
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Manuscript prepared for Atmos. Meas. Tech. Discuss.
with version 3.5 of the LATEX class copernicus discussions.cls.
Date: 7 May 2013

Time series inversion of spectra from
ground-based radiometers
Ole Martin Christensen1 and Patrick Eriksson1

1Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg,
Sweden

Correspondence to: Ole Martin Christensen
ole.m.christensen@chalmers.se

1



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Abstract

Retrieving time series of atmospheric constituents from ground-based spectrometers
often requires different temporal averaging depending on the altitude region in focus.
This can lead to several datasets existing for one instrument which complicates valida-
tion and comparisons between instruments. This paper puts forth a possible solution5

by incorporating the temporal domain into the maximum a posteriori (MAP) retrieval
algorithm. The state vector is increased to include measurements spanning a time pe-
riod, and the temporal correlations between the true atmospheric states are explicitly
specified in the a priori uncertainty matrix. This allows the MAP method to effectively
select the best temporal smoothing for each altitude, removing the need for several10

datasets to cover different altitudes.
The method is compared to traditional averaging of spectra using a simulated re-

trieval of water vapour in the mesosphere. The simulations show that the method offers
a significant advantage compared to the traditional method, extending the sensitivity an
additional 10 km upwards without reducing the temporal resolution at lower altitudes.15

The method is also tested on the OSO water vapour microwave radiometer confirm-
ing the advantages found in the simulation. Additionally, it is shown how the method
can interpolate data in time and provide diagnostic values to evaluate the interpolated
data.

1 Introduction20

The maximum apriori, or optimal estimation, method (Rodgers, 2000) is a commonly
used method for retrieving atmospheric properties from spectroscopic measurements.
Such measurements will always contain thermal noise, which negatively impacts the
retrieval process. In order to overcome this noise, the measured atmospheric spectra
are averaged over time. This averaging increases the signal to noise ratio, but reduces25

the temporal resolution of the measurements. The strength of the measured spectral
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lines, the required accuracy, and the sensitivity of the instrument determine the need
for temporal averaging. Hence, depending on which atmospheric phenomena and
altitudes that are investigated in any single study, a specific compromise must be made
between temporal resolution and noise reduction.

The use of different temporal resolutions is exemplified by, for example, looking at5

microwave spectrometers measuring water vapour in the middle atmosphere. One
example is the the WASPAM instrument, which has used a 6 h averaging time in a case
study of sudden stratospheric warming (Seele and Hartogh, 2000) as well as a 24 h
averaging time to study the annual variation of water vapour around the mesopause
(Seele and Hartogh, 1999). Different averaging times are used since retrievals for10

higher altitudes require lower thermal noise and thus longer integration times.
The ratio between the required averaging times for high and low altitudes will in large

part be determined by the altitude range of the instrument. As newer instruments,
such as those described in Nedoluha et al. (2011) and Bleisch et al. (2011), offer
the possibility to increase this range, the differences in averaging time needed for the15

upper- and lowermost altitudes will increase.
Although the use of different averaging times in itself poses no problems, it does

complicate the validation and cross-comparison of instruments. An example is the
water vapour radiometer at the Onsala Space Observatory (OSO) (Forkman et al.,
2003). This instrument has mainly used one day spectra in studies of atmospheric20

dynamics (Forkman et al., 2005; Scheiben et al., 2012), whereas only a scheme with
varying averaging time depending on tropospheric opacity has been cross-compared
with other instruments (Haefele et al., 2009).

One way to circumvent the problem of multiple averaging times for a single dataset is
to incorporate the averaging of spectra directly in the retrieval process. To achieve this,25

several measurements are simultaneously inverted using temporal correlation data of
the quantity to be retrieved. Earlier attempts to use the temporal information in re-
trievals have resorted to recursive filtering (Askne and Westwater, 1986), whereas the
method presented in this paper uses a non-recursive approach based on the maximum
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a posteriori method (Rodgers, 2000).
The study is described using the following structure. Section 2 introduces the re-

trieval theory, terminology and the time series inversion technique. In Sect. 3 we apply
the time series inversion method on a simulated instrument to show the advantages
of the method. Section 4 investigates the practical use of the method, and Sect. 55

discusses the computational requirements. The conclusion is given in Sect. 6.

2 Retrieval Methodology

2.1 Terminology

In passive atmospheric remote sensing, properties of the atmosphere are determined
by analysing the radiation emitted from, and passing through, the atmosphere. This
analysis is called a retrieval, or inversion, and is done by solving an inverse problem.
The relationship between the measured radiation, y, and the atmospheric properties
is described by a forward model, y = F (x), where x, denoted as the state vector,
contains the variables to be retrieved. These can include atmospheric variables at
different altitudes as well as instrument variables. If the forward model is locally linear,
the measurement can be expressed as

y=F (x0)+K(x−x0)+ε, (1)

where x0 is the state vector used for linearising the forward model, K is the Jacobian-,
or weighting function matrix, defined as ∂y/∂x, and ε represents errors in the mea-10

surement.
The inverse problem involves finding x for a given y. In remote sensing, inverse

problems can be ill-posed. This means that several atmospheric states can give rise
to the same measurement. To obtain sensible results, the inversion must then be con-
strained through some regularisation algorithm. The regularisation in the time series15
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inversion method is based on the maximum a posteriori (MAP), also called optimal esti-
mation, method. It uses statistical properties of the measurements and the atmosphere
to constrain the solutions (Rodgers, 2000) .

