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ABSTRACT.- In this work we study the effects of systematic eamtlom errors on the inversion

of multi-wavelength (MW) lidar data, using the wkilown regularization technique, to obtain
vertically-resolved aerosol microphysical propesti€he software implementation used here was
developed at the Physics Instrumentation CenteZ)(i Troitsk (Russia) in conjunction with
NASA/Goddard Space Flight Center. Its applicabilty Raman lidar systems based on
backscattering measurements at three wavelengts &32 and 1064 nm) and extinction
measurements at two wavelengths (355 and 532 nm)bkan demonstrated widely. The
systematic error sensitivity is quantified by fidgtermining the retrieved parameters for a given
set of optical input data consistent with thrededdnt sets of aerosol physical parameters. Then
each optical input is perturbed by varying amouwamd the inversion is repeatedsing bimodal
aerosol size distributionsye find a generally linear dependence of the ee¢d errors in the
microphysical properties on the induced systenetiars in the optical data. For the retrievals of
effective radius, number/surface/volume concemmgtiand fine mode radius and volume, we
find that these results are not significantly aelcby the range of the constraints used in
inversions. But significant sensitivity was fourdthe allowed range of the imaginary part of the
particle refractive index. Our results also indéc#tat there exists an additive property for the
deviations induced by the biases present in thizichehl optical data. This property permits the
results here to be used to predict deviations tineked parameters when multiple input optical
data are biased simultaneously as well as to stbdyinfluence of random errors on the
retrievals. The above results are applied to qoestiegarding lidar design, in particular for the

space-borne multi-wavelength lidar under considemgbr the upcoming ACE mission.
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1. - INTRODUCTION

The importance of atmospheric aerosol particlesEamnth’s climate and on environmental
problems is widely recognized. Particularly, theéefgovernmental Panel on Climate Change
2007 (IPCC 2007) [Forster et al., 2007] stated #tatospheric aerosol particles can produce a
negative radiative forcing that is comparable ingmtude, but opposite in sign, to the forcing
induced by the increase in greenhouse gas contientrddowever, according to the IPCC,
radiative forcing by atmospheric aerosol partidias greater uncertainties (twice the estimated
value of the forcing) due to the large spatial dechporal heterogeneities of atmospheric
aerosols [e.g. Haywood and Boucher, 2000], the watesty of aerosol sources [e.g. Dubovik et
al., 2002], the spatial non-uniformity and intertiaiicy of these sources [e.g. Kaufman et al.,
1997], the short atmospheric lifetime of aeros@g.[ Seinfield and Pandis, 1998], processes
occurring in the atmosphere [Eck et al., 2010] aatbsol dynamics [e.g. Pérez-Ramirez et al.,

2012].

Because of these challenges, the characterizatiatmmspheric aerosols is being made
through intense observational programs using rersetsing techniques. For example, NASA
has led several space-borne missions to study @eposperties worldwide (e.g. the MODIS
instrument on the TERRA and AQUA platforms). Howeveatellite measurements possess
lower temporal resolution than ground-based systdros example, the AERONET global
network [Holben et al., 1998] is providing largetatsets of high temporal resolution ground-
based aerosol measurements at more than 400 lesatimrldwide. But the aerosol retrievals by
AERONET and by many satellite platforms only pravidolumn-integrated properties. By
contrast, the lidar technique offers vertical dno§j of aerosols, from the first lidars in the garl
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1960s to the more sophisticated Raman lidars [Wiateet al, 1992, Ansmann et al., 1992] or
High Spectral Resolution Lidars (HSRL) [Shipleyaét 1983; Grund and Eloranta, 1991; She et
al., 1992, 2001]. Moreover, the Nd:YAG laser ha®rbeised as the transmitter for multi-
wavelength Raman lidar systems (MW) which have ji&eth the retrieval of the profile of
aerosol microphysical properties [e.g. Muller et 2001,2011; Wandinger et al., 2002; Bockman
et al., 2005; Kolgotin and Mdller, 2008; Noh et 2009; Balis et al., 2010; Alados-Arboledas et
al., 2011; Tesche et al., 2011; Veselovskii et 2012; Papayannis et al., 2012; Wanger et al.,

2013; Navas-Guzman et al., 2013].

The first attempts to obtain aerosol microphysigadperties from MW Raman lidar
measurements were done at the Institute for TrdpgpResearch (IFT) in Leipzig (Germany)
using the regularization technique [Muller et &B99a,b; 2000]. The first retrievals done at the
IFT were based on measurements from a complex $gsiem providing six backscattering
(355, 400, 532, 710, 800 and 1064 nm) and two etxdin (355 and 532 nm) coefficients.
Following these first efforts, a software capabpilitased on the regularization technique was
developed at the Physics Instrumentation CenteC)(i1 Troitsk, Russia. The retrieval code
development at PIC has been further advanced asdntarporated a model of randomly-
oriented spheroids for retrieving dust particleganies [Veselovskii et al., 2010Miiller et al.,
[2001, 2004, 2005] and Veselovskii et al., [200P04] demonstrated the capability of the
regularization techniquéo retrieve aerosol microphysical properties frantidar system that
provides just 5 optical signals using a tripled YIS laser. The optical data provided by this
system were backscatter coefficients (I3) at 353,88®%1 1064 nm and extinction coefficient$ (
at 355 and 532 nm (hereafter this configuratiorefsrred as 33 +0d. The inversion procedure

makes use of averaging of the solutions in theniticiof the minimum of a penalty function, or
4
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discrepancy [Veselovskii et al., 2004]nis averaging procedure increases the reliabafthe
inversions even when the input optical data arecédd by random errors [e.g. Veselovskii et al.,

2002].

However, lidar systems are very complex and gelyeqabssess both random and
systematic errors. Random errors arise naturallynfithe measurement process and some
preliminary random error sensitivity studies werene by Miuller et al.,, (1999a,b) and
Veselovskii et al., (2002, 2004). But to date, ¢hisra lack of studies of the effects of systematic
errors on the microphysical inversior8ystematic errors in lidar systems come from many
different sources and need to be considered. FEnenhardware point of view, systematic errors
can be due to, for example, non-linearity of a pHetector or errors in calibration of the optical
data or the effect of depolarization due to optiogberfections in channels that are sensitive to
polarized light. From the methodological point aéw, systematic errors can be caused by, for
example, errors in the assumed atmospheric moledetesity profile, the selection of the
reference level (an “aerosol-free” region that nzeyually contain a small concentration of
particles), or the use of an incorrect extinctiorbaickscatter ratio to convert backscatter lidar
measurements to extinction.

