 4. Such a prepared data set was
then compared to the PPS and MODIS cloud masks, MOD10A1 snow mask, CALIOP
vertical feature mask and SYNOP total cloud amount observations. As far as the clas-
sification probability is concerned the lack of an appropriate reference data set al-20

lows only a basic comparison of the PCM cloud probability against the SYNOP total
cloud amount measurements. Moreover, computed normalised probability distribution
for cloudy conditions (Fig. 15) is consistent with the findings of Gómez-Chova et al.
(2007) and Heidinger et al. (2012).

The acquired results prove high cloud detection skills of the PCM method by report-25

ing a good agreement with the reference data sets. On average PCM detects 4.4 % less
clouds than MOD/MYD35 products (Fig. 12a) while in case of the PPS cloud mask the
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differences are even lower from −0.5 to 0.9 % (Fig. 6). Similar results were reported
by Heidinger et al. (2002) who found that for the 3 selected satellite scenes MODIS
cloud masks contained 1–3 % more clouds than the CLAVR (Stowe et al., 1999) cloud
mask derived from the LAC AVHRR data. These negative discrepancies decrease with
the SZA for the MOD35 data (Fig. 12c) whereas the opposite trend is associated with5

the PCM-PPS differences which eventually become positive (Fig. 7a, e and i). This in-
consistency might be partially related to the fact that MODIS cloud mask reports more
clouds over snow than PCM (Fig. 12b) while PPS reports less (Fig. 8). Therefore, dur-
ing the cold season associated with high SZA the absolute PCM-MOD35 difference
is increasing. Regarding the sensor viewing geometry the comparison against MODIS10

data is not conclusive as both instruments (AVHRR and MODIS) measure the same
area under different angles. Therefore such an analysis was performed only with the
PPS algorithm which relies on the same AVHRR input data as the PCM. The distri-
bution of total cloud cover differences as a function of satellite zenith angle features
a characteristic “saw” shape pattern (Fig. 7b, f and j) which originates from the divi-15

sion of angles values into sectors. It can be presumed that without the consideration of
this variable the differences between PCM and PPS methods would rise continuously
and the overall discrepancies between the algorithms would be higher. The relation-
ship of the differences with the sun-satellite relative azimuth angle does not reveal any
significant pattern and the noticeable variations might be attributed to quantity of the20

available observations (Fig. 7c, g and k). On the contrary, the distribution of total cloud
cover discrepancies related to the thermal contrast between SKT and the 10.8 µm BT
has a distinct drop of values within the 0–10 K range for both PPS and MODIS compar-
isons (Figs. 7b, f, j and 12d). This effect could be partially associated with the different
approach towards image texture analysis over water bodies where PPS and MOD3525

mark a pixel as cloudy whenever the spectral variance in its vicinity (e.g. 5×5 win-
dow) is sufficiently high (Di Vittorio and Emery, 2002). However, this implies that some
of the clear-sky pixels around cloud edges with small thermal contrast are misclas-
sified In the PCM method the textural analysis is performed differently by means of
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the kernel convolution with a small window (Eq. 1) which assures that only the the
pixels at cloud edges are detected. Therefore, the PPS and MOD35 products report
more clouds over water bodies than PCM (Figs. 8 and 12b) which in turn modifies the
overall results significantly as it is the most extensive land cover class. This is also
confirmed by the spatio-temporal analysis of the total cloud cover differences between5

the PCM and PPS methods (Fig. 11). For the latitude ranges between 40◦–50◦ and
60◦–70◦ where the water class is predominant over the study area the PPS algorithm
reports more clouds than PCM regardless the time of the year. For other surfaces the
total cloud cover difference remains negative in case of comparison with the MODIS
data whereas for the PPS comparison PCM tends to report more clouds over the land10

surfaces excluding deserts. The same relationships could be observed on the annual
total cloud cover composites for the NOAA18 satellite (Figs. 9 and 10). Moreover, the
day-time PPS composite contains visible artifacts associated with areas characterised
by the unreliably frequent cloud cover (up to 100 %) over Africa and Spain. They are
related to land cover classes described by Anderson (1976) which do not resolve well15

the local spectral characteristics and lead to overestimation of cloud amount. These
areas are less apparent on the PCM total cloud cover composite because the PCM
algorithm utilises more detailed land cover categorisation (Bartholomé and Belward,
2005). Furthermore, the PPS-based training data set was improved by means of the
supervised classification before being utlized during the PCM development phase. An-20

other noticeable spatial differences are associated with mountains (e.g. Alps) where
PCM reports more clouds than PPS especially during the night-time. This is related to
the fact that in the PPS method the SKT-10.8 µm thermal contrast test features very
cloud conservative threshold (22 K at night) over the rough topography areas. This was
introduced to account for the temperature variability induced by the comparison of the25