Assuming Gaussian statistics, the relationship between a set of stochastic variables
is described by a covariance matrix, S, in which each element, Si,j , is the covariance
between variables i and j. If the covariance of the a priori state is given by the matrix
Sa and the measurement uncertainties are specified by Sε, a cost-function can be
expressed as

χ2=(x−xa)
TS−1a (x−xa)+

(
y−F (x)

)T
S−1ε

(
y−F (x)

)
, (2)

where x is the true state vector and xa is the a priori state vector, which indicates a
“best guess” atmosphere. The state minimising this function is the maximum of the a
posteriori probability density function and is given by

x̂=xa+G
(
y−F (xa)

)
, (3)

where G, the gain-matrix, is

G= ∂y/∂x=(KTS−1ε K+S−1a )−1KTS−1ε . (4)

An alternative way of expressing equation 3 is by introducing the averaging kernel
(AVK) matrix, A= ∂x̂/∂x=GK. Combining Eq. 1 and 3 gives

x̂=xa+A(x−xa)+Gε. (5)

This shows that a retrieved value, in the absence of noise, is the sum of the correspond-
ing a priori value plus the change from the a priori state convolved with the matching5

row of the AVK matrix. The sum of a row in the AVK matrix is a measure of the re-
trieval’s sensitivity to changes in the state vector and is called measurement response
(Baron et al., 2002), or measurement sensitivity.

5
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2.2 Time series inversion

For ground-based instruments using single spectrum inversions, the measurement
vector, y, usually holds the brightness temperature for each channel of the instrument.
Thus, for an instrument with m channels, the length of y is m, and similarly x contains
values of the state variables at the time of the measurement. The time series inversion
method proposed here expands both y and x to include measurements from N differ-
ent times. This increases the length of y to m ·N , and the length of x to n ·N , where
n is the length of the single spectrum state vector. In a similar fashion, the Jacobian
matrix, K, becomes a block diagonal matrix with block elements equal to the Jacobian
matrix for each measurement giving

y=



y11
...
y1m
y21
...
y2m
y31
...
yNm


,K=

K1 0 0

0
. . . 0

0 0 KN

, x=



x11
...
x1n
x21
...
x2n
x31
...
xNn


,

where the upper index denotes measurement number.
Since the state and measurement vectors cover several measurements, the covari-

ance matrices in Eq. 2 must be adjusted. Assuming that the measurement uncertain-
ties are uncorrelated between the measurements (i.e. only thermal noise) and uncor-
related between the channels, Sε simply becomes a diagonal matrix. The uncertainties
in the a priori state are, however, not uncorrelated between the times of the measure-
ments. To incorporate this temporal correlation, even the non-diagonal blocks in Sa

6
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must have non zero values. Thus, the covariance matrices become

Sε=

S1
ε 0 0

0
. . . 0

0 0 SNε

, Sa=


S1,1
a S1,2

a ··· S1,N
a

S2,1
a S2,2

a ··· S2,N
a

...
...

. . .
...

SN,1a SN,2a ··· SN,Na

 ,

where Si,ja is the apriori covariance matrix corresponding to measurement i and j, and
Siε is the noise covariance matrix from measurement i.

Introducing correlation between measurements in Sa results in an averaging ker-
nel matrix which contains non-zero elements in its off-diagonal blocks. The resulting
matrix,

A=


A1,1 A1,2 ··· A1,N

A2,1 A2,2 ··· A2,N

...
...

. . .
...

A1,N A2,N ··· AN,N

,
will contain information about how much smoothing that occurs with respect to both alti-
tude and time. Temporal smoothing occurs because the MAP method uses information
from several measurements to retrieve a single profile. The amount of smoothing will5

partly depend on the setup of the a priori uncertainty matrix, which will be described in
detail in the next section.

2.3 Specification of the a priori covariance matrix

The specification of the uncertainty matrices is central to MAP. Since the state vector
of the time series inversions has been extended to include several measurements,10

both the temporal and vertical correlation of the state variables need to be specified in
Sa, and it is through the latter correlation that the MAP method can take into account
results from adjacent measurement times when retrieving a profile.

7
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The correlation between state variables can be conveniently described with a corre-
lation function combined with a correlation length. We will use an exponential function
to describe correlations. This means that for state vector variables related in altitude
(e.g. species concentration), the correlation coefficient between the variable at altitude
zk and zp for measurement i will be given by ρz(x

i
k,x

i
p) = exp(−|zk− zp|/lc), where5

lc denoted as the correlation length, meaning the length at which the correlation has
dropped to 1/e. In a similar fashion the correlation of a variable in time can be repre-
sented by ρt(xik,x

j
k) = exp(−|ti− tj |/tc), where ti (tj) is the time of measurement i (j)

and tc is the temporal correlation length. Assuming that the correlation is independent
in the two dimensions (separable), the total correlation is calculated as the product of10

ρz and ρt. In this study we also assume that the a priori covariance is stationary, so
that it is can be described by the same matrix at all measurement times.

The a priori covariance matrix of the investigated variable should represent both
the uncertainty arising from natural variability and the uncertainty of the a priori mean
value (Eriksson, 2000). The latter uncertainty arises from a limited knowledge of the15

atmospheric mean state at that particular altitude and time. These two terms have
quite different correlations. In general, the error in the mean value of the state variable
should be characterised by longer vertical correlation length and a smaller standard
deviation than the natural variability. An additional, and more important, feature for
inverting the time series is that errors in the mean will be correlated over long temporal20

periods compared to the natural variability. If, for example, the assumed a priori value
for the concentration of one atmospheric species is too high with respect to the true
mean at one time, it is likely that it will remain too high for a considerable time (weeks,
months, etc.) thereafter.