In general, we expect that systematic errors sadhese can affect the retrieval. The aim
of this work, therefore, is to study the sensiyivaf microphysical retrievals by the regularization
technique to systematic variations in the inputicgptdata provided by the 3@ +o didar
configuration Particularly, we will focus on the study of bimoddte distributions widely found
in nature (e.g. Dubovik et al., 200%Ye will show that the results obtained can alsaged to
assess the sensitivity of the retrievals to randamors in a new waylhe study involves

simulations based on three different bi-modal adrasze distributions, one with a large
5
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predominance of fine mode, another with slight preothance of coarse mode and the last one
with slight predominance of fine mode.

The procedure that we used is the following: fite# optical data consistent with the
three aerosol size distributions described abogeganerated using Mie theory. Then the optical
inputs are systematically altered to provide a km@mount of systematic error in each of the
individual input data. The inversion code is rumngsboth the biased and unbiased optical data
and the deviations in the retrieved aerosol pararsetre quantified. The methodology and the
simulation approach are presented in section 2lid®e8 is devoted to the results. Finally, in

Section 4 we present a summary and conclusions.

2- METHODOLOGY AND SIMULATION APPROACH

2.1.- Inversion technique

The optical characteristics of an ensemble of pepa&fse aerosol particles are related to
the particle volume distribution via Fredholm int@lgequations of the first kind as follows

[Mdaller et al., 1999a; Veselovskii et al., 2002]:
T
g;,(&) = fr;r:;” K, n(m, 7, A)n(r)dr (1)
Where ' corresponds either to backscatter (RB)ertinction () coefficients, gA;) are the
corresponding optical data at wavelengtn(r) is the aerosol size distribution expressetha
number of particles per unit volume between r asrdlr, and Kn(m,ra;.) are the number kernel

functions (backscatter or extinction) which are eh@alculated from Mie theory assuming

spherical particles and depend on patrticle refragtidex ‘m’, particle radius ‘r’ and wavelength



132 ‘N. Finally, rmin and max correspond to the minimum and maximum radius uséde inversion.
133 The size distribution in Equation 1 can be writterierms of surface (s(r) =u#n(r)) or volume
134 (v(r) = (4/3wr’n(r)) size distribution. The corresponding kernale obtained by dividing

135 K;n(m,rAi.) by 4er® and (4/3)r° respectively, and are thus given by:

: K,s(mr,2)= W i
K (mr.2

i} Ky (mr,2)= 31275:'?) i

138

139  where Ks(m,r)) and Ky(m,r)) are the surface and volume kernel functions, eetsgely.

140 Generally, the volume kernel functions are usedthe retrieval procedure of aerosol
141 microphysical properties [Heintzenberg et al., 19Qing et al., 1989]. Thus, we perform the
142 retrieval of volume size distribution using the wwmle kernel functions of equation 3. More
143 details about the computation of these volume Kdumetions from Mie extinction coefficients

144  for spherical particles can be found in the refeesrne.g. Bohren and Huffman, 1983].

145 The regularization technique used here to solvatamu 1l has been discussed extensively
146 elsewhere [e.g. Veselovskii et al., 2002, 2004,520ind thus we provide here only a brief
147 overview. The key point is identifying a group ofgions which, after averaging, can provide a
148 realistic estimation of particle parameters. Sudntification can be done by considering the
149 discrepancy) defined as the difference between input daid g(d data calculated from the
150 solution obtained. The retrieval uses an averagnogedure that consists of selecting a class of
151 solutions in the vicinity of the minimum of disceepcy [Veselovskii et al., 2002, 2004]. Such an
152 averaging procedure stabilizes the inversion, agitfal solution for size distribution and aerosol
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parameters is an average of a large number of ithdiV solutions near the minimum of
discrepancy [Veselovskii et al., 2002]. In generad average approximately 1% of the total
number of solutions in arriving at the best estaratthe particle parameters.

The inverse problem considered here is under-d@tednso constraints on the inversion
are needed. We consider a set of possible valugne gfarticle refractive index as well as a set of
possible radii within a certain size interval. langral, the retrieval result will depend on the
range of parameters considered: the larger theeydhg higher the uncertainty of the retrieval as
determined by the spread in the solutions obtaiSedhe range of parameters should be chosen
reasonably. In our research, the real part of gresml refractive index (fnis allowed to vary
from 1.33 to 1.65 with a stepsize of 0.025, while imaginary part (jhvaries over the range of
0-0.01 with a stepsize of 0.001. The size intefeakhe inversions was limited to 0.075 — 5 ym
with a stepsize of 0.025 pm. Tests revealed tlthidiag the stepsize of the different parameters
in the inversion does not decrease the spreadeirsalution. Therefore, we take the stepsizes

used as adequate for the purposes of the presesitigéy study.

2.2.- Sizedistribution for the ssmulations

For these simulations, we used bimodal aerosoldstgbutions given as [Veselovskii et

al., 2004]:

dn(r) _ N[y \
din(r) 4.2z)"no, 2(|I’10i)2 “)
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Where N;; is the total particle number of thiér mode, Ingi] is the mode width of thegh mode
and ri" is the mode radius for the number concentratiorridigion. The indexi = f, c
corresponds to the fine mode and the coarse medpectively. In the retrieval procedure, the
fine mode is taken to include all particles witllites between 0.075 pm and 0.5 pm while the
coarse mode includes all particles with radius ketw0.5 um and 5 pm. On the other hand, the
same distribution can be written for volume concaimdn v(r), which is usually preferred
because both fine and coarse mode can be easiiyngdished. Moreover, the standard
deviations of n(r) and v(r) are the same when ushng relationships between radius and

concentrations for each mode given by [Horvath.et890]:

¥ = hexp [(Enr— Inri”}:]
: : 2(Ing)? 5)
Vi = Ny ;H (Tinj : exp E (Ing) 2] (6)

We consider three types of aerosol size distrilmgtifor the simulations which we call type I,
type 1l and type Ill. These size distributions ased to approximate real aerosol types found in
the atmosphere. All types usé 0.14 um, lo; = 0.4, ¢’ = 1.5 um and ks, = 0.6.These mode
radii and widths are representative of those preidy Dubovik et al., (2002) in the AERONET
climatology database and are thus considered tesept a large fraction of naturally occurring
aerosolsThe differences between type I, Il and Il are tégo of fine and coarse modeyV ).
Type | yields \&/Vi. = 2 and represents a distribution with a predomieaof fine mode. This
type can be considered to represent industrial @aohass burning aerosols [e.g. Eck et al.,

