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Abstract

Recent increase of spatial resolution for satellite instruments has it made feasible to
study distributions of trace gas column densities on a regional scale. For this applica-
tion a new gridding algorithm was developed to map measurements from the instru-
ment’s frame of reference (Level 2) onto a longitude-latitude grid (Level 3). The algo-
rithm is designed for the Ozone Monitoring Instrument (OMI) and can be employed eas-
ily to similar instruments, for example, the upcoming TROPOspheric Monitoring Instru-
ment (TROPOMI). Trace gas distributions are reconstructed by a continuous parabolic
spline surface. The algorithm explicitly considers the spatially varying sensitivity of the
sensor resulting from the instrument function. At the swath edge, the inverse problem
of computing the spline coefficients is very sensitive to measurement errors and is reg-
ularised by a second-order difference matrix. Since this regularisation corresponds to
the penalty term for smoothing splines, it similarly attenuates the effect of measure-
ment noise over the entire swath width. Monte Carlo simulations are conducted to
study the performance of the algorithm for different distributions of trace gas column
densities. The optimal weight of the penalty term is found to be proportional to the
measurement uncertainty and the width of the instrument function. A comparison with
an established gridding algorithm shows improved performance for small to moderate
measurement errors due to better parametrization of the distribution. The resulting
maps are smoother and extreme values are more accurately reconstructed. The per-
formance improvement is further illustrated with high-resolution distributions obtained
from a regional chemistry model. The new algorithm is applied to tropospheric NO2

column densities measured by OMI. Examples of regional NO2 maps are shown for
densely populated areas in China, Europe and the United States of America. This work
demonstrates that the newly developed gridding algorithm improves regional trace gas
maps; its application could be very helpful for the study of satellite-derived trace gas
distributions.
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1 Introduction

Satellite retrieved global and regional maps of trace gases are important in many ar-
eas of atmospheric research. They provide details about the spatial and temporal
distribution of atmospheric components, such as nitrogen dioxide (NO2) or sulphur
dioxide (SO2), which cannot be obtained by ground-based networks or field campaigns
alone. Satellite maps have been used to study emissions and transport of trace gases
from natural and anthropogenic sources on both a regional and global scale (e.g. Carn
et al., 2007). Top-down emission inventories are used to constrain emissions in chem-
istry transport models (e.g. Martin et al., 2003; Choi et al., 2008). Furthermore, trends
and cycles of trace gas concentrations can be identified over regions on different time
scales (e.g. Beirle et al., 2003; Richter et al., 2005). Validation studies, comparing
space- and ground-based measurements or model simulation, require or can bene-
fit from high-resolution maps to identify the regional distribution of trace gases (e.g.
Krotkov et al., 2008; Wenig et al., 2008; Chan et al., 2012). In recent years, the in-
crease of the spatial resolution of satellite instruments made trace gas products more
suitable for applications on a regional scale. Examples are the Empa OMI NO2 product
(Boersma et al., 2007; Zhou et al., 2009; Zhou et al., 2010) and the Berkeley High-
Resolution (BEHR) product (Russell et al., 2011). These products are retrieved from
the Ozone Monitoring Instrument (OMI), which has ground pixel sizes from 13×24km2

at nadir to 30×160km2 at the edge of the swath (Levelt et al., 2006).
Vertical column densities of trace gases are typically expressed in the instrument’s

frame of reference using across-track and along-track position (Level 2 product). To
visualize and compare the data with other data sets the Level 2 product is projected
on a longitude-latitude grid (Level 3 product) using a suitable gridding algorithm. On
a regional scale grids may have resolutions between 1×1 km2 and 5×5km2 which is
well within OMI’s ground pixel size. At this resolution it is important to consider how the
trace gas distribution is reconstructed within the pixel boundaries. A key requirement
for a gridding algorithm is the ability to reconstruct shape and extrema of distributions
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well within the limitation set by the instrument’s resolution. It can also be assumed that
the distribution is continuous within an orbit of measurements.

Current gridding algorithms typically assume that measurement values are constant
within the pixel boundaries. These algorithms produce non-continuous maps and can
underestimate maximum values. Within one orbit, consecutive measurements can
have overlapping ground pixels due to the instrument slit function. Therefore, Wenig
et al. (2008) average pixels based on measurement error and pixel size. While their
approach conserves the mean value of the measurement, averaging overlapping pix-
els can further reduce maximum values. A different approach is suggested by Brunner
et al. (2007) who tested image reconstruction algorithms used in computed tomogra-
phy on idealized test data. However, their method targets the reconstruction of monthly
or annual maps using a large number of overlapping pixels.

In this paper, we present a novel gridding algorithm which was developed to be more
suitable to create high-resolution trace gas maps. The algorithm is designed for OMI,
but can be employed easily to similar satellite instruments, for example, the TROPO-
spheric Monitoring Instrument (TROPOMI), planned for launch in 2014 (Veefkind et al.,
2012). TROPOMI is expected to have smaller measurement errors than OMI, due to
higher spatial resolution (7×7 km2 at nadir) and better cloud correction.

The new gridding algorithm approximates the trace gas distribution by a continuous
differentiable, parabolic spline surface, defined on the lattice of tiled pixels in a single
orbit. Our parabolic spline method (PSM) is based on an algorithm developed by Kobza
and Mlcak (1994), who construct a spline surface from known mean values on a rect-
angular lattice. The use of polynomial splines for interpolation is well established (e.g.
Lancaster and Salkauskas, 1986; de Boor, 2001). Polynomial approximations which
conserve mean values within lattice cells are called histopolations, because they are
often used for smoothing histograms (Späth, 1995). OMI column densities can be in-
terpreted as weighted averages over the area of a ground pixel which spans several
lattice cells. The spatial sensitivity of the sensor over ground is described by the instru-
ment function. PSM derives the mean values within each cell of the lattice considering
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this instrument function. The inverse problem of computing the mean values from the
instrument function is ill-posed in the sense that the retrieved solutions are very sen-
sitive to measurement noise and show a tendency to oscillate around the true mean
values if not regularised. A second-order difference matrix is used to regularise the
inverse problem. This formulation is similar to the smoothing spline method used to
interpolate noisy measurements (de Boor, 2001).