We will use the retrieval of water vapour in the mesosphere as an example of the25

time series inversion method. Figure 1 shows covariance matrices used to describe
the a priori water vapour profile in the retrievals. In Fig. 1a and 1b the vertical and
temporal covariance of the concentration of water vapour at 60 km are shown. The
dashed-green curve represents the natural variability of water vapour, which is given

8
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a standard deviation of 50 %, a vertical correlation length of 4 km, and a temporal
correlation length of 12 h. It should be noted that since information about the temporal
correlation of water vapour at these altitudes is limited, these covariance matrices are
created in a somewhat “ad-hoc” fashion. As such, the covariance matrices should be
viewed as illustrative examples rather than a perfect representation of the atmospheric5

variability.
As mentioned earlier, the correlation lengths of the uncertainty in the a priori mean

are different from the natural variability. The red-dot-dashed curve in Fig. 1 shows prop-
erties of a covariance matrix set to represent the uncertainty in the a priori mean. The
matrix has a standard deviation of 20 % and a correlation length of 8 km in altitude and10

7 days in time. By adding both the natural variability and the a priori mean uncertainty,
the complete covariance matrix, described by the solid-red line (NatMean), is obtained.
A selected number of elements from the complete Sa matrix are shown in Fig. 1c. The
block structure, explained in Sect. 2.1, is indicated by the green and black squares. The
diagonal block (green square) represents the covariance within a measurement time,15

whereas the off-diagonal block (black square) represents the variance scaled with the
correlation between measurement times.

The result from the time series retrievals will depend on the temporal correlation
used. To investigate this, a second covariance matrix is created which assumes that
the entire a priori uncertainty has a temporal correlation of only 12 h, but with the same20

standard deviation (54 %) and vertical correlation length as the total covariance matrix.
This matrix is described by the solid-green line (Inter) in Fig. 1b. For comparison, in-
versions are also performed with zero correlation in time (blue curve) to mimic single
spectrum (1D) retrievals. Though these retrievals could be done on each spectrum
separately, it is chosen, for comparison purposes, to perform the retrievals simultane-25

ously using the same formalism as the time series inversions. This is achieved by using
a block diagonal a priori covariance matrix in the retrievals.

A retrieval using the traditional method of averaging spectra is also performed by
doing a 48 h running mean over the simulated spectra. However, the expected variance

9
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of a 48 h mean is different from that expected in a 3 h mean, so to correctly specify the
covariance of these inversions, the NatMean covariance matrix is projected onto a
48 h grid following Rodgers (2000, Ch. 10.3.1.1). This results in an a priori standard
deviation of 36 %, which is a decrease from the 54 % for the 3 h measurements.

3 Theoretical test case5

3.1 The simulation and retrievals

In order to test the time series inversion method, a model scenario is set up. The
simulation and retrievals are done with the radiative transfer simulator ARTS (v.2.0)
and the retrieval toolkit Qpack (Eriksson et al., 2005, 2011). The simulated instrument
is designed to mimic the 22 GHz radiometer currently operating at OSO, but some10

simplifications are made to illustrate the more general use of this method. Most notably,
the bandwidth is increased from 20 MHz to 1 GHz and the noise temperature is reduced
from 170 K to around 100 K. The instrument backend is simulated using 83 channels,
each 25 kHz wide and unevenly distributed across the bandwidth of the instrument. At
the line-centre, a distance of 25 kHz between the channels is used. This is increased15

further away from the centre, reaching 100 MHz at the band edges. The calibration
used is a beam switching method.

Spectra from ground-based radiometers are often corrected for tropospheric loss
before retrievals are performed. To model this, the simulated instrument is located
above the troposphere (15 km) and the thermal noise level is doubled. This represent20

a tropospheric transmission of 0.5, which, together with the loss of observational time
due to the beam switching, leads to an effective noise temperature of 400 K, which is
used to specify Sε. Additionally, the thermal noise in the system is left uncorrelated
between the channels, and the integration time is set to 3 h. Note that no thermal noise
is actually added to the simulated spectra, but only used to specify the covariance25

matrix, i.e. the spectra themselves are noise free.

10
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The simulated atmosphere is created by extracting temperature and water vapour
profiles for the 25th of February from the MSIS (Hedin, 1991) temperature database
and a climatology based on retrieved water vapour over OSO from AURA-MLS. The
spectroscopic parameters for the water vapour line at 22 GHz are taken from the JPL-
catalogue (Pickett et al., 1998) (line strength and position) and HITRAN 2004 database5

(Rothman et al., 2005) (broadening parameters).
The retrieval of water vapour is done on an altitude grid ranging from 4 km to 104 km

with a grid resolution of 4 km. The covariance matrices used are the same as specified
in Sect. 2.3 with Sε being a pure diagonal matrix and Sa having a correlation in both
altitude and time.10

3.2 Response to a sudden doubling of H2O

The time series inversion method combines information from measurements at several
times, this makes the temporal characteristics of the retrieved profiles of particular
interest. To investigate these temporal characteristics, we run a test scenario in which
water vapour in the atmosphere is kept constant, equal to the a priori, until the 120th15

hour and then instantaneously increased to the double of apriori at the 121st hour.
The results of the retrievals are shown in Fig. 2. The results are shown as water

vapour concentration relative to the a priori concentration. The single spectrum inver-
sions (Fig. 2a) have no errors before the increase. This is because no noise was added
to the spectra, and the true atmosphere is equal to the apriori. Afterwards, the retrievals20

will only change at certain altitudes determined by the measurement response. At the
highest levels, the retrieved value remains 1, i.e. equal to a priori, due to the lack of
measurement response, whereas at lower altitudes the retrieved values reflect the true
atmosphere.