2003; Muller et al., 2004; Schafer et al., 200844 Il yields \i/V« = 0.2 and corresponds to a
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slight predominance of the coarse mode over theerfinde [e.g. Smirnov et al., 2002, 2003; Eck
et al., 2005, 2010]. This type is consistent witmixture of dust/marine aerosol and those of
pollution or biomass burningzinally, type Il yields \¢/V = 1 and corresponds to a slight
predominance of fine mode over the coarse mode Jaaget al., 2007: Ogunjobi et al., 2008;
Yang and Wening, 2009; Eck et al., 200%his type is representative of predominance of
pollution or biomass-burning but with considerabigluence of dust particlesFigure 1
illustrates the three size distributions used.demvenience, the size distributions of Figure 1 are
normalized.Finally, if we would includea strong predominance of coarse mode (e.g. marine o
dust aerosol) in 3R +odidar measurements, the effects of polarizaticsh ran-sphericity should
be taken into account and previous work indicateg the use of kernel functions for non-
spherical particles can improve the retrievals @agskii et al., 2010] Here, however, our
purpose is to calculate sensitivities due to ran@dmu systematic uncertainties so we consider
only spherical (Mie) kernels and thus exclude drithstion with a strong predominance of the

coarse mode.

[Insert Figure 1 here]

The simulation consists of generating the threek&eattering and two extinction
coefficients for the @ + 2a lidar configuration using Mie theory for the threerosol size
distributions: type I, type 1l and type Ill. Thesgptical data are generated for six different
configurations of aerosol refractive indices; (alues of 1.35, 1.45 and 1.55 andwvalues of
0.005 and 0.01)rom previous studies (Muller et al., 1.999; Vesski et al., 2002) error in m

was initially established as +0.05 while error in was approximately 50%. Moreover, the

10



218 AERONET network provides refractive indices withrywesimilar errors (Dubovik et al., 2000).
219 Thus, the range of refractive indexes proposedhersize distribution is enough to cover most

220 of the values obtained by AERONET (Dubovik et 2002).

221 The regularization inversion is then performed loese data and we obtain the retrieved
222 microphysical parameters M. The next step consists of applying a systentatis, denoted as
223 Ag, to one optical datum at a time. The bias vanesf-20% to +20% in 8 intervals. For each of
224 these induced biases, the inversion is performedl @nnew size distribution and set of
225 microphysical parameters, pM, are then obtained. The comparisons to be perfbrare
226 expressed as the percentage difference 10Q5{MMe)/M e This procedure is applied to each

227 of the 5 optical data used in thg 8 2a lidar configuration.

228

229 3.-RESULTS

230 3.1.- Uncertaintiesin theretrieval of particlerefractiveindex

231 The 3 + 2a lidar configuration permits the retrieval of pak#i refractive index, both real
232 (my) and imaginary (m parts [e.g. Veselovskii et al., 2002], by useha regularization scheme.
233 But the inverse problem of equation 1 is underueitged and, as already stated, constraints are
234 needed to permit solutions to be obtained. Padrbylthe selection of the range of refractive
235 indices permitted in the retrieval is important. Bemmented, we limited the range of m
236 between 1.33 and 1.65 and from 0.0 up to 0.01. These ranges cover most tybeserosol

237 particles present in the atmosphere, except fongly absorbing particles such as black carbon.
238 Moreover, given that the longest wavelength measerg used here is 1064 nm, the technique

239 has reduced sensitivity to the coarse mode of #resal distribution. Thusio stabilize the
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retrievals, the maximum radius of the retrievaémal was set to 5 pnAdditionally, the kernel
functions for radius below 0.075 are very neardmzand thus the minimum radius allowed was
set to 0.075 um. The behavior of the kernel fumgtigersus wavelength can be consulted, for

example, in Chapter 11 of Bohren and Huffman, 1983.

In the analysis that follows, we do not presenulteson the refractive index sensitivity
analysis. The reason for this is that we found that retrieval of refractive index is very
sensitive to the range of permitted values foriti@ginary part of the refractive index. Changing
the range of permitted values of the imaginary part change the retrieved refractive index
significantly while not significantly affecting thealues of the other retrieved quantiti€sr
example, computations allowing;no range up to 0.1 provides retrieved values ¢foifn
approximately 0.03, when the values of the inpeg slistributions where 0.01-0.00Bherefore,
recalling that the retrieval is under-determineds @onclude that we can provide reasonable
estimates of the refractive index only with reaseaconstraints for mAll these results just
magnify the point that refractive index retrievale difficult with the MW lidar technique and
that somea priori knowledge of the aerosol absorption is helpfutdostrain the inversion. A
more detailed discussion about the limitationshef &veraging procedure used here to retrieve

accurate values of particle refractive index i¥@selovskii et al., [2013].

3.2.- Effectson theretrievals of systematic errorsin the optical data.

For the scheme described previously, Figure 2 ptesthe sensitivity analysis for the
retrieval of effective radius 4f). Every point corresponds to the mean value ofsthelifferent
combinations of aerosol refractive indices used@enerating the set of optical data. The error

bars shown are the standard deviations of thesen malues. Generally linear patterns are
12



262 observed for the deviation in retrieved value @ffor differing biases in the input optical data
263 for all of types I, Il and Il aerosols. As the diar patterns pass through the origin, least-squares
264 fits of the form Y = aX were done to the pointswshan the plot. Given the definition dfre =

265 Trefipias— lefire  POSItive slopes indicate higher values gfwhen the optical data are affected by
266 positive biases than when they are not affectedibges, while for negative slopes just the
267 opposite occurs. Moreover, Figure 2 reveals theesgemeral patterns for all of types I, 1l and Il
268 for each optical channel, with only small changedhe absolute values of the slopes of the
269 linear fits. It is quite apparent that the retrisvare more sensitive to biases in the extinction
270 coefficients. The lowest sensitivities are to b&ase(355 nm) ang(532 nm) while for biases in
271 B(1064 nm) the sensitivity of the retrievals is iatween those obtained for extinction and
272  backscattering coefficients at 355 and 532 nm. riéigualso reveals that the linear patterns for
273  different optical channels have different signshef slopesConsidering the parameters to which
274 the retrievals are most sensitive, the linearffie @55 nm) gives negative values of slope (a = -
275 1.68 £ 0.12 for type |, a = -1.74 + 0.03 for typeahd a = -1.84 £ 0.04 for type Il ), while for
276 (532 nm) the slopes are positive (a = 1.51 + Odd4yipe |, a = 1.82 £ 0.09 for type Il and a =

277 1.71 £ 0.10 for type ).

