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Abstract  43 

In this paper, we develop an algorithm based on combining spectral, spatial, and temporal 44 

thresholds from the geostationary Spinning Enhanced Visible and InfraRed Imager 45 

(SEVIRI) daytime measurements to identify and track different aerosol types, primarily 46 

volcanic ash.  Contemporary methods typically do not use temporal information to 47 

identify ash. We focus not only on the identification and tracking of volcanic ash during 48 

the Eyjafjallajökull volcanic eruption period beginning 14 April to 17 May 2010 but a 49 

pixel level classification method for separating various classes in the SEVIRI images.  50 

Three case studies on 13 May, 16 May, and 17 May are analyzed in extensive detail with 51 

other satellite data including the Moderate Resolution Imaging Spectroradiometer 52 

(MODIS), Multi-angle Imaging Spectroradiometer (MISR), and Facility for Airborne 53 

Atmospheric Measurements (FAAM) BAe146 aircraft data to verify the aerosol spatial 54 

distribution maps generated by the SEVIRI algorithm.  Our results indicate that the 55 

SEVIRI algorithm is able to track volcanic ash when the solar zenith angle is lower 56 

than about 65°.  Furthermore, the BAe146 aircraft data shows that the SEVIRI algorithm 57 

detects nearly all ash regions when AOD > 0.2.  However, the algorithm has higher 58 

uncertainties when AOD is < 0.1 over water and AOD < 0.2 over land.  The ash spatial 59 

distributions provided by this algorithm can be used as a critical input and validation for 60 

atmospheric dispersion models simulated by Volcanic Ash Advisory Centers (VAACs).  61 

Identifying volcanic ash is an important first step before quantitative retrievals of ash 62 

concentration can be made. 63 

 64 
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1. Introduction  74 

 The Eyjafjallajökull volcano located on the southern coast of Iceland (63.6°N, 75 

19.6°W) began emitting ash into the atmosphere on 14 April 2010.  Although only a mid-76 

size eruption (Gudmundsson et al., 2013), the volcano had a tremendous impact on air 77 

traffic as the strong atmospheric winds transported the ash southeasterly towards Europe 78 

(Ansmann et al., 2010a).  By 16 April 2010, an ash plume was observed across Central 79 

Europe by Aerosol Robotic Network (AERONET) Sun photometers and ground based 80 

lidars (Ansmann et al., 2010b).  The presence of ash caused nearly a week-long stoppage 81 

in air travel over many parts of Europe since volcanic ash can have damaging effects 82 

on commercial airplanes (Casadevall, 1992).    Flight cancellations that occurred over 83 

the ensuing week proved extremely costly to the airline industry as monetary losses were 84 

over 1 billion U.S. dollars (Christopher et al., 2012).  Therefore, it is critical that we 85 

accurately track volcanic ash during an eruption period.   86 

To track the spatial distribution of volcanic ash, satellite remote sensing is 87 

important as the spatial distribution of ash varies strongly especially after an eruption.  88 

Ground based stations are inadequate for understanding the spatial distribution as they 89 

only provide point measurements.  Satellites are also an important tool for verifying 90 

models that predict ash concentrations and spatial distributions (Millington et al., 2012).  91 

These models are usually high resolution dispersion models that predict height dependent 92 

ash concentrations used by Volcanic Ash Advisory Centers (VAACs).  Although polar 93 

orbiting satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) 94 

can provide high spatial resolution of volcanic ash plumes (Sigmundsson et al., 2010), 95 

their temporal resolution is insufficient to track ash plumes being transported long 96 

distances over relatively short time scales.  Thus, geostationary satellite sensors such as 97 

the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) are critical for assessing 98 

the spatial distributions of ash due to their high temporal resolutions (Prata and 99 

Kerkmann, 2007, Christopher, et al., 2012).  100 

Ultimately it is important to know the vertical distribution of ash concentrations 101 

before important decisions can be made regarding commercial flights during eruptions. 102 