The conventional way to increase the measurement response at high altitudes is by25

averaging spectra in order to reduce the influence of thermal noise. Figure 2c shows
results from the 48 h averaging of spectra. An improvement around 70 km can be seen
for measurements later than 24 h after the sudden increase of water vapour in the

11
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atmosphere. This however, comes at the cost of smoothing out the step increase in
time. Figure 2b shows that this smoothing can be avoided (for low altitudes) by applying
the time series inversion method. Just as with the traditional averaging, the response
around 70 km improves after the increase compared to the single spectrum inversions.
However, the high temporal resolution is maintained at lower altitudes, and the abrupt5

change can clearly be seen in the retrievals. Thus, by inverting the entire time series
simultaneously, temporal resolution can be maintained at the lower altitudes while the
sensitivity at higher altitudes is increased.

The increase in sensitivity is seen more clearly in Fig. 3b, which shows the profiles
at the 160th hour. Both the traditional method of averaging spectra (dotted-black) and10

the time series inversions (red and dashed-green line) show a significant improvement
above 60 km. The long temporal correlation in the a priori mean uncertainty does,
however, lead to a large temporal smoothing at high altitudes seen by the increased
water vapour above 70 km in the red line in Fig. 3a. The time series inversion method
also leads to some oscillatory patterns shown by the negative values around 60 km in15

Fig. 3a.

3.3 Retrieval diagnostics

The temporal and vertical resolution of the inversions can be explored further by analysing
the AVK matrices. Selected elements of the AVK matrices are shown in Fig. 4. The
single spectrum inversions (Fig. 4a) give an AVK matrix which is completely diagonal20

with respect to time (at 3 h time resolution), meaning that the matrix is a block diagonal
matrix where the non-zero elements are confined to elements no further away from the
diagonal than the number of elements in the single measurement state vector. If cor-
relation between the days is introduced (Fig. 4b), the blocks adjacent to the diagonal
block become non-zero and fall off exponentially from the diagonal. This implies that a25

smoothing occurs in the temporal dimension, as already shown in Sect. 3.2. For direct
averaging of the spectra (Fig. 4c) the AVK elements are constant across all blocks in-
side the averaging time, albeit reduced with a factor of roughly 1/16 compared to the

12
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single spectrum inversion to account for the averaging.
The averaging kernels are the rows of the AVK matrix. For clarity, it is convenient

to focus on some particular elements of the rows. The first are the elements which
correspond to the n columns around the diagonal, where n is the number of elements
in the single spectrum state vector. These represent the vertical averaging kernel for5

each altitude. These kernels are seen in the second row of Fig. 4. The vertical aver-
aging kernels for the three inversions are quite similar. Most notable is the reduction of
the values that occurs for the 48 h averaging, but this is compensated by the kernels
spanning a larger number of measurements. Time series inversion produces vertical
averaging kernels that have smaller negative values for elements within the same mea-10

surement compared to single spectrum inversions, but it should be noted that elements
corresponding to different altitudes and different times can be negative (black areas in
Fig. 4b).

The temporal averaging kernels describe the smoothing in time and are given by the
elements corresponding to the same altitude for different times. These are shown in15

the third row of Fig. 4. The single spectrum inversions are simulated by perform the
retrievals with zero correlation in time and thus they have Dirac delta function kernels.
The time series inversions have averaging kernels showing how the retrieval takes val-
ues from adjacent measurements into account. The lower values at the wings show
how the inversions put diminishing weight measurements further away. For the averag-20

ing of spectra, the temporal AVKs have a constant value over the averaging time and
zero elsewhere.

The full width at half maximum (FWHM) of the AVKs in the different dimensions can
be used to roughly describe the resolution of the inversion in those dimensions. Fig-
ure 5a shows the FWHM of the temporal AVKs. The single spectrum inversions (blue25

curve) and the inversions averaging over spectra (black-dashed curve) have a constant
temporal resolution across all the altitudes corresponding to their respective averaging
times. The red and the dashed-green curves show the FWHM from the time series in-
versions. These inversions have a temporal FWHM which varies with altitude. At lower

13



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

altitudes the FWHM is close to 3 h, i.e. the same as the single spectrum inversions. At
higher altitudes the AVKs become wider indicating a reduction of temporal resolution
as more information from adjacent measurements are used in the retrievals. Also, the
larger a priori correlation between days of the NatMean matrix (red curve) compared to
the intermediate (green curve) matrix results in wider AVKs. It is this wider averaging5

time at higher altitudes that allows the time series inversions to extend the retrievals
higher than the single spectrum inversions.

There is some limitation in using only the FWHM to describe the resolution, as it
does not take into account the full shape of the AVKs. The FWHM will have a different
meaning for different shapes. For example, the FWHM in the temporal dimension of10

48 h averaged retrievals will define where the averaging is cut off. For the exponentially-
shaped temporal AVKs of the time series inversions, however, the retrievals can have
significant contributions from measurements beyond the FWHM. This explains why the
time series inversion shows more temporal smoothing above 80 km in Fig. 2, yet, it has
a smaller temporal FWHM in 5a.15

Figure 5b shows the FWHM of the vertical AVKs. The FWHM is more or less the
same for the inversions except for the 48 h averaging over spectra where the reduced
noise in the measurements results in a better vertical resolution. Once again some care
should be taken when comparing the FWHM from the different inversions. In particular,
the negative lobes seen in the 1D inversions will not be accounted for, and thus, AVKs20

with weaker lobes, like those from the time series inversions, will have a larger FWHM,
though this mainly comes from the removal of the lobes, and not a decrease in vertical
resolution.