278 [Insert Figure 2 here]
279 The Angstrom law, either for the extinctic“(‘l} = kAT o for the backscattering
280 B(A) = kATTE can be used to help understand the sign of theeslap Figure 2. For the

281 wavelengths used here, the Angstrém expongnendng characterize the spectral features of
282 aerosol particles and are related to the sizeeptrticles: Large values qf andng are mainly

283 associated with predominance of fine mode partielege low values are associated with a
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predominance of coarse mode [e.g. Dubovik et 8D2P Moreover, many works [e.g. Alados-
Arboledas et al., 2003; O'Neill et al., 2005; Vesekii et al., 2009] found an inverse
relationship between the Angstréom exponent fometibn and the effective radius: large values
of Angstrom exponent are associated with low valiegs while just the opposite occurs for
low values of Angstrom exponent. Considering thid given that(355 nm) is generally larger
thana(532 nm), a positive bias im(355 nm) increases the spectral difference w{%B82 nm)
and would increase the value of the Angstrom expbaad thus would result in a decrease in
the retrieved particle radius. This agrees with tiegative slopes af(355 nm) observed in
Figure 2. On the other hand, a positive bias(®32 nm) reduces the spectral difference with
a(355 nm) and thus serves to decreaselhus, we would expect an increase in the retdeve
particle radius which agrees with the positive sbpbserved foa(532 nm) in Figure 2. The
slopes of3(355 nm) and(532 nm) possess mostly the same sign as the porrésg extinction
coefficient at each wavelength, and similar logimaerning the relationship of the Angstrom
exponent and the patrticle size given é@§855 nm) andx(532 nm) can be used to explain this
behavior as wellEinally, for (1064 nm) we observe positive slopes (a = 0.79108®for type

l, a = 0.54 + 0.07 for type Il and a = 0.84 + 0102 type IIl). Positive biases of(1064 nm)
decrease the spectral difference betwg@»5 nm) and3(532 nm) indicating a decrease of the
Angstrém exponent, and thus we would expect areas® in the retrieved particle size which

agrees with the presence of positive slopes iplbie

Figure 3 presents the sensitivity analysis for réteieval of number concentration (N).
From Figure 3 we again generally observe lineaepad of the deviation in retrieved value of N
for differing biases in the input optical data. &ar fits through the origin in the forms Y = aX

were also performed here. Interestingly, the slagdbe linear fits of the extinction coefficients
14
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present opposite signs to those determined forefnieval of gy, with positive values fon(355
nm) (a = 3.09 £ 0.12 for type |, a = 4.83 £ 0.22 fgpe Il a = 3.05 + 0.13 for type Ill) and
negative values fon(532 nm) (a =-2.78 + 0.17 for type |, a = -4.09.23 for type Il and a = -
2.61 + 0.12 for type Ill).Therefore, we see in the retrieved results, faangxe, that to
compensate for a radius enhancement due to biaped data the retrieval tends to decrease

number density.

[Insert Figure 3 here]

For the sensitivities ofe§ and N shown in Figures 2 and 3, the absolute gatiehe
slopes ata(355 nm) anda(532 nm) are larger than 1 which indicates that peecentage
deviations in the retrieveds and N using biased data are larger than the pragerbias
imposed on the input optical data. Thus, the acyud r retrievals using 8 + 2o lidar is
strongly dependent on the accuracy associatedthatlextinction coefficients. Other slopes with
absolute value less than 1, as for example thosenaldlfor re as a function of biases {1064
nm) (0.79 = 0.01 for aerosol type |, 0.54 + 0.07 derosol type Il and a = 0.84 + 0.02 for type
lll) indicate that while the retrieval is still quitersitive to biases if(1064 nm), the deviations
in the retrieved parameters is less than the madmiof the biases. Finally, the slopescgfas a
function of biases in the input data f&(355 nm) andg3(532 nm) are quite small indicating that
biases in these optical parameters have relatsmigil effects on the retrieval ofsr. However,
for the retrieval of number concentration the efeaf biases in the backscattering optical data

are not negligible with absolute values of the skpf the linear fits between 1.3 and 0.3.

As with the effective radius and number concerdgrgtive have performed the sensitivity

analysis for the other microphysical parametergiakt from the inversion of33+ 2o lidar data.
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For these studies, we have also observed gendiadhar patterns when considering the
differences in the retrieved microphysical paramsess a function of the bias in the input optical
data. Again, the linear patterns pass through tigghoand we therefore assumed least-squares
fits of the form Y = aX. The results of the linefés for all the parameters are summarized in

Table 1, including also the slopes obtained §gand N in Figures 2 and 3, respectively.

We note that for some parameters the linear fisgsses different slopes for positive and
negative biasede. For example, in the case @f for type II, (532 nm) has a slope of -0.48 *
0.02 for positive biases and 0.02 + 0.02 for negdbiases. This is taken into account in Table 1,
where, if there is a difference in slope betweesitp@ and negative biases in the input data, the
slopes relating to the positive biases are inditde (p) while those associated with negative
biases are indicated by (n). We take this diffeeeimc slope to be a reflection of the reduced
sensitivity to the coarse mode of the distributi&nom Table 1 we observe that the number
concentration is by far the most sensitive paramtetéias in the optical data, particularly to
those biases in(355 nm) andw(532 nm). Moreover, the sensitivities to biaseg(355 nm) are
generally larger for type | than for type Il (abst®@ values of slopes are larger) with type Il
being in the middleThis finding can be explained by the fact that, thoe same total volume,
small particles (which predominate in type 1) getigrprovide larger backscattering of light at
the shorter wavelengths (phase function at 180arger) [e.g. Mischenko et al., 2000; Liou,

2002; Kokhanovsky 2004].

[Insert Table 1 here]

From Table 1 the slopes calculated from the lifgarof surface concentration (S) as

function of biases in the optical data presentstimae patterns (sign of slopes) between types |, Il
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and lll. The difference in the absolute valuesstipes between the three types are then
associated with the differences in the size digtidm and with the changes in the kernel
functions. The largest sensitivities of S are fododbiases at(355 nm) (absolute values of
slopes ~2.0). Sensitivities to biasesufi32 nm) (absolute values of slopes between 1.@7 an
0.69) are also important for type I, 1l and Ill, #ehthe sensitivity associated wifi355 nm) is
only remarkable for type | (slope of -0.73 = 0.04%ensitivities to biases &532 nm) and

(1064 nm) are quite low (absolute values of sldpeew 0.5).