However the first task is to detect the volcanic ash on a pixel-by-pixel basis. The first 103 

limitation to note is the SEVIRI cannot detect ash below thick clouds which is a common 104 
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issue for passive satellite data sets that operate in the visible to the infrared part of the 105 

electromagnetic spectrum.  However the repeated temporal information and the large 106 

spatial coverage make SEVIRI an excellent tool for understanding the spatial 107 

distribution of volcanic ash over large areas.  One common method is to simply assign 108 

separate channels to the red, green, and blue and visually examine the ash by looking for 109 

certain colors.  This is often problematic since clouds can be confused as ash and not all 110 

aerosols appear to have the same color; and therefore, it is important to develop an 111 

algorithm that separates an image into various classes, such as cloud and aerosol, for 112 

further studies that may involve calculation of ash concentrations.   113 

Prata (1989) presented a very commonly used technique that exploits the 114 

brightness temperature difference (BTD) between the 11 and 12 μm channels (BTD 11-115 

12).  The limitations with this simple technique are well known and discussed in Prata et 116 

al. (2001) where one major limitation is that high water vapor amounts can mask the 117 

negative BTD signal which the technique relies on ash detection.  Pergola et al. (2004) 118 

developed a more sophisticated ash detection technique that compares a measured 119 

satellite signal to a reference field computed from long-term historical records.  In 120 

particular, they use three channels centered at approximately 3.75, 11.0, and 12.0 μm 121 

from the Advanced Very High Resolution (AVHRR) to compute the reference fields and 122 

they show that this Robust AVHRR Technique (RAT) is more accurate in detecting 123 

volcanic ash than the simple BTD technique presented in Prata (1989).  However, this 124 

approach requires multiple years of data over a region to compute the reference fields.  125 

Pavolonis et al. (2006) developed a four channel ash detection algorithm that utilizes the 126 

0.65, 3.75, 11.0, and 12.0 μm channels and does not rely on a reference field but instead 127 

uses spectral tests and a spatial filtering routine.  They showed that this four channel 128 

algorithm is much better at detecting volcanic ash regions compared to the BTD approach 129 

with less false detections.  We take a different approach by developing an algorithm 130 

using SEVIRI measurements that exploits temporal thresholds along with spectral and 131 

spatial thresholds to classify each pixel into various classes (e.g. cloud, land, and 132 

aerosol).  This algorithm uses seven different SEVIRI channels to produce detailed 133 

spatial distribution maps of cloud and aerosol.        134 
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Although the SEVIRI instrument is not equipped with near ultraviolet (UV) 135 

channels, it is important to note the ability of the near-UV channels in detecting volcanic 136 

ash.  Torres et al. (1998) used the near-UV channels of 340 and 380 nm from the Total 137 

Ozone Mapping Spectrometer (TOMS) instrument to detect volcanic ash, and they found 138 

that these two channels have great success in detecting ash over snow/ice or above 139 

clouds.  This is an important advantage of using the near-UV channels as detection 140 

techniques using channels from the visible to infrared spectrums, such as the RAT and 141 

our SEVIRI algorithm, do not possess the same capability of detecting ash over snow/ice 142 

or above clouds (Pergola et al., 2004).  In addition, Krotkov et al. (1999) showed that the 143 

near-UV channels of the TOMS instrument can detect the optically opaque, very fresh 144 

ash which is often missed by the visible and infrared techniques. 145 

This study tracks the ash plumes emitted from the Eyjafjallajökull volcano from 146 

its initial eruption on 14 April until the end of the eruption period on 23 May using the 147 

high temporal resolution measurements of SEVIRI onboard the Meteosat Second 148 

Generation (MSG-2) satellite.  Since we use the visible along with the infrared channels 149 

of SEVIRI, the algorithm developed in this study can only track the ash plumes during 150 

the daylight periods for volcanic ash in cloud-free conditions.  We present results from 151 

the SEVIRI algorithm throughout the eruption period but place special emphasis on six 152 

days in May 2010 when the Facility for Airborne Atmospheric Measurements (FAAM) 153 