The measurement response corresponds, as anticipated, to the observed changes
when x is doubled (Fig. 3b). The measurement response for the different inversions25

shows once again that the time series inversion method enables the retrieval of atmo-
spheric values up to roughly the same altitude as the traditional averaging over spectra,
actually exceeding the traditional averaging when using the NatMean covariance ma-
trix.

14
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Retrieval noise describes the error in the retrieved profiles from thermal noise, and
is calculated as GSεG

T (Rodgers, 2000). Figure 5d shows the square root of the
diagonal elements of the retrieval noise matrix. As anticipated, the reduction of thermal
noise in the measurements from the traditional averaging method (black-dashed line)
will result in a lower retrieval noise compared to the single spectrum inversions (blue5

line). This is the result of both a reduction in the thermal noise due to averaging and the
change from using a different a priori uncertainty. The retrieval noise in the time series
inversions ends up a bit below the single spectrum inversions. This shows that some
error reduction is achieved with the time series method, but that the main improvement
it offers is the increased measurement response at high altitudes.10

In addition to the diagonal elements, the retrieval noise covariance matrix will have
non-diagonal elements arising from temporal and vertical correlations. This means that
the retrieval noise for the time series inversions has a correlation in time even though
the underlying thermal noise is uncorrelated in time. This correlation is introduced
through the temporal correlation in the apriori constrains. The FWHM of this correlation15

(not shown) can be different from that of the AVKs. For the time series inversions
(NatMean), it is roughly 15 h up to around 70 km, above this it increases and reaches
50 h at 85 km. For the intermediate a priori covariance matrix inversions, the temporal
FWHM of the retrieval noise stays at around 15 h for all altitudes.

4 Test using a real instrument20

To illustrate the practical use of the time series inversion method, we invert atmospheric
spectra measured from the water vapour radiometer at OSO. When using real mea-
surements, instrument related issues might degrade the efficiency of the retrieval, or
introduce biases, which complicates the retrievals and error analysis.

15
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4.1 OSO-radiometer

The radiometer used to test the time series inversion method is placed at OSO (57.4◦N,
12◦E). It measures water vapour at 22.235 GHz with a resolution of 25 KHz and band-
width of 20 MHz. The system has an uncooled HEMT frontend and uses a 800 channel
autocorrelator backend. Receiver temperature is estimated to 170 K and the calibration5

is done by a hot-cold calibration and beam switching. The spectra are also corrected
for tropospheric absorption. Each spectrum consists of 5 min measurements aver-
aged together into six 3 h-intervals for each day, 00-03, 04-07, 08-11, 12-15, 16-19 and
20-23. The averaging is done so that measurements with lower noise values have a
larger weight in the average. This is done since we assume that the thermal noise in10

the measurements is uncorrelated to the concentration of water vapour during the 3 h
interval. The thermal noise of each 3 h spectrum is determined separately by fitting a
3rd order polynomial to one of the line-wings and calculating the standard deviation of
the residual. For a complete description of the instrument and retrieval parameters see
Forkman et al. (2003) and (Haefele et al., 2009).15

When performing the time series inversions over all days and all channels, the di-
mension of the matrices in Eqs. 3 and 5 become quite large. To reduce the size of the
matrices, only a sub-sample of the channels is selected, as in the theoretical test case.
In the line-centre, all channels are used, but at the line-wings, the channel separation is
increased gradually, reaching 620 kHz at the far ends. In total, 83 of the 800 channels20

are used. Furthermore, the retrievals are performed in 30 day intervals. To minimise
edge effects each interval has a 10 day overlap, which allows for 5 days on each end of
the retrieval intervals to be removed. These intervals are then combined to create the
complete time series. Further discussion regarding the computational demands can
be found in Sect. 5.25

Just as in the theoretical test case, the retrievals are performed on each 3 h spec-
trum separately, with the time series inversion method, and a 48 h moving average of
spectra. However, since the thermal noise in the measurements varies with time, the
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simple averaging is replaced with a weighted average giving measurements with lower
noise more weight.This is done to simplify the comparison with the time series method.
In addition, since some gaps exist in the measurements, some 48 h averages have
fewer measurements than the nominal 12.

The inversions are set up as described in Sect. 3, except that since the noise level5

varies with time, the thermal noise in each measurement must be estimated from each
corresponding spectrum rather than having a constant noise level as in Sect. 3.3. Addi-
tionally, an instrumental baseline (5th order polynomial) is added to the state vector and
retrieved. This polynomial fit is given a priori uncertainties from 10 K (0th order) to 2 K
(5th order), and without correlation in time. Since the atmosphere over OSO changes10

over time, the a priori is also set to vary according to the climatologies (temperature
and water vapour) in Sect. 3, rather than have a constant value.

4.2 Dealing with measurement gaps

The OSO time series has periods where no measurement data could be recorded.
These periods are mainly caused by rain. Data gaps create additional problems when15

handling measurement series. A time interpolation using neighbouring retrieved data
requires the user to select an interpolation strategy (nearest, linear, spline . . . ), as well
as to make subjective judgements on the validity of these interpolated values based on
experience and knowledge of the atmospheric variables measured.