1×1 km AVHRR data with low resolution SKT estimates (Dybbroe et al., 2005a). Nev-
ertheless, due to this relaxed threshold the SKT-10.8 µm test often indicates clear-sky
conditions which misleads the PPS algorithm and results in lower cloud coverage over
the mountainous regions.
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In order to evaluate the accuracy of the PCM and PPS algorithms the total cloud
cover observations provided by the SYNOP stations (Fig. 16a) were compared to the
PCM and PPS cloud fractions derived over the 30 km buffer zone around each station.
This analysis involved creation of the contingency table and computation of classifica-
tion quality indicators (Eqs. 5–11). They are the same for both methods or slightly better5

in case of the PCM results (Fig. 17). The small improvement over the PPS algorithm
was gained by the supervised classification correction applied to the PPS/MOD10A1
training data set. High probability of detection (>0.8) and low false alarm rate (<0.1) for
the cloudy conditions remain at the same level for both algorithms regardless the time
of the day. Lower detection skills for the clear-sky cases can be attributed to the fact that10

an observer at a SYNOP station may report clouds which are further than the 30 km
distance (for more comprehensive explanation see Karlsson, 1995). Nevertheless, the
overall performance of both algorithms represented by the Kuiper’s Skill Score is high
and the differences between the selected satellites are inconsiderably small. Further-
more, these results are consistent with the CALIOP/AVHRR validation (see Sect. 4.4)15

from the qualitative perspective, however their absolute values are higher. This is due
to the fact that computation of fractional cloud cover within the 30 km buffer zone in-
creases the probability of cloud detection. On the other hand the CALIOP/AVHRR val-
idation was performed on the single pixel basis which yields more accurate results.
The sensitivity of a lidar system to detection of thin clouds which are not visible for the20

AVHRR sensor is well apparent as a relatively high FAR (>0.4) for the clear conditions.
This is also the reason for the higher cloud amount in the cloud mask derived from the
MODIS instrument which has 1.38 and 8.55 µm channels that improve the detection of
mid and high clouds (Ackerman et al., 1998). The acquired classification quality criteria
for the CALIOP/PPS cloud mask comparison remain in a good agreement (within the25

10 % range) with the study of Karlsson and Dybbroe (2010) who performed the same
analysis over the Artic region.

Within the 30 km buffer zones around each station the mean PCM cloud probability
was analysed as a function of the SYNOP cloud amount (Fig. 16b–d). The acquired
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distribution feature a reasonable spread of values from ∼12 % for the clear-sky con-
ditions to ∼90 % for the fully overcasted sky regardless the time of the day and the
AVHRR channel configuration. The acquired probability distribution remains in a good
consistency with the SYNOP validation results for the POLarization and Directionality
of the Earth’s Reflectances (POLDER) cloud mask (Bréon and Colzy, 1999). Although,5

in that case the distribution expressed the percentage of cloudy pixels as a function of
the SYNOP cloud amount, the PCM probability estimates feature almost a binary dis-
tribution (Fig. 15) which fits well to the binary output of the POLDER cloud mask. The
same characteristics of the cloud probability distribution were reported in other stud-
ies (Gómez-Chova et al., 2007; Heidinger et al., 2012). Its specific “U-shape” where10

most of the pixels are classified as confident clear 0 % or cloudy 100 % is related to the
high spectral contrast of clouds on the satellite image as compared to other surfaces
(see red dots on Fig. 2). Most of the classification probability estimates significantly
different from 0 or 100 % represent: pixels with fractional cloud and/or snow coverage,
ice clouds overlaying a cold surface, thin cirrus clouds. These cases are far less fre-15

quent than fully overcasted or clear pixels which results in highly polarised probability
distribution (Fig. 15).

The snow component of the PCM output was validated against the MOD10A1 daily
composite which is one of the few existing snow cover data sets matching the spatial
and temporal resolution of the AVHRR data. Although, the high accuracy of this product20

was proven (Hall and Riggs, 2007) some misclassification especially between snow
and clouds as well as overestimation of snow in forests in some cases may influence
the quality indicators for the PCM method (Eqs. 5–11). Moreover it has to be taken into
account while interpreting the results that NOAA16 data were collected during the year
2011 while NOAA17 and NOAA18 data originate from the year 2008. Thus, different25

snow cover conditions between these periods influence the computed statistics. In this
analysis only the cloud free areas were considered therefore some pixels at snow cover
edges (Fig. 5), which are often misclassified as clouds (Hall and Riggs, 2007), were not
taken into account. The best agreement between PCM and MOD10A1 total snow cover
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estimates is reported for the NOAA17 satellite which has the 1.6 µm channel activated.
For the platforms with the 3.7 µm channel constantly operating the discrepancies are
more significant. Although the POD of snow is considerably higher for the NOAA17
platform (Fig. 14) the FAR indicator is on the same level for the NOAA18 satellite.
Therefore it can be concluded that the PCM classification results for the NOAA17, 185

satellites are valuable in terms of the snow composite derivation. Nevertheless, the
accuracy of the PCM snow cover classification is strongly related to the illumination
conditions. It was found that for the NOAA17, 18 satellites the absolute PCM-MOD10A1
differences increase significantly above the sun zenith angle of 70◦ (Fig. 13a, e and i).
Similar value was reported by Solberg et al. (2010). This effect is not that apparent for10

the NOAA16 satellite possibly due to different snow conditions in 2011 as compared to
2008.