BAe146 research aircraft measurements was available (Johnson et al., 2012).  We use the 154 

FAAM BAe146 aircraft measurements as validation for the SEVIRI algorithm developed 155 

in this study.  Other sources of verification data used in this study to assess the spatial 156 

distribution of the aerosols detected by the SEVIRI algorithm include the MODIS,and the 157 

Multi-angle Imaging SpectroRadiometer (MISR).   158 

 159 

2. Data 160 

The goal of the paper is to develop a pixel level algorithm from SEVIRI 161 

reflectance and temperature measurements using temporal threshold tests along with 162 

spatial and spectral threshold tests.  It is important to note that the retrieval of ash 163 

concentrations and aerosol particle size information is beyond the scope of this study.  164 

We have already noted that the use of temporal thresholds and some of the spatial 165 
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thresholds used in this paper is not routinely done by standard algorithms (i.e. Prata, 166 

1989).  After classifying the volcanic ash pixels, we need to determine the accuracy of 167 

the algorithm but this is a difficult task to accomplish. We have chosen to intercompare 168 

the SEVIRI algorithm results with MODIS and MISR products by making the 169 

assumption that their identification is correct.  We take this a step further by comparing 170 

our results with aircraft data but not many data points can be obtained with such a 171 

comparison. This is not a unique problem to our study since all validation methods have 172 

to use a verification source and then provide results and analysis.   173 

Table 1 shows the SEVIRI channels with the center, minimum, and maximum 174 

wavelengths for each channel.  These channels have a sampling distance of 3 km at sub-175 

satellite point (Schmetz et al., 2002).  The channels used to develop the SEVIRI 176 

algorithm are highlighted while the channels ignored are primarily used for water vapor, 177 

ozone, and carbon dioxide detection.  Thus, the SEVIRI algorithm uses three channels in 178 

the solar spectrum and four channels in the infrared spectrum.   179 

The MODIS onboard the Terra and Aqua polar orbiter satellites have 36 channels 180 

over the spectral range from 0.4-14.4 μm with spatial resolutions of 250 m, 500 m, and 1 181 

km (Savtchenko et al., 2004).  A Level 2 aerosol optical thickness (AOT) operational 182 

product over both ocean and non bright land surfaces is provided by MODIS at a spatial 183 

resolution of 10 km (at nadir) by comparing measured reflectances to a lookup table of 184 

computed reflectances from a radiative transfer model (Remer, et al., 2005).  The 185 

reported uncertainties over ocean and non bright surfaces are ±0.03 ± 0.05τ and ±0.05 ± 186 

0.15τ, respectively, where τ is aerosol optical depth (AOD) or AOT (Remer, et al., 2005).  187 

Additionally, the MODIS Deep Blue Algorithm provides AOT values over deserts and 188 

other bright surfaces where the reported uncertainties are approximately 20-30% (Hsu et 189 

al., 2006).  The Multi-angle Imaging SpectroRadiometer (MISR) instrument onboard the 190 

Terra satellite measures upwelling shortwave radiance in four spectral channels (446, 191 

558, 672, and 867 nm) with nine view angles and spatial resolutions of about 250 m to 192 

1.1 km.  To produce the MISR Level 2 product (MIL2SAE, F12, 22) with a spatial 193 

resolution of 17.6 km, top-of-atmosphere radiances from 16 x 16 pixel areas of 1.1 km 194 

resolution are analyzed (Diner et al. (1999).  The multispectral and multiangle instrument 195 

retrieves accurate AOT values, even over bright deserts (Christopher and Wang, 2004, 196 
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Kahn et al., 2005), with expected uncertainties of ±0.05 for AOT<0.5 and ±10% for 197 