The time series inversion method provides an elegant solution to this problem. To20

obtain values at the gaps, x is expanded to cover the times where measurements are
lacking. This increases the size of x to n ·(N+N ′), where N ′ is the number of missing
measurements, and N the number of times with measurements. n and later m are
defined as in Sect. 2.2. The expansion of x allows the MAP algorithm to retrieve the
missing values, maintaining a consistent inversion methodology over the complete time25

period.
Since the size of x is increased, the number of columns in K must increase corre-

spondingly. This gives K a size of N ·m× (N +N ′) ·n. The elements in the N ′ extra
17
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columns will be zero as no measured spectra exists for this time in y. Physically this is
equivalent to only using a virtual measurement of the a priori atmosphere at the time
of the data gap. However, this does not mean that only a priori information is used for
the retrieval of corresponding state. Since Sa contains information about the temporal
correlation of the atmosphere, the MAP method will automatically use information from5

neighbouring measurement to “optimally” estimate x at the time of the measurement
gap.

For an “interpolated” value, the amount of information taken into account from nearby
measurements is given by the corresponding measurement response. The measure-
ment response will depend on the a priori uncertainty matrix used and the amount of10

noise in the adjacent measurements. For the single spectrum inversions the measure-
ment response will be zero at the interpolated values, whereas for the time seres inver-
sions it will increase with increasing a priori temporal correlation. The measurement
response will provide a value on which the validity of the interpolated value can be de-
termined. This value is based on the underlying statistical properties of the retrievals,15

and thus a consistent selection scheme can be applied, for example, by only using data
points above a certain measurement response threshold (e.g. 0.8). It should however
be noted that for further data analysis (e.g. trend estimation), the exact influence of the
a priori and AVKs will have on the analysis must be considered, just as with data from
any other retrieval methods based on MAP.20

4.3 Result from time series inversions

Retrievals from the OSO instrument were done for the entire measurement period
(2002-2012). For comparison of the different inversions methods, an example period
from end of April to end of June 2005 was selected for further study as this period of-
fers a long set of continuous measurements, with few measurement gaps. The results25

of the retrievals at three different altitudes are shown in Fig. 6 in units relative to the
apriori (i.e. 1 = apriori concentration). These results include estimated values where
data gaps occur (13 of 368 times), interpolated using the method discussed in Sect.
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4.2.
By comparing the single spectrum retrievals (blue curve) to the retrieval of 48 h av-

eraged spectra (black-dashed curve), the effect of the averaging can be seen. The
variability is reduced from 1σ∼ 0.22 in the single spectrum inversions to 1σ∼ 0.15 in the
averaged ones, with the averaged spectra having a longer temporal correlation. This5

correlation has two causes. The first one is the temporal correlation of the atmospheric
changes over the instrument, the other cause is the thermal noise which, as discussed
earlier, will also have a correlation in time when averaging is performed. In addition to
the change in variability, the averaged spectra show a clearer deviation from the a priori
at higher altitudes. This shows the effect of the increased measurement response at10

these altitudes.
The time series inversions (red and dashed-green curves) show an increased mea-

surement response at higher altitudes similar to the 48 h averaged inversions, and the
variation is correlated over several days. The more longer-term averages, over a cou-
ple of days, seems to follow the averaged inversions. At 76 km the measured mean15

over the entire period is actually lower than the a priori mean concentration. This illus-
trates why it is important to include the uncertainty in the a priori mean in the inversions.
Without this part, the measurement response would be lower and the inversions would
not reveal this information. At lower altitudes (52 and 64 km), the time series inversions
preserve many of the short-term variations, indicating a high temporal resolution at20

these altitudes.
It is hard to distinguish whether the short term variations are a result of noise in the

instrument or natural variance in the atmosphere. However, the main point of these
retrievals is not to determine the true water vapour concentration in the atmosphere,
but rather to show that the time series inversions produce comparable results to the25

single spectrum inversions at lower altitudes while producing results more similar to
those of the averaged inversions higher up.
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4.4 Averaging kernels

Since the thermal noise in the real measurements varies with time, the AVKs vary as
well. Thus, to study some typical AVKs, three dates are selected for further inspection.
Figure 7 shows the magnitude of the thermal noise in each of the measurements from
the time series in Fig. 6, and the selected measurements are marked by the three cir-5

cles. The first measurement (2005-05-10, red circle) is from a measurement with a low
noise value. The second (10 May 2005, green circle) and third measurement (10 May
2005, blue circle) are separated by only four hours and have a high and intermediate
thermal noise value respectively.

The measurement response of the three measurements is shown in the top row of10

Fig. 8. The measurement response of the low noise measurement is similar to the
theoretical test case above 60 km. Below 60 km the measurement response starts
declining due to the fitting of the instrumental baseline polynomials. The similarity
above 60 km is not surprising considering that the noise of the measurement is 0.043 K,
which resembles the noise in the test case of 0.037 K. The two other cases, however,15

have much higher noise than the test case with values of 0.16 K and 0.07 K. This results
in a very low measurement response for single spectrum inversions, but the time series
inversions and the averaged spectra still have a good measurement response between
55-75 km.