This paper is organized as follows: the measurement principle of OMI is described in
Sect. 2.1 and requirements of gridding algorithms are stated in Sect. 2.2. The gridding
algorithm described by Wenig et al. (2008) is recapitulated in Sect. 2.3. The parabolic
spline method (PSM) is explained in Sect. 2.4 and its performance is evaluated using
test scenarios in Sect. 3. The algorithms are applied to produce maps of OMI NO2

column densities in Sect. 4. Finally, Sect. 5 contains discussions and conclusions.

2 Method

2.1 Measurement principles

In this section, we describe the measurement principle of the Ozone Monitoring In-
strument (OMI), which is a passive, nadir-viewing imaging spectrometer (Levelt et al.,
2006). OMI derives trace gas column densities and aerosol parameters from Earth’s
reflectance spectra in the near ultraviolet and visible wavelength range. The reflectance
spectrum is scanned along the sunlit part of about 14.5 sun-synchronous orbits per day,
resulting in daily global coverage in a moderate spatial resolution. The scanner applies
the push broom principle: a charged-coupled device (CCD) array is used to perform si-
multaneously n (= 60) measurements in across-track direction resolving a swath width
of 2600 km. In along-track direction continuous measurements are averaged every t
(= 2) seconds, leading to m (≈ 1600) measurements rows in a single orbit. In each or-
bit, single measurements ρ̄i,j are associated with a two-dimensional n×m lattice with
across-track position i= 0,...,n−1 and along-track position j= 0,...,m−1.
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A ground pixel is the area at the earth’s surface from which a certain amount of
energy is received by the instrument’s sensor during a single measurement. Its bound-
aries are typically described by the four corners of a quadrangle. Geodetic longitude
and latitude for the centre of each pixel are included in OMI’s Level 1b data product.
The coordinates of the four corners of each ground pixel are provided by the “Ground
Pixel Corners Coordinates and Sizes” product (Kurosu and Celarier, 2010), which in-
cludes two types of pixel corners:

– Tiled pixel product: adjacent pixels share corners in across- and along-track di-
rection. In along-track direction tiled pixels are always 13 km long.

– Overlapping product (FoV75): adjacent pixels share corners only in across-track
direction, while in along-track direction pixels are overlapping, such that the pixel
area contains 75 % of the received energy as specified by the instrument function
(see below).

The tiled pixel product is useful to create clean maps, where each pixel is recognizable,
while the overlapping product preserves the spatial sensitivity of the instrument better
and is assumed to be more accurate for derived products, for example emission inven-
tories. The pixel sizes in across- and along-track direction for the two pixel products are
shown in Fig. 1. The pixel size of the overlapping pixel increases towards the edge of
the swath, because of the wider instrument function. At the edge of the swath, overlap-
ping pixels have about twice the length of tiled pixels. Three examples of pixel shapes
of both products are shown in Fig. 2. Other products may provide different pixel prod-
ucts: in the Dutch OMI NO2 (DOMINO) product (Boersma et al., 2011; Dirksen et al.,
2011) ground pixels are included as a corner product which is similar to NASA’s tiled
product.

For each pixel, trace gas column densities ρ̄i,j are retrieved from the measurements
with measurement error ε̄i,j . It is convenient to use across-track and along-track direc-
tions as x and y axes, respectively. In this coordinate system, the measured column

7872



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

density ρ̄i,j can be expressed in terms of the true distribution ρ(x,y) by

ρ̄i,j =

∫
Ai,j

ρ(x,y)Wi,j(x,y) dAi,j + ε̄i,j (1)

where Ai,j is the area over which radiation is received by the sensor. The instrument
function Wi,j describes the spatial sensitivity of the instrument. For a push broom
scanner, we can neglect the x dependency and write the instrument function as

Wi,j(y) = exp
(
−cy4

)
� boxcar(y) (2)

where � is the convolution operator. The first term on the right hand side is the instru-
ment’s slit function and the second term describes the movement of the sensor above
ground (Kurosu and Celarier, 2010). The coefficient c is chosen such that the full width
at half maximum (FWHM) of the slit function at the earth’s surface corresponds to an
instrument’s opening angle of 1◦. The FWHM depends on the distance between sur-
face and instrument and hence the width of the instrument function increases towards
the edge of the swath (Fig. 3). Since the FWHM changes are small within a pixel, the
FWHM can be approximated by the mean value of each pixel. This approximation al-
lows a computationally efficient gridding algorithm using one-dimensional splines. The
second factor on the right hand side of Eq. (2) is the normalised boxcar function which
describes the averaging in along flight direction in the interval ŷi,j± 1

2vt, where ŷi,j is
the pixel centre, v the instrument’s speed above ground and t the averaging time. The
instrument function is normalized such that the integral is one. In the case of OMI, the
nadir port moves roughly 13 km in along flight direction during each measurement.

2.2 Gridding algorithm

A gridding algorithm aims to obtain the best reconstruction of the true distribution
of trace gas column densities ρ(x,y) from the measurement values ρ̄i,j . The recon-
structed distribution f(x,y) is projected on a latitude-longitude grid with indices u and
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v, so that the value at a grid cell fu,v is given by

fu,v =
1

Au,v

∫
Au,v

f(x,y) dAu,v (3)

where Au,v is the area of the grid cell. The resolution of regional maps for trace gas
columns vary between 0.01 and 0.05◦, corresponding to 1 and 5 km at 25 ◦ latitude.
Since on this scale Au,v is much smaller than the ground pixel area Ai,j , fu,v can be
approximated by the value of f(x,y) at the centre of the grid cell.

Specific requirements for a gridding algorithm may depend on the particular applica-
tion. We want our gridding algorithm to have the following properties:

– The weighted average of f(x,y) over the area Ai,j should yield the measurement
value ρ̄i,j within the error ε̄i,j .

– Since trace gas distributions are continuous, the reconstructed function fu,v should
be continuous and have continuous derivatives.

– The shape of plumes and their maximum values should be reconstructed accu-
rately within the measurement error ε̄i,j .

In this paper, the term “lattice” is used to describe the ground pixel in across- and
along-track direction (Level 2), while the term “grid” is used to describe the longitude-
latitude grid of the Level 3 product.

2.3 Constant value method (CVM)

This section briefly describes a gridding algorithm which assumes constant values of
f(x,y) within each pixel’s boundaries. This constant value method (CVM) is described
by Wenig et al. (2008) for OMI NO2 column densities. CVM is used for quantitative
comparison with the parabolic spline method (PSM) presented in this paper.