Referring back to Table 1, we observe that themelconcentration (V) is the retrieved
integrated parameter least affected by bias inirthet optical data as indicated by the fact that
most of the slopes have absolute values belowAll.@erosol types I, Il and Il present moderate
sensitivity to biases ifs(355 nm) with slopes of 0.62-0.92. However, we fbudifferences
among these three different aerosol types. For tlypeerosols, the retrieval of volume
concentration is most sensitive to biasep(Bb5 nm) (slope of -1.39), while for type Il aertsso
retrievals are most sensitive to deviations,(B32 nm) (slope of 1.18Jor type Il aerosols the
sensitivities to bias in the optical data are int@or both af3(355 nm) (slope of -1.04) and at
a(532 nm) (slope up to 1.46). These differences ramthe aerosol types I, Il and Il
demonstrate the different sensitivities of volumenaentration retrievals when the PSD

possesses different weights of fine and coarse mode

As the regularization scheme used here computesizbalistribution using the range of
permitted radii of 0.075 - 5 um, the fine mode pdrthe distribution (but not the coarse mode)
is completely covered by this inversion window, d@nds we study fine mode volume radius and

fine mode volume concentration. Table 1 also shivessensitivities of these two parameters to
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biases in the input optical data. From the slogethe linear fits reported forf. , biases in
a(355 nm) andy(532 nm) produce significant deviations in theiestal, with absolute values of
the slopes approximately between 1.0 and 1.5, whéedeviations in the retrievals created by
biases in other optical parameters are almost giblgi This result would imply that accurate
retrievals of #,e can tolerate rather large errors in the backscdtta but not in the extinction
data. The sign of the slopes gf.ras a function of(355 nm) andi (532 nm) can be explained by
the same reasoning given before for the effectadBus: as extinction at 355 nm increases, it
makes the retrieved particle radius decrease. Ba(%82 nm) increases the retrieved particle
radius increases. On the other haiud,the fine mode volume concentration;(, the largest
sensitivities in the retrieval are found to systémhiases aty(355 nm), with slopes of 1.59 +
0.05, 1.66 = 0.17 and 1.56 + 0.06 for types |, nddll, respectively.For the other optical
parameters, absolute values of the slopes are ieB\iexcep (1064 nm) for type | with slope
of 0.62 = 0.03)These dependencies of the sensitivities;fand Ve to biased input data are
associated with the different dependencies of #r@ed functions on wavelength and particle

radius (e.g. Chapter 11 of Bohren and Huffman, 1983

At this point we would like to mention that our sitations (graphs not shown for
brevity) showed some departures from the lineasitgwn in figures 2 and 3 and Table 1 for
systematic errors larger than approximately +30%inhg when the absolute values of the slopes
is larger than 1. We take this to be an indicatioat biases of approximately £30% and larger
can cause the regularization routine to chooséereint solution space than the original retrieval
based on data with no errors. On the other hando wgrors of £20%, we find that the same
minimum in the solution space is generally foundtwy routine so the linear behavior seen in

Figures 2 and 3 is taken to be a characteristia stable system that is displaced from its
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minimum point. Therefore, we selected a threshahlie of £20% where these results are
applicable and stress that larger errors in thetigiata can cause significant and unpredictable

deviations in the retrieved results.

Finally, we remark that the values given in Tablar& averaged for the particular size
distributions used here. More simulations perforrfggdphs not shown for brevity) changing the
fine mode radius between 0.08 um and 0.20um, lmythdrosol type I, 1l and lll, revealed the
same average linear patterns as those shown imeSigh and 3 and in Table 1. The only
differences observed were in the absolute valuéiseo$lopes with values between +20%. On the
other hand, no important departures from the libeasbserved in Table 1 were found by
changing the widths of the fine mode. Changesencttarse mode were not tested because of the

difficulty to assess retrievals of the coarse mwaih the methodology used here.

3.2.1. Effects of the constraints used in theretrievals on the sensitivity test results

The sensitivity tests applied to the differensseft data have shown linear dependencies.
The data presented in Table 1 of the linear fitsnad the computation of the deviations induced
in retrieved quantities due to biases in the irgatt in an easy and straightforward wayt the
generality of the results for different constraiimtshe inversion code needs to be examirfex.
example, the results presented in Table 1 have based on a maximum radius in the inversion
(rmay Of 5 um Although for the aerosol size distributions saatlihere this .x makes the
computation more efficient, the selection @fsrdepends on the user and becomes a constraint in

the inversion procedurdhus, we performed more simulations withyincreased to a value of
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10 um to study the influence of this change in tam#t on the retrieved results. Another
constraint in the inversion that must be checkethés maximum value allowed for;m\e
repeated the simulations allowing ta range up to 0.1 (consistent with a very absaylaierosol
like black carbon)The results of these studies were compared withsalime retrieval obtained
with rmax = 5 pm and with maximum value of wf 0.01. To compute the baseline microphysical
parameters, no induced systematic errors werededluWe also computed the retrievals using

the new constraints and introducing systematicrglirothe optical data as done before.

The new simulations performed after changing thestraints for fx and maximum m
also reveal linear patterns (graphs not shown ffevity). However, these linear patterns do not
pass through the origin implying that there areegelty shifts in the retrieved values of the
various parameters due to these changes in camstrdihe analysis reveals, though, that the
signs of the slopes of the linear fits remain thens and that very similar deviations in the
retrieved quantities are computed using the lifigsiperformed, either with the baseline results
or with those retrieved with the different consttai Therefore, while the selection of exact
value of the constraints fofdx and m can change the mean values of the different paeame
the sensitivity to induced biases in the input @gitdata is generally unchanged by these changes

in constraints.

3.2.2. Additive properties of the effects of systematic errorsin the optical data

Thus far, the sensitivity tests that have beenoperéd were based on perturbing a single
optical input at a time. But in a real instrumehis quite possible that two or more input data
might be influenced by biases simultaneously. Tioeee we need to study the effects of the

presence of multiple simultaneous biases in thatimata since the existence of such biases
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would presumably not be known in a real applicationother words, we wish to determine if
the preceding results based on perturbing a siogfieal input at a time can be generalized to
predict the effects of multiple input data beingisitaneously biased. In particular, we will now
test if, when multiple inputs are simultaneouslggad, the results from Table 1 can be used to
calculate deviations that can simply be added terdene the total bias. In other words, we now
will test whether the results in Table 1 can bestiered additive.