The amount of information taken from each measurement is given by the temporal20

averaging kernels shown in the second row of Fig. 8. However, unlike the averaging
kernels from the theoretical test case, the temporal averaging kernels are not smoothly
exponentially-declining (see Fig. 4), but vary depending on the weight placed on each
adjacent measurement. This variation comes from the fact that the MAP method puts
a lower weight on noisier measurements. In fact, the temporal averaging kernels from25

the measurement with intermediate noise (Fig. 8f) show that the inversion gives little
weight to the noisy measurement from 3 h earlier. In the high noise case (Fig. 8e), it
can be seen that the adjacent measurement is actually weighted more than the central
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measurement, as the AVK has its peak displaced from the centre.
The last row of Fig. 8 shows the FWHM of the temporal AVKs. For the low noise

measurement (Fig. 8a) the FWHM is similar to the theoretical test case above 60 km
having a minimum width at around 60 km before increasing in width with increasing
altitude. For the measurements with higher noise, however, the irregular shape of the5

temporal AVKs means that the interpretation of the FWHM is not as straightforward as
in the theoretical case. The maximum might not be centred at zero, and the position of
the half-value point might even be ambiguous. As a result the FWHM of the temporal
AVKs from these measurements (Fig. 8b, 8c) differs quite a lot from the theoretical test
case, especially for the high noise case where it fluctuates at lower altitudes.10

5 Computational demands

Though there are several advantages of expanding the inversions into the temporal
dimension, a drawback is the increased computational demand. The computational
demand includes both larger memory usage and the increased number of CPU opera-
tions required for the matrix operations. This paper will not go into detail on optimising15

the efficiency of the retrievals, but a discussion of the major issues is required.
Depending on the retrieval setup, either K, Sε or Sa will have the largest memory

demand. All three matrices tend to be diagonal heavy (i.e. highest values around the
diagonal), thus considerable memory can be saved storing them as sparse matrices.
For Sa, this could require some cut-off value for the covariance, as the exponential20

correlation theoretically never reaches zero.
Considering CPU cycles, the linear algebra can be optimised for either n<m (n-

form) or n >m (m-form) (Rodgers, 2000), where n, m (and later N ) are defined in
Sect. 2.2. For the retrievals in this paper n<m, and the most demanding operations
are the calculation of KTS−1ε K, which scales as N3n2m, S−1a , and (KTS−1ε K+S−1a )−1,25

which both scales as N3n3.
The available computational power limits the size of N,n, and m. In the retrievals
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from the OSO radiometer, N is limited to measurements from 30 consecutive days
(N ∼ 180). To limit m, we use a simple solution of only selecting a 83 channel subset of
the 800 channels in the spectrometer. Other methods make it possible to take advan-
tage of all the channels while keeping down the size of m. These might be as straight-
forward as binning channels at the line wing, i.e. averaging the channels together to5

reduce the noise, or more advanced data reduction methods based on eigenvector
expansions (e.g. Eriksson et al. (2002)).

In addition to reducing the size of the matrices, the algebra itself can be optimised. In
particular, an explicit inversion of (KTS−1ε K+S−1a ) can be avoided by instead solving
Eq. 3 using methods such as Cholesky decomposition (Livesey et al., 2006) or the10

Iterative Bi-conjugate Gradient method (Redburn et al., 2000).
Data reduction algorithms and optimisation of the linear algebra might indeed im-

prove the practical use of the time series inversion methods, but a thorough discussion
of such optimisation is beyond the scope of this paper as it will be highly dependent on
the specific retrieval setup and needs.15

6 Discussion and Conclusion

This paper presents a method for inverting time series data from ground-based instru-
ments by extending the retrieval method into the temporal dimension. This is done by
directly specifying the correlation of the atmosphere in time to achieve “optimal aver-
aging” at all altitudes. The implications and analysis of the temporal averaging kernels20

are discussed thoroughly in the paper, including their importance and limitations in
describing the temporal resolutions of the retrievals.

To investigate the effect of using different temporal correlations, the time series inver-
sions are performed with two different a priori matrices: one modelled to represent a
realistic a priori uncertainty (NatMean), and one intermediate matrix with shorter tem-25

poral correlation. Interestingly enough, in both the simulated retrievals (Fig. 5c) and
the practical example (Figs. 8a, 8b, and 8c), the retrieval using the intermediate covari-
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ance matrix shows almost the same increase in measurement response between 60
and 80 km as the retrievals using the realistic covariance matrix. This is confirmed as
the difference in the retrieved data from the OSO radiometer between the two matrices
(Fig. 6) is minuscule below 80km.

The similar increase in measurement response for both matrices shows that the ma-5

jor improvement of the time series inversions comes from the basic step of extending
the inversions into the temporal dimension rather than to specify the covariance matrix
in detail. This is important for the practical use of the method since it means that the
method can be applied to cases where the temporal correlation is unknown, or hard
to specify. In these cases care should however be taken, especially if the atmospheric10

variable has a systematic, e.g. diurnal, variation in time. Such variations might be hard
to specify using a normal distrubution described by a simple covariance matrix, and as
such might be unsuited for MAP retrievals.

The demonstration of the method using real data retrieves 10 years of water vapour
data from the OSO radiometer. During this test case the computation time for the15

time series method was less than one order of magnitude larger than for single spec-
trum inversions. This shows that the computational demand, though increased, is not
insurmantable. For large scale retrievals, however, further optimisation might be ad-
vantageous, in particular, the data reduction method for reducing the size of the mea-
surement vector can easily be improved.20

The practical demonstration also shows how the time series method can be used
to interpolate data to times where no measurements are performed. The interpolation
is carried out directly during the retrieval. It is based on the same underlying a priori
statistics of the atmosphere, and it automatically takes into account the quality of the
nearby measurements. By using the measurement response, a selection of the valid25

interpolated values can be made. This selection is consistent with the retrieval, and
removes the need for ad hoc, post-processing selection algorithms to fill data gaps.

Some earlier studies have also used the temporal dimension in the retrievals, in
particular, the AURA-MLS retrieval of ’noisy’ products (Livesey et al., 2006) is similar
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to the time series method suggested here. The difference is that, whereas the MLS
retrievals invert all spectra simultaneously into one mean profile over the entire time
period, the time series inversions is based on the MAP method and determines the
optimal averaging period at each point and produce a complete time series.