CVM uses a latitude-longitude grid with a resolution much smaller than the ground
pixel size. Each measurement value ρ̄i,j is stored in all grid cells lying within the pixel’s
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boundaries. If pixels overlap, more than one value may be assigned to a given grid
cell. In such cases, the weighted average of these values is stored in the cell. Over-
lap occurs when several orbits are averaged or in consecutive measurements of OMI’s
FoV75 pixel product. The error in the average is minimized, if the weight ωi,j is pro-
portional to the inverse of the squared measurement uncertainty δ2i,j . Therefore, pixel
weights are computed by

ωi,j =
1

Ai,j δ2εi,j
(4)

with pixel size Ai,j (Wenig et al., 2008). The disadvantage of CVM is that the recon-
structed distribution can have discontinuities at the pixel boundaries. Furthermore,
maximum values can be underestimated (see Fig. 5), because the mean value of
a trace gas distribution is usually lower than the largest value within a ground pixel.
This effect is stronger for pixels with a wider instrument function, because the area of
the pixel is larger and thus CVM averages pixels with larger overlap.

2.4 Parabolic spline method (PSM)

In order to derive more realistic distributions, we developed a new gridding algorithm.
The trace gas distribution is described by a parabolic spline surface on the rectangular
lattice formed by OMI’s tiled pixel product. Parabolic splines are used, because they
are the simplest, continuous functions which can preserve mean values. In this section,
we first consider one-dimensional splines in across- and along-track direction, which
are used to calculate two-dimensional surfaces afterwards.

2.4.1 Across-track direction

In across-track direction, we have n pixels, whose boundaries (xi, xi+1) are an increas-
ing sequence of n+1 knots

{xi}ni=0 = {xi :x0<x1< ...<xn−1<xn}, (5)
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with x0 and xn being the left and right edge of the swath. A parabolic spline f(x) on
the interval [x0,xn] is written as the sum of piecewise-defined, parabolic polynomials fi
which are defined by

fi(x) =


2∑

k=0

a
(k)
i Φk(x) for x∈ [xi,xi+1],

0 otherwise.
(6)

Each polynomial is described by three coefficients a(k)i and a basis of parabolic poly-
nomials Φk. It is common (e.g. Kobza and Mlcak, 1994) to introduce the dimensionless
variable s given by

s=
x−xi
xi+1−xi

=
x−xi
hi

(7)

and to formulate fi(s) on the unit interval using the coefficients di, pi and pi+1 defined
by

fi(s= 0) = pi (8)

fi(s= 1) = pi+1 (9)∫ 1

0
fi(s)ds= di. (10)

With these definitions, the polynomial fi(s) is

fi(s) = piΦp0(s)+pi+1Φp1(s)+diΦd(s) (11)

with base functions

Φp0(s) = 1−4s+3s2

Φp1(s) =−2s+3s2 (12)

Φd(s) = 6s−6s2.
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The advantage of this formulation is that the coefficients have an obvious physical
meaning as values of the distribution and thus their consistency can be validated easily.
The values at the knots are given by the n+1 coefficients pi and the mean values over
the intervals are given by the n coefficients di. Furthermore, it follows directly from
Eqs. (8) and (9) that the spline is continuous.

In across-track direction, we assume that the mean values di are given by the mea-
surement values ρ̄i. Therefore, we only need to determine the knot values pi, which is
typically done by requiring continuity of the first derivative given by of the spline f ′ at
each knot xi. This is written as

1

hi−1
f ′i−1(1) =

1

hi
f ′i(0), (13)

leading to the following equation

pi−1
hi−1

+

(
2

hi−1
+

2

hi

)
pi+

pi+1

hi
= 3

(
di−1
hi−1

+
di
hi

)
. (14)

On an interval with boundaries x0 and xn, two additional boundary conditions are re-
quired to close the system. Common choices are the natural boundary conditions:

f ′0(x0) = 0⇒−4p0−2p1 =−6d0 (15)

f ′n−1(xn) = 0⇒ 2pn−1+4pn = 6dn−1.

To compute the n+1 coefficients pi, the n−1 continuity conditions (Eq. 14) and the
two boundary conditions (Eq. 15) are written as matrix equation

Cx=0. (16)

The parameter vector x∈R2n+1 is defined as

x=
[
p0 d0 p1 d1 ... pn−1 dn−1 pn

]T (17)
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and C∈R(n+1)×(2n+1) is a band matrix of the form

C=


2α0 −3α0 α0

qα0 −3α0 2(α0+α1) −3α1 α1

···
αn−2 −3αn−2 2(αn−2+αn−1) −3αn−1 αn−1

αn−1 −3αn−1 2αn−1

 (18)

with αi = 1/hi. Equation (16) can be used as a constraint (see Sect. 2.4.2), or, if the
mean values di are known, it can be used to compute the n+1 coefficients pi. Since
the mean values di are given by the measurement values ρi, In the latter case, matrix
C can be simplified to a tridiagonal matrix. The parameter vector x is computed by
inverting this simplified matrix using a decomposition algorithm for a tridiagonal matrix.

2.4.2 Along-track direction

In along-track direction the same spline, Eq. (11), is used on the m+1 knots of the tiled
pixel

{yj}mj=0 = {yj : y0<y1< ...< ym−1<ym}. (19)

The m measurement values ρ̄j are obtained by the convolution of the true distribution
ρ(y) with the instrument function Wj(y), see Eq. (2) which now takes the form

ρ̄j =

∫ +∞

−∞
ρ(y)Wj(y)dy+ ε̄j (20)

with measurement error ε̄j . Likewise, the weighted mean value f̄j can be derived from
the spline function f(y) as

f̄j =

j+r∑
l=j−r

[∫ yl+1

yl

fl(y)Wj(y)dy

]
. (21)
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The integer r is chosen such that the integral over Wj(y) contains 99 % of the total
area under the curve. In this case r= 1 (i.e. integral over three pixels) at nadir and r= 2
(integral over five pixels) at the edge of the swath. Examples of instrument functions
are shown in Fig. 3. Substituting Eq. (11) in Eq. (21) shows that the equation is linear
in the spline coefficients pj and dj . The factors of each coefficient are computed by
numerical integration of Eq. (21) for a given instrument function.