The comparison and validation of the PCM results against space-borne and ground
data proved the high cloud detection skills. As far as the snow classification is con-
cerned the overall accuracy of the algorithm is reasonable but the special precau-15

tion has to be taken for data generated without the 1.6 µm channel especially for
the high sun zenith angle acquisitions. The lack of reference probability estimates for
cloudy/clear-sky, cloudy/snow or snow/clear-sky conditions allows only the compari-
son with the SYNOP cloud amount which confirms the expected value spread with low
probabilities (∼15 %) for the clear-sky conditions and high ones (∼90 %) for the fully20

overcasted sky. Finally, the PCM cloud and snow classification was proven to be valid
for a broad range of environmental conditions across Europe and northern parts of
Africa.

6 Conclusions

This study presents a robust algorithm for cloud and snow detection on AVHRR im-25

agery which provides complementary probability estimates. Its unique design is based
on the concept of a multidimensional information space implemented as an array with
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precomputed probability estimates where each dimension corresponds to different
spectral, angular and ancillary data combination. In order to construct this array first
the continuous data such as spectral measurements have to be binned using a set
of threshold values which do not have to be equally distributed. Such an approach re-
solves the problem of a single threshold value derivation which should feature the high-5

est discrimination skills for the particular environmental conditions. On the contrary to
the decision-tree approaches PCM algorithm considers all of the available information
in a single step to extract the probability estimates between clear-sky/cloudy, clear-
sky/snow and snow/cloudy conditions from the multidimensional array. Another novel
feature of PCM is the employment of the Invariant Coordinate System (ICS) transfor-10

mation which utilises Principle Component Analysis (PCA) to combine reflectance in
AVHRR channel 0.6/0.8 µm or 1.6 µm or reflective part of 3.7 µm with the thermal differ-
ence between 10.8 µm channel and skin surface temperature provided by the climate
model. This enhances the detection of thin/broken clouds as well as the separation
between snow and ice clouds at the same time reducing the dimensionality of the anal-15

ysis.
The PCM classification accuracy was assessed by the comparison with an ex-

tensive set of a reference data consisting of the PPS and MOD35 cloud masks,
CALIPSO/CALIOP vertical feature mask, SYNOP cloud observations and MOD10A1
daily snow composite. The reported cloud detection skills were high (POD>0.8 and20

FAR<0.1) and remained at the same level or better than the reference PPS algorithm
(due to initial correction of the training data set). Furthermore some artefacts related to
areas with implausibly high cloud cover present in the PPS data were almost not appar-
ent in the PCM classification. The snow detection skills derived on a basis of compar-
ison with MOD10A1 product are moderate (0.42<POD<0.62 and 0.08<FAR<0.17)25

with significantly better results for the NOAA17 with the 1.6 µm channel activated and
for the low sun zenith angle acquisitions. The probability estimates for cloudy condi-
tions were found to be directly proportional to the SYNOP cloud amount and feature a
reasonable spread (from ∼12 % for clear-sky conditions to ∼90 % for overcasted sky).
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Nevertheless, to fully validate the PCM product the inter-comparison with other proba-
bilistic classification algorithms such as the one included in the PATMOS-x package as
well as the modified version of the PPS algorithm will be performed. The source code
of the PCM method implemented in R together with the test cases and annual LUTs
are provided on the web page: http://pcm.r-forge.r-project.org/.5
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Fig. 1. Differences between Enhanced Spectral Features (ESF) generated by the Invariant
Coordinate Sytem (ICS) transformation and the AVHRR channel 1 (0.6 µm) and channel 3b
(3.7 µm). Bottom panels depict the differences between the ESFs and the AVHRR reflectances
retrieved from the spectral profiles marked with the red lines. For details see Sects. 3.2.2
and 3.2.1.
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cloudy
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Fig. 2. Schematic graph presenting the concept of probability derivation in the PCM algorithm
based on the two dimensional spectral space composed of reflectances at 0.6 and 1.6 µm. In
the equation P denotes probability and numbers denote the counts of cloudy, clear and snow
pixels within the bin. The samples were derived from the PPS and MOD10A1 classifications of
the NOAA17 satellite scene acquired over the Alps on the 1 January 2008.
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Fig. 3. Flow-chart of the PCM algorithm. For details see Sect. 3.5.
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Fig. 4. Derivation of cloud shadow. For details see Sect. 3.6.
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a) b) c)