To test the additive properties of the results shamw Table 1,we performed a set of
simulations where two or more optical channels wergurbed simultaneously by biases of the
same magnitude, but allowing different signs (awedéer estimation). For example, let's assume
that we have systematic errors of absolute magaitdi®%. Then different combinations of £5%
are allowed, as for example aiss and as3,, at azss and Pszz or at Pass, Psz2 and Pioss. This
procedure was repeated for different sets of biaasagnitude up to 10%he deviations noted
as “baseline” were computed using the slopes ofeTaband assuming that the deviations are
additive. We also performed the regularizationiegtal with the new set of data affected by two
or more simultaneous biases, called “simulatedali®ris”. Later we computed the differences
in the microphysical properties based on the slgpe=n in Table 1 and those actually retrieved
running the code with the new biased optical dath eharacterized the differencéssing this
procedure, we generated for each absolute vallwasfa statistical dataset that includes many
different configurations of the different opticdlannels. Those datasets are analyzed using Box-
Whisker diagrams as shown in Figure 4 for the éffecadius.

In these box diagrams the mean is represented bp@msquare. The line segment in the
box is the median. The top limit represents th® @ércentile (P75) and the bottom limit thé"25

percentile (P25). The box bars are related to fh¢PL) and 98 (P99) percentiles, and the
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crosses represent the maximum and minimum valaspectively. From Figure 4, for biases of
1, 2, 5 and 10%, mean values of the differencekareffective radius are very small: 0.03, 0.34,
0.41 and 1.01 % for type | (Figure 3a) and -0.6291, -0.49 and -0.18 % for type Il (Figure 3b).
Values larger than the 9%ercentiles (P25) and lower than the 75% percenti®’5) are found
for the ranges from -1.8% to 1.3% (type 1) and fréh©% to 4.4% (type II). Only two outliers
are found with relative differences greater thai®%0 These last occur when all the optical
channels exceffi(355 nm) are either overestimated or underestimdati for these particular
cases the baseline deviations are 0.009 % or -@€08hile the simulated ones are 0.557 % and
-0.557 % respectively. These small errors are witthie uncertainties associated with the
regularization method, and thus these large reatlifferences are a mathematical artifact
created by dividing by small numbers. Tests haveo dbeen performed for the other
microphysical parameters and we also found an iadditroperty in the deviations predicted by
the results shown in Table Furthermore, very similar additive properties evdound for
aerosol type Il (graph not shown for brevity). Téfere, for the bimodal size distributions used
here that cover most of those size distributionsiabd by AERONET, we conclude that the
results of Table 1 can be reliably used to caleutae deviations in retrieved quantities due to
multiple simultaneously biased input data.

We take this result to be an indication that, astioaed earlier, the solutions found by
the inversion technique generally define a locahimum in the multi-dimensional solution
space (e.g. see Figures 1 of Veselovskii et ab220012) The linear behavior of the deviations
in the retrieval due to small changes in the iqartameters is a characteristic of displacements
from this minimum location. Multiple simultaneoussplacements tend also to display this linear

behavior. The results here indicate, thereforet fba biases in the input data of up to
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approximately 20%, whether for a single channemaitiple ones simultaneously, the solution
space possesses an average linear property ardtléiveabehavior can be assuméar larger
biases in the optical data (e.g. +30%) the addifiveperty is not assured as under these
circumstances different minima in the solution gpavay be found by the regularization

algorithm.

[Insert Figure 4 here]

3.3.- Application to the sensitivity of retrievals to the presence of random
errorsin the optical data.

Up to this point, we have concerned ourselves uwiitly the effects of systematic biases
in the input optical data on the retrieved quagsitiBut in lidar systems, random errors are also
present due just to the measurement process ifsajf.specific set of 3+2 data affected by
random errors can be considered as a set of bmsadurements where the individual biases for
each of the data follow a normal distribution. Givbe additive property of the systematic errors
that we have shown, we can assess the effectqi@dbmaerrors in the optical data by generating
random biases in the optical data and computinig tlewiations in the microphysical parameters
from the values given in table 1. The sensitivibéshe regularization technique to those random
errors computed using the procedure just outlinddb& compared with previously published
ones [e.g. Mller et al., 1999a,b; Veselovskiilet2002, 2004].

To assess the sensitivity of the retrievals to oameérrors we use the additive properties
of the systematic biases just describ&tie procedure used consists of generating random

numbers distributed in a Gaussian way centereératwith width according to the value of the
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random error to study. These random errors ardexppd each optical channel of thg 8 2o
configuration. This procedure was repeated 50,0084 for each parameter studied. Also, the
initiation of the random number generation is d#f@ for each channel to avoid the situation
where all the random numbers are the same in esfeagnel. Finally, we introduced for every
optical data this random number and computed theegponding error in the retrieved
microphysical parameter using the slopes provide@iable 1. For every set o3 2u values,
the final error obtained in the microphysical paeten is the sum of the error obtained for each
channel. The study of the frequency distributiofghe final errors for this large number of
simulations yields the effects of random errorgh# frequency distribution is a normal one, the
standard deviation (Full-Width-at-Half-Maximum) pides the final error in the microphysical
parameter. Moreover, if the normal distribution net centered at zero it demonstrates an
interesting property; that the presence of systematrors in the retrieved microphysical
property can be induced by random errors in thetigptical data. As an illustration, Figure 5
shows the frequency distribution of the differencethe microphysical parameters studied here,
for all aerosol size distributions type |, Il ant Wwhere 15% random error is assumed in all the
optical data. Those differences are in percentagdsdenoted as ‘deviation’ in the X’ axis of the

histograms.

[Insert Figure 5 here]

From Figure 5 we observe that the frequency distioins possess the expected Gaussian

shape for all the microphysical parameters. Mosthef frequency distributions are centered
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essentially at zero, although some significant depas from this value are observed in the cases
where random errors can induce systematic biasethanretrieved aerosol microphysical
parameters. The percentage changes in the meaesvafuthe distributions are shown in the
legend. A shift in the mean value due to the preseri random error results for those retrieved
parameters that display a different linear tendeiocypositive and negative biases in the input
optical data as discussed earlier with respectatel’l. For example, such departures from zero
are observed for retrievals kN and V for type Il aerosols and are approximaig|yl, and -7

%, respectively. On the other hand, the FWHM -@andard deviations- of the normal
distributions of Figure 5 are representative of flamsitivities to 15% random errors in the
optical data.Generally, there are many similarities in the stéadddeviations between aerosol
types I, Il and Il We observe clearly that i,k and M,e exhibit the smallest sensitivity to the
imposed 15% random errors with a 1-sigma spreatthenresult of approximately 25%. The
effective radius and surface concentration reslitsv moderate sensitivity with 1-sigma values
of ~ 30 — 40 %while the retrieval of number concentration hashighest sensitivity, with 1-
sigma values of 67.6% for type |, 95.2% for typeamid 61.4% for type IlIAs expected, these
sensitivities to random error track the resultshef sensitivities to systematic errors, where the
most sensitive parameter was also found to be nuptreentration and the least were volume

concentration, fine mode radius and fine mode vel@wancentration.