To compute the m coefficients dj , the m measurement equations (Eq. 21) are written
as matrix equation

Mx=y (22)

with parameter vector x∈R2m+1 and data vector y ∈Rm:

y=
[
ρ0 ρ1 ... ρm−2 ρm−1

]T
. (23)

Equation (22) relates the data vector y to the weighted mean values f̄j using matrix M.
Each row of the band matrix M has entries of the factors of the spline coefficients as
calculated by Eq. (21). If the instrument function Wj(y) is computed over three pixels
(r= 1) the matrix M is as follows

M=


κp0,0 κd0,0 κp0,1 κd0,1 κp0,2
κp1,−1 κ

d
1,−1 κp1,0 κd1,0 κp1,1 κd1,1 κp1,2
. . . . . . . . . . . . . . . . . . . . .

κpm−2,−1 κ
d
m−2,−1 κpm−2,0 κdm−2,0 κpm−2,1 κ

d
m−2,1 κ

p
m−2,2

κpm−1,−1 κ
d
m−1,−1 κ

p
m−1,0 κ

d
m−1,0 κ

p
m−1,1

 (24)

where κdj,k is the factor of coefficient dj+k calculated by

κdj,k =

∫ yj+k+1

yj+k

Φd(y)Wj(y)dy (25)
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with base function Φd(y) given by Eq. (12). The factor κpj,k of coefficient pj+k is com-
puted by

κpj,k =

∫ yj+k

yj+k−1

Φp1(y)Wj(y)dy+

∫ yj+k+1

yj+k

Φp0(y)Wj(y)dy. (26)

The factors depend on the knots yj , the distance between satellite and ground pixel
and the exposure time, see Eq. (2). They can be computed by numerical integration.

2.4.3 Quadratic programming problem

The parameter vector x can be computed from Eqs. (16) and (22). The inverse problem
is ill-posed, i.e. very sensitive to measurement noise, if the FWHM of the instrument
function is about twice the length of the pixel size. The problematic solutions have mean
value coefficients dj which fluctuate around their true values, that is, the values are too
small and too large, alternately. This issue gets worse with increasing measurement
uncertainty. To prevent over- and undershooting, the inverse problem of retrieving x is
written as least square problem, which minimizes a quadratic objective function ϕ(x)
with an additional penalty term to regularise the inversion:

ϕ(x) = (Mx−y)TS−1ε (Mx−y)+γ(L2x)TB−1(L2x). (27)

Sε being the covariance matrix, which here is assumed to be diagonal. The second
term (on the right hand side) is the penalty term, which is weighted by the smoothing
parameter γ. The matrix L2 ∈R(m−2)×(2m+1) is the second-order difference matrix,
which is used for the mean values dj in x only:

L2 =
1

3


0 1 0 −2 0 1 0

0 1 0 −2 0 1 0
. . . . . . . . . . . . . . . . . . . . .

0 1 0 −2 0 1 0

. (28)
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The penalty term computes the sum of the squared deviations of dj from the local
mean of three consecutive coefficients and thus prevents strong local oscillation. The
diagonal matrix B is used to cancel the units of the penalty term and to reduce the de-
pendency of the optimal smoothing on the measurement uncertainty δε (see Sect. 3.2).
We set the entries of B as

bjj = ρest δεj (29)

where ρest is an estimate of the maximum value of the distribution.
Adding the continuity constraint given by Eq. (16) the computation of the spline can

be written as a linearly constrained quadratic programming problem:

minimize ϕ(x) =
1

2
xTHγx+gTx+k (30)

subject to Cx=0

with

Hγ = 2MTS−1ε M+2γLT2 B
−1L2

g=−2yTS−1ε M (31)

k=yTS−1ε y

where the Hessian matrix Hγ ∈R(2m+1)×(2m+1) depends on the smoothing parameter
γ. The problem 31 is rewritten using the method of Lagrangian multipliers as[

Hγ C
T

C 0

][
x
λ

]
=

[
−g
0

]
(32)

where λ is the vector of Lagrangian multipliers (Nocedal and Wright, 2006). The pa-
rameter vector is calculated by inverting the sparse matrix of Eq. (32) using a stan-
dard solver for sparse linear systems. Other strategies to solve quadratic programming
problems can be found in Nocedal and Wright (2006).
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2.4.4 Surface spline algorithmTwo-dimensional algorithm

In this section, we show how a continuous two-dimensional surface spline can be con-
structed using the one-dimensional splines just described. The algorithm bases on
an algorithm described by Kobza and Mlcak (1994), who compute a surface spline for
known mean values di,j . The use of one-dimensional splines allows to compute the
coefficients by inverting several small matrices. In contrast, computing all coefficients
simultaneously, requires the inversion of one very large matrix. The latter case has two
major disadvantages: (1) the computational complexity of matrix algebra increases
more than linear with the size of the matrix and (2) a larger matrix is more prone to
floating-point inaccuracy.

The two-dimensional spline surface is defined on the nearly-rectangular lattice formed
by the tiled pixel product:

A two-dimensional spline surface can be described on the nearly-rectangular lattice
formed by the tiled pixel product:

{(xi,yj) :x0<x1< ...<xn,y0<y1< ...< ym}. (33)

Following Kobza and Mlcak (1994) each piecewise defined polynomial is written as

fi,j(s,t) = Ψ00pi,j +Ψ10pi+1,j +Ψ01pi,j+1+Ψ11pi+1,j+1+Ψx0q
x
i,j (34)

+Ψx1q
x
i,j+1+Ψy0q

y
i,j +Ψy1q

y
i+1,j +Ψddi,j
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using nine coefficients (see also Fig. 4) defined by

pi,j = fi,j(xi,yj)

qxi,j =

∫ xi+1

xi

fi,j(x,yj)dx

qyi,j =

∫ yj+1

yj

fi,j(xi,y)dy (35)

di,j =

∫ xi+1

xi

∫ yj+1

yj

fi,j(x,y)dydx

and the basis functions

Ψ00(s,t) = (1−s)(1− t)(1−3s−3t+9st)

Ψ10(s,t) = s(1− t)(−2+3s+6t−9st)

Ψ01(s,t) = t(1−s)(−2+6s+3t−9st)

Ψ11(s,t) = st(4−6s−6t+9st)

Ψx0(s,t) = 6s(1−s)(1− t)(1−3t) (36)

Ψx1(s,t) = 6st(1−s)(3t−2)

Ψy0(s,t) = 6t(1−s)(1− t)(1−3s)

Ψy1(s,t) = 6st(1− t)(3s−2)

Ψd0(s,t) = 36st(1−s)(1− t).