Fig. 5. PCM classification example of the NOAA17 scene acquired over the Alps on 1 Jan-
uary 2008 at 10:00 UTC. (a) false color composite (R =1.6 µm, G =0.8 µm, B=0.6 µm),
(b) probabilistic cloud and snow mask, (c) binary cloud/cloud shadow/snow/land-water mask
with classes described in Sect. 3.6. In (b) and (c) grey colour depicts clouds, green depicts
cloud- and snow-free areas, blue depicts water and light blue depicts snow.
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Total cloud cover PCM vs PPS

PCM−PPS
median = −0.49
mean = −0.46
stdev = 3.48

R2 = 0.94
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Fig. 6. Scatter plots of the total cloud cover estimates computed over each of NOAA16, 17,
18 satellites scenes separately for the PCM and PPS algorithms. Red line denotes linear trend
between these two data sets. Some statistics of the PCM-PPS total cloud cover differences
distribution are reported. For details see Sect. 4.1.
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Fig. 7. Total cloud cover differences PCM–PPS as a function of selected variables derived
from the annual pixel counts for the years 2011 (NOAA16) and 2008 (NOAA17, 18). The data
quantity is presented as grey-shaded histograms. Red line denotes trend computed by the
smoothing spline method. For details see Sect. 4.1.
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Fig. 8. Total cloud cover differences PCM–PPS as a function of land cover derived from the
annual pixel counts for the years 2011 (NOAA16) and 2008 (NOAA17, 18). For details see
Sect. 4.1.
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Fig. 9. PCM and PPS annual total cloud cover composites in 2008 derived from the collection
of day-time NOAA18 scenes.
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Fig. 10. PCM and PPS annual total cloud cover composites in 2008 derived from the collection
of night-time NOAA18 scenes.
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Fig. 11. Distribution of latitudinal total cloud cover differences between the PCM and PPS
algorithms throughout the year 2011/2008 for the selected satellites. For details see Sect. 4.1.
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b)

Fig. 12. Differences in total cloud cover between PCM and MOD/MYD35 products derived
from annual pixel counts of the NOAA18 satellite for the year 2008: (a) computed over each
scene, (b) as a function of land cover, (c) as a function of sun zenith angle, (d) as a function
of thermal differences between SKT and 10.8 µm channel. Red line denotes trend. For details
see Sect. 4.2.
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Fig. 13. Total snow cover difference PCM-MOD10A1 as a function of selected variables derived
from annual pixel counts for the years 2011 (NOAA16) and 2008 (NOAA17, 18). The data
quantity is presented as grey-shaded histograms. Bottom panels present the total snow cover
scatter plots derived from estimates computed over each scene. Red line denotes trend. For
details see Sect. 4.2.
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Fig. 14. Accuracy indicators of the PCM snow detection skills derived from the comparison with
the MOD10A1 product. For details see Sect. 4.2.
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Fig. 15. PCM normalised probability distribution for clear, cloudy and snow conditions derived
from annual counts of the NOAA18 satellite data. For details see Sect. 4.3.
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Fig. 16. (a) Geographic distribution of SYNOP stations. (b)–(d) Distribution of mean PCM cloud
probability as a function of SYNOP cloud amount expressed in octants for different daytimes.
Error bars denote standard deviations. For details see Sect. 4.3.

8505

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/8445/2013/amtd-6-8445-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/8445/2013/amtd-6-8445-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 8445–8507, 2013

Probabilistic
approach to cloud

and snow detection
on AVHRR imagery

J. P. Musial et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

NOAA16
NOAA17
NOAA18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PCM PPS

PCM PPS

PCM PPS

PCM PPS

PCM PPS

PCM PPS

POD FAR POD FAR HR KSS
CLOUDY CLEAR

PCM & PPS cloudiness vs all SYNOP observations

NOAA16
NOAA17
NOAA18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PCM PPS

PCM PPS

PCM PPS

PCM PPS

PCM PPS

PCM PPS

POD FAR POD FAR HR KSS
CLOUDY CLEAR

PCM & PPS cloudiness vs SYNOP day observations

NOAA16
NOAA17
NOAA18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 PCM PPS

PCM PPS

PCM PPS

PCM PPS

PCM PPS

PCM PPS

POD FAR POD FAR HR KSS
CLOUDY CLEAR

PCM & PPS cloudiness vs SYNOP night observations

Fig. 17. Accuracy indicators of the PCM and PPS cloud detection skills derived from the com-
parison with SYNOP cloud observations. For details see Sect. 4.3.
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Fig. 18. Accuracy indicators of the PCM and PPS cloud detection skills derived from the com-
parison with CALIOP vertical feature mask. For details see Sect. 4.4.
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