Using the same procedure as for 15% random erewleT2 reports the FWHM —or
standard deviations- of normal distributions oledirior other magnitudes of random errors in
the optical data ranging from 5% to 20%. We obseageexpected from the linear functions
involved, that increasing the random uncertaintgreases the deviations found in a linear

fashion. Moreover, it is observed again that tgdst sensitivities are for N while the lowest are
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for V, rine and Mie. In the same way, Table 3 reports the means ofdéwation of every
microphysical property for varying amounts of ramdaincertainty in the input data. As
mentioned above, the departures of these deviationszero indicate that random uncertainties
in the input optical data can induce varying amsuof systematic bias in the retrieved
properties. This effect is found more with the typaerosols that possess a higher fraction of
larger particles. Such a population is more likedyhave different slopes in Table 1 due to
positive and negative biases in the input optieghdecause of the reduced sensitivity of the
MW technique to larger particles. It is this reddieensitivity to larger particles that, in general,
explains the shifting of the mean values in thei@eed distributions due to varying amounts of

random error in the input data.

[Insert Table 2 here]

[Insert Table 3 here]

Mdaller et al., [1999a,b] and Veselovskii et al2002, 2004] studied 10% random
uncertainties in the optical data in thg 8 2a lidar configurationgy introducing random errors
in the optical data and running the regularizatiode repeatedly. These studies reportedtheat
retrieved uncertainties were on the order of 25%dg V and S, 30% forpfeanand 70% for N.
These values are quite similar to those reportethble 2 for our computations of 10% random
errors. No evaluations fofne and Mine were done in the studies of Miller et al., [1989and
Veselovskii et al., [2002, 2004] The method shown here for assessing the sengiifi
retrievals to random errors is generally consisteith these earlier results but permits the

influence of varying amounts of random error todbedied. It also permits the influence of
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random errors in different input optical channedsbe quantified. We will now apply this

capability to the problem of instrument specifioati

3.3.1. Application to instrument specification.

The upcoming space-borne Decadal Survey ACE (Aé&kud-Ecosystems) mission

of NASA (http:/dsm.gsfc.nasa.gov/ack/specifies a High Spectral Resolution Lidar asogec

instrument to measure vertical profiles of aeroselinction and backscattering worldwide.
These profiles will be used to derive verticallgotred aerosol microphysical properties such as
effective radius, number concentration or compkfxactive index. The system is anticipated to
use the B+2a configuration and the regularization technique ties been studied here. The first
reports (http://dsm.gsfc.nasa.gov/ace/) call foraaauracy of +15 % for all backscattering and
extinction coefficients, and thus the results pnésaé here can be used to infer the anticipated
uncertainties in the microphysical properties esteid using the regularization technique on these
3p+20 space borne data when all input data possess I¥Hrtainties. The results already
presented clearly indicate, however, that for ntpsintities it is uncertainties in the extinction
coefficients that need to be constrained more olyethan those in the backscattering data.
Volume concentration is an interesting exceptiorhie statement wher@355 nm) for type |
aerosols is the optical parameter requiring thellsstauncertainty budget to help reduce the
uncertainties in retrievals. In this way, the réswolbtained here can serve as a guide to hardware
designers of multi-wavelength lidar instrumentghe sense that if trade-offs need to be made
between the performance of one optical channelugeasiother, the relative sensitivities shown

in Table 1 can be used to assess which channelsl weuefit most from decreased uncertainty
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in the measurements. Another application of thesifeities derived here is to algorithm
development. Algorithms can introduce systematicedtainties in the optical data such as
through an incorrect assumption of an aerosol feggon, an assumption of the extinction to
backscatter ratio or the use of an estimated mi@egquofile. The results presented here can be
used to assess the tolerance for both random astensgtic errors in the input optical data due
both to instrumentation and to algorithms once uag@y requirements in the retrieved

guantities are established.

4.- SUMMARY AND CONCLUSIONS

We have presented the results of a study of theitssty of the retrievals of aerosol
physical parameters using the regularization teghlnito systematic and random uncertainties in
the input optical data. We have focused our studytlee set of data consisting of three
backscattering coefficientg) at 355, 532 and 1064 nm and two extinction cokeffits () at
355 and 532 nm B+ 2o configuration). These data can be obtained bglaa Bystem that uses a
Nd:YAG laser and combines backscatter with RamaASRL channelsSimulations have been
done for different bimodal aerosol size distribotothat are representative of AERONET
climatologies. The values used for aerosol refvacimdexes, as well as mode radius and widths
were selected as representative of those climaesdas well. The selected aerosol bimodal size
distributions include one with fine mode predomicerftype 1), another with predominance of
coarse mode but with significant presence of firmlen(type II) and another with predominance
of fine mode but with significant presence of ceamsode (type Ill). Optical data consistent with
these bimodal size distributions were generatedgublie theory.Retrievals were performed
using these baseline optical data. The optical wata then perturbed by systematic biases in the
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range +20% to study the effects of biases on théeved parameterdhis threshold value of

+20% is enough for many practical lidar applicationAs the problem of the inversion of
microphysical properties is under-determined, canss are needed which, in principle, can
influence the values retrieved by the algorithmrtiBalarly, we have found that the range of
radius and refractive index used in the inversiod dot have a large influence on the
sensitivities of the different microphysical palds. However, our results showed that the
maximum value of mallowed in the retrieval had a significant infleenon the value of

refractive index retrieved, supporting earlier testhat indicate significant uncertainties in the

retrieval of refractive index using th@-8a MW lidar technique studied here.