If the mean values di,j are known, the surface spline Eq. (35) can be computed
uniquely using the one-dimensional splines described in Sect. 2.4.1 by employing an
algorithm described by Kobza and Mlcak (1994). Using three one-dimensional spline
computations is advantageous because one-dimensional splines are calculated more
efficiently than two-dimensional splines when the lattice is very large. In our application,
the mean values are unknown and are computed by solving the quadratic programming
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problem Eq. (32) for each row (i= 0,...,n−1) in along-track direction using measured
values ρ̄i,j and estimated errors δεi,j . The resulting parameter vectors contain the
coefficients qxi,j and di,j . Thus the mean values are determined and can be used to
compute the remaining coefficients. For each swath (j= 0,...,m−1), the mean values
di,j are used in Eq. (32) to compute the coefficients qyi,j . Finally, the line integrals qxi,j
are used in the same way in Eq. (16) to compute the coefficients pi,j .

Kobza and Mlcak (1994) calculate the nine coefficients in three steps by solving
several one-dimensional splines (Eq. 16). The first step of their algorithm requires the
knowledge of the mean values di,j . In our application, these mean values are unknown.
Therefore, we modify the first step to compute the mean values from the measurement
values ρ̄i,j as described in Sect. 2.4.3. The coefficients are computed by the following
three steps:

Step 1) We start with the measurement values ρ̄i,j and estimated standard devia-
tions δεi,j , to solve Eq. (32) for each along-track column i. An appropriate smoothing
parameter γ has to be chosen in this step (see Sect. 3):

f o r i = 0 , . . . , n−1:
y = [ ρ̄i,0 , . . . , ρ̄i,m−1 ]
e = [ δi,0 , . . . , δi,m−1 ]

M = (Eq . 24)
Sε = (Eq . 27)
B = (Eq . 29)
γ = ( Sect . 3)

Solve Eq . (32) to ob ta in :
x = [ qxi,0 , di,0 , . . . , di,m−1 , qxi,m ]

Thus, this step computes the mean values di,j and the line integrals along the bound-
aries of the lattice cells qxi,j .

Step 2) Since the mean values di,j are known, they can be used to compute the
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coefficients qyi,j for each row in across-track direction:

f o r j = 0 , . . . , m−1:
Solve Eq . ( 1 6 ) :
− wi th mean values : [ d0,j , . . . , dm−1,j ]
− to ob ta in [ qy0,j , . . . , qyn,j ] .

Step 3) Finally, the line integral qxi,j can be used as mean values to compute the
coefficients pi,j for each row in across-track direction:

f o r j = 0 , . . . , m:
Solve Eq . ( 1 6 ) :
− wi th mean values : [ qx0,j , . . . , qxm−1,j ]
− to ob ta in [ p0,j , . . . , pn,j ] .

Now all coefficients are known and the values of the distribution fu,v can be cal-
culated at each grid cell. The borders of each pixel are calculated to obtain all grid
cells which lie within the pixel. Next, the relative coordinates s and t are computed for
the centre of each grid cell to calculate the value of the distribution fu,v = fi,j(s,t) by
Eq. (35).

2.4.5 Handling of missing values

In observational data, trace gas values may be missing for some pixels due to unavail-
able measurement values or retrieval errors. In along-track direction, missing values
could be omitted in the minimization problem Eq. (27) and thus the spline coefficients at
these pixels would be determined by the penalty term and neighbouring pixels. How-
ever, the reconstruction of the surface spline should compute missing values using
the measurement in both along- and in across-track direction. Therefore, we estimate
all missing values from available measurements using bilinear interpolation. The esti-
mated values are included with low weight in Eq. (27) using an (estimated) measure-
ment uncertainty δε equal to the estimated maximum value ρest.
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By this method the entire spline surface of an orbit can be determined. However,
only the parts of the spline surface are projected on the grid for which measurement
values are available. Optionally, interpolated values can be kept in the gridded data
product to fill small data gaps.

3 Performance evaluation

In this section, test scenarios are used to study the performance of PSM and to de-
termine the optimal smoothing parameter γ. Another important aspect addressed in
this section is an analysis of the impact of measurement noise on the algorithm perfor-
mances using Monte Carlo simulations. Finally, the performance of PSM is compared
with CVM under different test scenarios.

3.1 Reconstruction errors

Four types of errors may occur when reconstructing a distribution. First we have to con-
sider that the parametrization of the surface using constant values or parabolic poly-
nomials may not be able to provide an adequate representation of the true distribution
(parametrization error). Furthermore, errors may occur due to the inaccurate descrip-
tion of the measurement process and its numeric implementation (forward model error).
Another error type is the perturbation error, which results from the propagation of the
measurement error through the model. The oscillation of the mean values caused by
measurement noise is a perturbation error. Finally, smoothing errors can occur in PSM,
if the penalty term is given too much weight. We define the best possible representation
as the one without (or with negligible) perturbation and smoothing errors.

We use the root mean square deviation (RMSD) between true and reconstructed
distribution as a measure for the overall error of the gridded result:

l2 =

√
1

N

∑
u,v

(ρu,v−fu,v)2 (37)
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where ρu,v and fu,v are the true and reconstructed distributions, respectively. u and v
are the grid indices and N is the number of grid cells.

Furthermore, the absolute difference between maximum and minimum value is used
to identify how well maxima are reconstructed by the algorithms:

lmax =

√
(ρumax,vmax−fumax,vmax)

2 (38)

where umax and vmax are the grid coordinates of the maximum in the true distribution.
These error measures depend on the grid resolution. The continuous distribution

created by PSM will only be of advantage, if the grid resolution is smaller than the
ground pixel size. Here we use a grid resolution 10 times % smaller than the pixel size,
which is 1.3 km for OMI.

3.2 Performance for test scenarios

In this section the performances of PSM and CVM are compared for simple test scenar-
ios and the characteristics of the different types of errors are discussed. Since PSM is
based on separate one-dimensional reconstructions, we first evaluate the performance
of this algorithm for the two dimensions separately and then for two-dimensional recon-
structions.

3.2.1 Monte Carlo simulation

Our test scenarios consist of single plumes and a constant background distribution.
Trace gas plumes are created by localised emissions over cities or industrial areas.
Constant values can be expected in remote regions without major point emissions.
The plumes are modelled by Gaussian functions with standard deviations σ between
1h and 2h (with pixel size h) which are typical sizes of plumes found in OMI’s NO2

product. The maximum value of the plumes is one.
The distributions are discretized on a one- or two-dimensional grid with x and y being

across- and along-track direction, respectively. Simulated measurement values are
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obtained by convolving the test distribution with the instrument function, Eq. (1), and
selecting discrete values on an equidistant lattice of 11 pixels in across- and 11 pixels
in along-track direction. The position of the lattice on the test distribution is shifted
between samples to mimic different instrument positions over ground. In along-track
direction, instrument functions with different widths (FWHM) are tested for positions
between nadir and the edge of the swath.