The advantages of using the time series inversion technique will depend on the in-5

strument and species studied. This paper has focused on water vapour retrieval from a
microwave radiometer, but the method will similarly benefit instruments retrieving other
species such as O3, or using other methods, such as FTIR. Another useful application
of the method is the retrieval of several species, or atmospheric variables requiring
different averaging times.10

An additional, interesting aspect of the approach is the possibility to also consider
time correlations of instrument variables. For example, the practical test case used
here included the retrieval of polynomial coefficients to describe ”baseline ripple”. The
a priori variability of these coefficients are set to be the same, independent of integra-
tion time, and uncorrelated between measurements. However, if the temporal correla-15

tion of baseline changes is determined, it can be incorporated in time series inversion.
This would result in an extension of the measurement response downwards compared
to retrievals using a single spectrum or 48 h averaged spectra.

The time series inversion technique offers several advantages over traditional aver-
aging. In particular it offers a way to produce a single consistent dataset from retrievals20

that span a wide set of altitudes, optimising the temporal resolution at each altitude.
This removes the need for multiple datasets for variables requiring different integration
times. However, as the method increases the dimensions of the retrieval and resulting
averaging kernels, it also increases the complexity for any end-user using the data.
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Fig. 1: The covariance matrices used for the a priori information on water vapour. Plot (a) de-
picts the temporal and (b) the vertical elements of the covariance matrix. The matrices represent
natural variability (Nat), uncertainty in a priori mean (Mean), the sum of natural variability and
uncertainty in mean (NatMean), single spectrum inversions (1D) and an intermediate covari-
ance matrix (Inter). The structure of the NatMean a priori covariance matrix is shown in plot
(c). A diagonal matrix block is highlighted by the green square and an off-diagonal block is
highlighted by the black square. The axis labels are multiples of n, i.e. the length of the single
spectrum state vector.
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(a) Single spectrum (1D)
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(NatMean)

50 100 150 200

40

60

80

100

Hour

(c) Running averaging of
spectra (48 h)

50 100 150 200

40

60

80

100

Hour

0.5

1

1.5

2

2.5

Fig. 2: Retrieved concentration of water vapour, relative to a priori, from the simulated re-
trievals. The true water vapour concentration is set to two (i.e. doubled) at the 120th hour. Plot
(a) is from the single spectrum (1D) inversions, plot (b) from the retrievals using the time se-
ries inversion method with the NatMean covariance matrix, and (c) is from the retrievals using
spectra averaged over 48 h.
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(a) 80th hour
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Fig. 3: Retrieved water vapour profiles (relative to the a priori) from the simulated retrievals.
The different curves represent the single spectrum inversions (blue), the time series inversions
using the NatMean (red line) and the intermediate covariance matrix (dashed-green), and the
inversions using the averaged spectra (black-dashed). Plot (a) is the retrieved profile at the 80th

hour, when the true profile is equal to the a priori. Plot (b) is the retrieved profile at the 160th

hour, after the step-increase, when the true profile is double that of the a priori.
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(a) Temporal AVKs (1D)
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Fig. 4: Selected elements of the averaging kernels for the theoretical test case. The first row
(a-c) shows the structure of the AVK matrices of single spectrum retrieval (left), time series
retrieval with the NatMean a priori uncertainty matrix (centre) and 48 h averaging of spectra
(right). The axis labels are multiples of n, i.e. the length of single spectrum state vector. The
second row (d-f) shows vertical AVKs for the respective cases and the third row (g-i) temporal
AVKs for the respective cases. For the vertical and temporal averaging kernels each of the
curves corresponds to different altitudes.
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(a) FWHM of temporal AVKs
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(b) FWHM of vertical AVKs
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Fig. 5: Properties of the simulated retrievals at the the 120th hour. Plot (a) is the FWHM of
the temporal AVKs, plot (b) is the FWHM of the vertical AVKs, plot (c) is the measurement
response from the retrievals, and plot (d) is the retrieval noise from the retrievals in units rela-
tive to the a priori concentration. The different curves represent the single spectrum inversions
(blue), the time series inversions using the NatMean (red) and the intermediate covariance ma-
trix (dashed-green), and the inversions using the averaged spectra (black-dashed).
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Fig. 6: H2O retrievals from the summer of 2005 obtained by the OSO radiometer. The result is
relative to the a priori concentration and are shown for 76 km (a), 64 km (b) and 52 km (c). The
different curves represent the single spectrum inversions (blue), the time series inversions using
the NatMean (red) and the intermediate covariance matrix (dashed-green), and the inversions
using the averaged spectra (black-dashed).

1. May 15. May 1. Jun 15. Jun

0.05

0.1

0.15

0.2

∆
T

[K
]

Fig. 7: 1σ of the thermal noise from the OSO radiometer from the summer of 2005, estimated
as described in the text. The measurements are performed with 3 h integration time. The circles
show the three days selected for further AVK analysis.
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Fig. 8: Properties of the AVKs from three selected measurements from the OSO radiometer.
The left column shows the low noise measurement (10 May 2005), the centre column shows
the high noise measurement (21 May 2005), and the right column shows the intermediate noise
measurement (21 May 2005). The first row (a-c) depicts the measurement response of the
respective measurements, the second row (d-f) temporal averaging kernels of different altitudes,
and the third row (g-i) the FWHM of the temporal AVKs. The different curves in the first and
last row represent the single spectrum inversions (blue), the time series inversions using the
NatMean (red) and the intermediate covariance matrix (dashed-green), and the inversions using
the averaged spectra (black-dashed).
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