The microphysical parameters studied included gffeaadius (&) and volume (V),
surface (S) and number (N) concentration. Alsdhasnversion window ranged from 0.075to 5
um, we were able to study the fine mode of the smrgize distribution (0.075-0.5 pm)
separately, and thus we have also presented théisrésr both fine mode radiussfg) and
volume (Mine). From these sensitivity tests, the percentaggatiens of the microphysical
parameters as function of biases in the opticah gaesented linear patterns. Generally, these
linear patterns presented the same sign of slopeaerosol type I, Il and Il and the largest
sensitivities were observed for biases in the extn coefficientsa(355 nm) andx(532 nm).
Moreover, the largest sensitivities were foundNpmwhile the least affected parameters were V,

lfine and \/fine.

An important result is that we have found an addiproperty for the deviations induced
by the biases in the optical data. This impliest tfiafor example, several optical data are

simultaneously affected by systematic errors, thel deviation in the retrieved quantity can be
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well approximated by the sum of those deviationamated when each optical input was biased
separately. From this additive property, we havenbable to compute the effects of random
errors in the optical data. The largest sensisito random errors were found for N, while the
lowest were obtained for 4k and Mine. Moreover, we have found some systematic diffezenc

in the mean retrieved microphysical properties wthenretrievals are affected by random errors
in the input optical data. The presence of thesgesyatic differences is associated with the
different behavior (although with linear pattertmtween positive and negative biases in the
input optical data and is due to a reduced seitgiti¥ the retrieval to the coarse part of the size

distribution.

The results presented here cannot be generalizexkty possible size distribution as we
only focused on bimodal size distributions représtive of those obtained by AERONET.
Studies of the sensitivities of the microphysicaieval to errors in the optical data for other
size distributions such as, for example, one shgwirmodal behavior are still needed although
the results presented here for three differing bdat distributions leads one to expect that
similar results would be obtained for tri-modaltdizutions as well. The tests performed here
showed that the average linearity of the sensiwiin the retrieval to random errors in the input
data can be useful for a wide range of lidar apgbbms, and thus can be used to establish
acceptable error budgets in optical data if maxinpemmissible errors in the retrieved quantities
can be establishedherefore, the values given here for the sensgwibf the microphysical
properties to systematic errors in the optical datia be useful for many lidar applicatiofar
example, for the Decadal Survey ACE mission a nwitvelength lidar is planned. Among their
measurement requirements is that the accuracyedjptical data be £15%. If these uncertainties

are taken to be all random, we were able to useethdts here to estimate that this implies an
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uncertainty in the retrieved microphysical propstby the regularization technique of ~40% for
refr. ~85% for N, ~25% for S, ~20% for V,16% fand and M. respectively. The results also
permit assessing the deviations in the retriedlsei biases in the optical data are systematic and
exist in only one or more channels. In this wagdé-off decisions can be made between the
retrieval requirements and the hardware configanatif a lidar system taking into account the
different sensitivities of the retrievals to biaseshe optical data of different channels. We hope
these results aid the future design of multi-wavelke lidar systems intended for retrieval of

aerosol microphysical properties.
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Figure 1: Normalized size distributions used for computing the simulated optical data. The ratio
between the volume of fine and coarse mode, Vi./Vy, is 2 for type I, 0.2 for type Il and 1 for type
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Figure 4: For the effective radius, Box-Whisker diagrams of the differences between the
theoretical deviations computed with the slopes of table 1 and the simulated deviations. At least
two optical channels have been simultaneously perturbed by biases of the same magnitude
although different combinations of over/under estimations are allowed. In these box diagrams the
mean is represented by an open square. The line segment in the box is the median. The top limit
represents the 75" percentile (P75) and the bottom limit the 25" percentile (P25). The box bars
are related to the 1% (P1) and 99™ (P99) percentiles, and the crosses represent the maximum and
minimum values respectively. We used biases in the optical data of 1% (black diagrams), 2%
(blue diagrams), 5% (red diagrams) and 10% (green diagrams).
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Figure 5: Frequency distributions of the different microphysical parameters for 15% random
errors in the optical data using 50000 random samplings of the systematic error sensitivities
shown in Table 1. The ‘x’ axis represents the difference between microphysical parameters with
no errors in the input optical data and those affected by random errors in the optical data.
Random errors were simulated by a normal distribution centred at zero and with standard
deviation of 15%. The random number generator is initialized at different values for each of the
5 optical data used in the 3p + 2a lidar configuration. The mean value of the deviation between
the microphysical parameter affected by random error and that unaffected by random error is
included in the legend.
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TABLE 1: Percentage deviations in the aerosol microphysical properties as a function of
systematic errors in the optical data e. Particularly, the slopes 'a' of the linear fits Y = aX are
presented, where ‘X’ is the systematic bias in the optical data and Y is the corresponding
deviation in the microphysical properties. All these fits presented linear determination coefficient
R?>0.90. For the cases when there is a difference in slope between positive and negative biases
in the input data, the slopes relating to the positive biases are indicated by (p) while those
associated with negative biases are indicated by (n).



TABLE 2: Standard deviations of the frequency distributions of the deviation induced in the microphysical parameters due to random

errors in the optical data.

Random Fet N S v Ffine Viine

Errors (%) | Type Type Type | Type Type Type | Type Type Type | Type Type Type | Type Type Type | Type Type Type
I 1 i I 1 1 I 1 1 I 1 Il I 1 i I 1 i

5 125 131 137|225 318 205|125 95 112 | 98 72 95 | 77 92 84 | 87 88 81

10 249 262 272 | 450 636 408 | 251 191 223 | 196 144 190 | 155 184 168 | 174 176 161

15 372 392 408 | 676 952 614 | 37.7 285 334|295 215 285|233 276 253 | 261 263 241

20 50.0 526 548 | 901 1273 821 | 502 382 446|393 288 380|311 369 338|349 352 322

10* 25* 70* 25* 2 e I

*From the previous work of Muller et al., (1999a,b) and Veselovskii et al., (2002, 2004).



TABLE 3: Mean of the differences (in percentages) in the retrieved microphysical parameters due to varying amounts of random
error in the optical data.

Feft N S \ Ffine Vfine
Random
Errors (%) | Type Type Type | Type Type Type | Type Type Type | Type Type Type | Type Type Type | Type Type Type
| 1 i | 1 11! I 1 11! I 1 11 I 1 11 I 1 Il
5 00 -17 -16 | -08 35 2 |00 04 01 -11 -23 -11 04 05 07 | 00 14 -03
10 00 35 30| -14 71 61|01 07 00O | -19 -44 -23 (09 11 15 | 01 28 -08
15 01 53 -45)|-19 11 04 | 03 09 02 |-28 67 31|12 14 21 | 02 42 -10
20 03 -72 56| -23 12 06| 06 -10 04 ) -38 90 45|15 18 33 | 04 58 -19