The measurement errors are treated as random Gaussian noise with standard devia-
tions from 1 to 75 % of the plumes’ maximum value. Our main objective is to reconstruct
tropospheric NO2 column densities, whose uncertainties are mainly below 25 % under
good viewing conditions (cloud cover≤ 50%). This assumption is based on typical er-
rors which are 0.1×1016 cm−2 for clear sky and about 0.5×1016 cm−2 for cloud fractions
of 50 % (Bucsela et al., 2013). Maximum NO2 column densities are typically about 2 to
10×1016 cm−2 over polluted regions.

The performance is studied for single reconstructions and for averages of 100 re-
constructions with different errors. Averaging measurements is common practise to
reduce noise and to study for example annual distribution. For the different test sce-
narios a range of smoothing parameters γ is analysed to determine optimal smoothing.

3.2.2 Across-track direction

In across-track direction, the spline fu(x) is obtained by computing its parameters us-
ing Eq. (16). If a constant distribution is reconstructed, the l2 errors are growing linearly
with increasing δε for CVM and PSM (not shown). The reason is that forward model
and parametrization errors are small and the l2 error is dominated by the perturba-
tion error which originates from the propagation of the measurement errors δε. In this
scenario PSM is more sensitive to δε than CVM and thus l2 errors of PSM are slightly
larger. Since the measurement uncertainty δε is modelled as random noise, averaging
k measurements will reduce the l2 error by the inverse square root of k. Consequently,
l2 is reduced by ten for k= 100 for both algorithms.

Figure 5a illustrates the reconstruction of a plume (σ= 1.5h) using PSM and CVM
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for small errors. It can be seen that the reconstruction with PSM is more accurate than
with CVM. The dependency of l2 and lmax on the uncertainty δε is shown in Fig. 6a.
As for the constant distribution, the error grows with increasing uncertainty. However,
in this test scenario the best possible representation is limited by the parametrization
error as can be seen for small errors (δε < 20%). If CVM is used, the error of the
best possible reconstruction is considerably larger than for PSM. For this reason, PSM
performs better than CVM for small and moderate errors. On the other hand, a larger
sensitivity of PSM to δε causes larger errors for δε greater than 25 %, if PSM is used
instead of CVM. The error of k averaged measurements decreases with the inverse
square root of k, but converges towards a best possible representation (see Fig. 6a for
k= 100). The l2 error of CVM for k= 100 averages is smaller than the best possible
representation of a single measurement. The reason is that the movement of the lattice
between samples improves the parametrization of the distribution. This error reduction
cannot be found for the lmax error. Overall, the performance of PSM is better than CVM,
if the measurement error is small or is reduced by averaging.

3.2.3 Along-track direction

In along-track direction, the coefficients of spline fv(y) are computed by solving Eq. (32)
for a given smoothing parameter γ. The penalty term is scaled using the diagonal
inverse of matrix B . Using the scaling defined by Eq. (29) with ρest equal to one, which
is proportional to the measurement uncertainty δε and ρest Eq. (29). ρest is set to one.
Using this scaling, l2 and lmax have minimum values at similar γ independently of the
measurement uncertainty δε (Fig. 7). This suggests that the smoothing parameter γ
can be selected independently of the measurement uncertainty δε.

For one measurement (k= 1) the performance curves shown in Fig. 7 have a distinct
minimum. Larger values for γ increase the influence of the penalty term and lead to
solutions which are smoothed excessively such that l2 increases (smoothing error).
Using a smaller γ increases the sensitivity to measurement uncertainty δε which also
causes a larger l2 error (perturbation error). At the swath edge, where the FWHM of the
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instrument function is large, the l2 error increases strongly for small γ. As discussed
in Sect. 2.4.2, solutions with γ equal zero at the swath edge are not usable, because
they show severe over- and undershooting. Assessing the performance by lmax the
curve has a minimum at a smaller γ, because lmax measures only the reduction of the
maximum value, which is affected stronger by the smoothing error. Figure 7 shows
that averaging k measurement decreases the perturbation error (for small γ) with the
inverse square root of k. The systematic error of the penalty term (for large γ) is not
reduced by averaging. As a result, the minimum of the l2 and lmax errors for averaged
measurements is at a smaller γ than for a single measurement. Using a wider plume,
smoothing errors are smaller and as a result it is possible to choose larger smoothing
parameters (not shown).

Since our main interest is the reconstruction of distributions in source regions, γ
is chosen such that the plume is reconstructed best for small and moderate errors.
Furthermore, we want avoid systematic errors resulting from large γ. Therefore, γ is
chosen such that it is slightly smaller than the minimum of l2 for a single reconstruc-
tion. Since the position of the optimal γ depends on the pixel overlap and thus on the
FWHM of the instrument function, this optimal γ will be different for other values of
FWHM. Here, two effects are important: (1) a greater overlap increases the sensitivity
to measurement uncertainties, which requires more smoothing. (2) The same width of
the plume appears narrower, if the FWHM of the instrument function is larger. A wider
plume has a larger optimal γ. Monte Carlo simulations are used for a fixed width of
the plume (σ= 1h) to determine the optimal γ for varying FWHM. The optimal value
for γ decreases with increasing FWHM (not shown). This suggests that the second
effect is dominant. However, it is more meaningful to measure the performance, when
the width of the plume is directly proportional to the FWHM, since this determines the
reconstructability of a distribution. Using this scenario, the optimal smoothing param-
eter γ increases with the FWHM of the instrument function. Figure 7 is used to pick
the optimal γ at nadir (σ= 1h and FWHM about 1h) and at the swath edge (σ= 2h and
FWHM about 2h) to be 1 and 10, respectively. The smoothing parameters for other
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FWHM are computed by linear interpolation between the optimal γ at nadir and the
swath edge.

Figure 5b–d illustrate the reconstruction of the plume in along-track direction using
optimal smoothing parameters for which the distributions are reconstructed well. In
addition, the reconstruction without regularisation (γ = 0) is shown, where over- and
undershooting is indiscernible at nadir, weak near the edge and clearly visible at the
swath edge (Fig. 5b–d). Hence the regularisation is mainly important for the last three
rows on both edges of the swath. However, the penalty term is also suitable to reduce
“fitting to noise” for all rows as is shown next. The dependency of l2 and lmax on the
measurement uncertainty δε at nadir and at the swath edge is shown in Fig. 6b and
c, respectively. l2 and lmax errors are similar to the errors in across-track direction
(Fig. 6a). The performance of PSM is improved by the penalty term, which reduces
perturbation error especially for large measurement errors (δε > 25%). On the other
hand, the additional error due to the penalty term (smoothing error) can reduce the
performance of PSM. After k= 100 averages the total error of the reconstructed plume
is not a tenth of the error of a single reconstruction, because of the systematic error of
the penalty term. However, PSM still performs similarly or better than CVM in all test
scenarios.

To summarize, a suitable smoothing parameter γ can be found empirically by con-
sidering different test scenarios. The weight of the penalty term is proportional to
the absolute measurement uncertainty δε. The smoothing parameter γ increases with
the width of instrument function. The overall performance of PSM is limited by the
parametrization error and the smoothing error, which are both systematic errors. On
the other hand, the penalty term is necessary to reduce the perturbation error espe-
cially at the edge of the swath where the FWHM of the instrument function is large.
The performances of PSM and CVM are compared for different test scenarios. PSM
performs similarly to CVM for large errors (δε ≥ 25%) and better than CVM for small
and moderate errors (δε< 25%).
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3.2.4 Performance ofThe surface spline: performance and propagation of mea-
surement uncertainty

The algorithm described in Sect. 2.4.4 is used to reconstruct the surface spline fu,v for
the test scenarios. The results of the Monte Carlo simulation suggest a value for the
optimal smoothing parameter γ about 1 at nadir and 10 at the edge of the swath. These
values are the same as in along-track direction. Figure 6d and e show the dependency
of l2 and lmax on the measurement uncertainty δε for the test scenarios. The results are
similar to the findings for the one-dimensional spline in along-track direction.

The results can also be used to the estimate the measurement uncertainty of the
trace gas map. For CVM, grid cell values are given by averaging overlapping pixels and
thus the propagation error can be computed easily (Wenig et al., 2008). For PSM the
computation of the error is more complex and out of the scope of this study. However,
if the propagation error is dominant (δε≥ 25%), Fig. 6 shows that l2 errors for CVM and
PSM are similar. Therefore, the error distribution obtained by CVM can also be used
to estimate the errors of trace gas maps created by PSM.

3.3 Reconstruction of model distribution

The performance of CVM and PSM is further studied using simulated NO2 distribu-
tions. We show that the above conclusions also apply for complex distributions. The
simulation is performed using the Models-3 Community Multiscale Air Quality (CMAQ)
Modeling System, version 4.7.1, developed by the United States Environmental Protec-
tion Agency (USEPA) (Byun and Schere, 2006). The model domain encloses the Pearl
River Delta Region with a horizontal grid resolution of 3 km. The meteorological input is
provided by the Weather Research and Forecasting (WRF) modelling system. The air
pollution emissions are based on an emissions inventory of the Year 2006. The same
inventory has been used in some earlier studies. The results of the simulations agree
well with the observations (Huang et al., 2005; Lam et al., 2005). Figure 8a shows
the modelled NO2 column densities on 8 October 2012, 14:00 LT (local time). The
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distribution is normalized by its maximum value.
This model distribution is sampled using instrument functions of OMI at nadir and

at the swath edge. The pixel size is assumed to be 13×24 km2 in along- and across-
track direction, respectively. At the swath edge, OMI pixels are actually 160 km long in
across-track direction. However, with this coarse resolution the reconstruction of the
modelled plumes would cause large parametrization errors. For this reason, we choose
a smaller pixel size to better investigate the impact of the instrument function. Again,
a Monte Carlo simulation is performed to study the performance of CVM and PSM for
different measurement uncertainties δε, smoothing parameters γ and number of mea-
surements k. The optimal smoothing parameters γ are identified as 1 and 10 at nadir
and at the swath edge, respectively, which are the same as in the two-dimensional test
scenarios. In Fig. 10 the l2 and lmax errors are shown for CVM and PSM using different
measurement uncertainties δε. The results are similar to the findings obtained from the
test scenarios. Figure 8 shows the reconstruction from a single measurement using
a small error (δε = 0.05) for CVM and PSM. The structure of the plume, that is outflow
towards the south west, is clearly recognisable using PSM. A cross section through the
plume is given in Fig. 9. The reconstruction of the maximum value using PSM is better
than for CVM. We conclude that PSM can reconstruct complex distribution over source
regions with a better performance than CVM.

4 Application to OMI data

In this section, the new gridding algorithm (PSM) is used to create daily, monthly and
annual maps of tropospheric NO2 column densities from NASA’s standard product, ver-
sion 2 (SP2) (Bucsela et al., 2006, 2013). Starting from 2007 OMI is affected by a row
anomaly and thus several rows of each orbit are masked at the moment. To discuss
the performance without the influence of the row anomaly, our analysis concentrates
on measurements before 2007.

The smoothing parameters γ is set to 1 at nadir and 10 at the edge of the swath.
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In between parameters are obtained by linear interpolation as function of the FWHM.
The scaling factor ρest is set to 1016 cm−2, which is a typical size for high NO2 column
densities. The entries of the measurement matrix (κp and κd) are pre-computed for
satellite-to-ground distances between 700 and 1700 km and an exposure time of 2 s
using an averaged along-track pixel size of 13.5 km. Measurement uncertainties, pro-
vided by SP2, scale with NO2 column densities due to the air mass factor dependency
of the error (Wenig et al., 2008; Bucsela et al., 2013). Using these uncertainties gives
lower weights to smaller densities and hence biases distributions towards low values.
To avoid this bias we adopt empirically estimated measurement uncertainties δε based
on radiative cloud fractions (RCF) (Wenig et al., 2008):

δε = 0.15 ·1016 (1.0+3.0RCF) cm−2. (39)

Where multiple orbits overlap, column densities at a grid cell fu,v are the weighted av-
erage of the values in all orbits. All grid cells within the boundaries of an OMI pixel are
weighted by the inverse pixel area Ai,j . This weighting function is suitable to preserve
the continuity of column densities in the averaged products. In addition, the area de-
pendency guarantees that individual grid cell errors are consistent with the error for the
total pixel (Wenig et al., 2008). Using this weighting scheme, smaller OMI pixels are
weighted higher, which enhances details on the map.

Daily, monthly and annual maps of tropospheric NO2 column densities are plotted
for the Pearl River Delta region in southern China (Fig. 11). Locations of major cities
and fossil-fuel power stations are marked. The daily map created by PSM shows sev-
eral distinct plumes, which have larger maximum values than the plumes in the maps
produced with CVM. The higher maximum values are likely to be closer to the true max-
imums. This was demonstrated in the performance evaluation in Sect. 3. The monthly
map for October 2006 produced with CVM is coarse and values of adjacent grid cells
may differ substantially. This spatial noisiness of the distribution makes it difficult to
use column amounts at a certain location, for instance for validation studies. To obtain
a reasonable value, grid cells are often averaged within a certain radius around the lo-
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cation. This additional step is not necessary if the maps are created by PSM, because
the gridding algorithm already produces a continuous distribution. As a final example,
Figs. 12 and 13 show a daily and monthly distribution of NO2 column densities over
Europe and the eastern USA.

5 Discussion and conclusions

In this study, the parabolic spline method (PSM) was developed in order to improve
the accuracy and spatial resolution of trace gas maps obtained from satellite measure-
ments. The new gridding algorithm reconstructs the trace gas distribution by a con-
tinuous parabolic spline surface using measurements from a single orbit. The spline
coefficients are computed using one-dimensional splines, which allow fast computation
for a large number of pixels. PSM is the first gridding algorithm that explicitly treats the
spatial sensitivity distribution of the instrument over ground using an instrument func-
tion. If the FWHM of the instrument function is about twice the length of the tiled pixel,
the inverse problem is very sensitive to measurement errors. Therefore, a penalty term
is used to regularise the inversion by a second-order difference matrix. This regular-
isation is similar to the penalty term in a smoothing spline and hence is also used to
smooth measurement noise (de Boor, 2001). Monte Carlo simulations are conducted
to study the performance of the algorithm for different distributions of trace gas column
densities. The optimal weight of the penalty term is found to be proportional to the
measurement uncertainty and the width of the instrument function.

The algorithm calculates the unknown mean values over the tiled pixel product from
the measurements. While we use these values as spline coefficients, it should be
noted that they can also be used directly as a better approximation to visualize the
mean values over the tiled pixels. This approach is more accurate than the often used
assumption that the mean values over the tiled pixel are equivalent to the measurement
values. A related study on the best approximation of mean values over tiled pixels is
planned in the future.
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The reason for the sensitivity of the inverse problem to measurement noise has not
been analysed in detail in this paper. Our analysis suggests that the inverse problem
becomes undetermined, because the measurement noise and the wide instrument
function reduce the ”effective” rank of the problem. In addition, the parametrisation
of the distribution by parabolic splines may favour the oscillation of the mean values,
because the spline is created by combining parabolas with continuous first derivatives.
In this study, we use parabolic splines, because they are the simplest parametrisa-
tion. A different parametrisation, for example higher-order polynomials, could make
the inversion more stable.

The performance of PSM is compared with a standard algorithm, described by Wenig
et al. (2008), which assumes constant measurement values within pixel boundaries and
thus is named constant value method (CVM) here. Due to the smaller parametriza-
tion errors, reconstructions using PSM are better than CVM, if the perturbation error
is small or is reduced by averaging. Trace gas maps created by PSM are smoother
and maximum values are better reconstructed. Better performance is also illustrated
by reconstructing the high-resolution distribution calculated with the CMAQ chemistry
model. Application to OMI NO2 column densities suggests that PSM is more suit-
able than CVM to create high-resolution maps. It should be understood that the best
possible resolution is fundamentally limited by the spatial resolution of the satellite in-
strument. However, a well-chosen gridding algorithm may be able to detect small-scale
features at this limit, which are missed otherwise. The use of PSM in satellite validation
studies is being planned for in the future.

The general approach described in this study can be easily extended for higher-
order splines, for instance quartic splines, to further improve the parametrization of the
distribution. The gridding algorithm can also be applied to other OMI-like instruments
such as the TROPOspheric Monitoring Instrument (TROPOMI), planned for launch
in 2014 (Veefkind et al., 2012). The high spatial resolution of TROPOMI (7× 7 km2

at nadir) allows for the detection of small-scale features and is likely to reduce the
measurement uncertainty due to more cloud-free observations.
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In this paper, we demonstrate that the newly developed gridding algorithm improves
the reconstruction of regional trace gas maps. Its application could be very helpful
when satellite-derived trace gas distributions are studied on a regional scale.
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Fig. 1. Along- and across-track ground pixel size for the overlapping (FoV75) and tiled product
for the visible channel in the global observation mode. Note that pixels of the tiled product have
constant along-track size of 13 km.
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pixel product at across-track positions i= 29 (nadir), 49 and 59 (swath edge). Pixel centres are
marked by a black cross. Note that all pixels have nearly rectangular shape. A grid with 0.04◦

distance is shown for reference. A similar figure is found in Kurosu and Celarier (2010).
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Fig. 3. Normalised instrument functions, as described by Eq. (3), of six consecutive pixels
in along-track direction (a) at nadir and (b) at the edge of the swath. The boundaries of the
corresponding tiled pixels are shown as dashed, vertical lines.
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of a single reconstruction and dashed lines for the average of 100 reconstructions. The shaded
areas are the standard deviations.
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Fig. 8. (a) NO2 column densities simulated by CMAQ on 8 October 2012, 14:00 LT and (b)–
(e) reconstructions of distribution with CVM and PSM for a measurement uncertainty δε of 0.05.
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Fig. 11. Daily, monthly and annual map of tropospheric NO2 column densities over the Pearl
River Delta (South China) on a 0.01◦×0.01◦grid created by (a) the standard method (CVM) and
(b) our new algorithm (PSM). Locations of fossil-fuel power stations are marked as triangular
markers.
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Fig. 12. Daily and monthly map of tropospheric NO2 column densities over Belgium, Germany
and the Netherlands on a 0.01◦×0.01◦grid created by (a) the standard method (CVM) and
(b) our new algorithm (PSM).
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Fig. 13. Daily and monthly map of tropospheric NO2 column densities over the eastern USA
on a 0.01◦×0.01◦grid created by (a) the standard method (CVM) and (b) our new algorithm
(PSM)
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