AOT>0.5 (Martonchik et al., 1998).  We use the aerosol spatial distribution from MODIS 198 

and MISR to help verify the SEVIRI results that we have developed in this paper.   199 

A valuable validation data set used in this study is from the FAAM BAe146 200 

research aircraft data that retrieves detailed volcanic ash measurements from the 201 

Leosphere 355 nm Lidar, the Passive Cavity Aerosol Spectrometer Probe (PCASP), and 202 

the Cloud and Aerosol Spectrometer (CAS) (Marenco et al., 2011).  The FAAM BAe146 203 

aircraft flew on six days in May 2010 where aerosol extinction and AOTs at 355 nm were 204 

retrieved along with ash mass concentrations and size distributions (Marenco et al., 205 

2011).  This study focuses on 16 May and 17 May since the volcanic ash was associated 206 

with higher AOTs on these days.  We utilized the AOT measurements at 355 nm 207 

retrieved from the lidar which samples the atmosphere from 2 km above the surface to 208 

300 m below the aircraft.  Thus, the lidar AOTs exclude any boundary layer contribution, 209 

except for the 17 May case where boundary layer aerosols contribute less the 0.05 to the 210 

AOT.  After integrating the AOT measurements over every minute, each retrieved AOT 211 

value corresponded to an along-track distance of 8-10 km.  Note that AOT can still be 212 

derived in the presence of clouds by using the instruments onboard the BAe146 aircraft to 213 

detect and mask the cloud contaminated areas in the vertical column of air beneath the 214 

aircraft.  The usefulness of BAe146 aircraft measurements has been shown in a number 215 

of papers where the aircraft measurements were analyzed along with satellite 216 

measurements (Johnson et al., 2012, Christopher et al., 2009, Naeger et al., 2013).  217 

 218 

3. Methodology 219 

There is a rich heritage of classification algorithms with the most common ones 220 

using the concept of spectral signatures where for example clouds ‘look different’ based 221 

on spectral signatures in some wavelengths when compared to aerosols and land.  A 222 

classic paper by Saunders and Kriebel (1988) used spectral and some spatial signatures to 223 

separate pixels into cloud-free, partly cloudy, or overcast scenes.  Using spectral 224 

thresholds alone can cause uncertainties in image classification since there could be 225 

spectral overlap between and among classes.  Thus, it is not possible to accurately 226 

separate various classes based on limited information from spectral signatures alone 227 
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(Ackerman et al., 2008).  For example, Fig. 1 is a SEVIRI RGB image on 17 May 2010 228 

at 1330 UTC over Europe and the Atlantic Ocean where we carefully hand picked 28 229 

samples representing volcanic ash, cloud, and clear sky ocean and land surfaces.  230 

We do not show a typical dust RGB (e.g. Francis et al., 2012) in Fig. 1 because 231 

regions of cloud can be difficult to visually separate from the underlying surface in 232 

the dust RGB.  Instead, the RGB image in Fig. 1 was produced by assigning the 233 

BTD 12.0-10.8 values as the red component, the 0.6 µm reflectance as the green 234 

component, and the BTD 10.8-8.7 as the blue component.  By using the 0.6 µm 235 

channel we could more easily see where small scale clouds were located over both 236 

land and ocean allowing us to pick better samples.  Note that we also hand picked 28 237 

samples on two other days during the Eyjafjallajökull volcanic eruption period, 7 238 

May at 1100 UTC and 18 May at 1600 UTC.  Overall, we hand picked 18 samples of 239 

ash over water, 6 samples of ash over land, 30 samples of cloud, and 30 samples of 240 

clear sky ocean and land.  Fig. 2a is a wavelength versus reflectivity plot for the three 241 

SEVIRI reflectivity channels showing the mean along with minimum and maximum 242 

reflectance for the 80 extracted samples where the ocean is blue, land is green, ash 243 

over water is red, ash over land is pink, ash above cloud is light blue, and cloud is 244 

black.  Fig. 2b is the same as Fig. 2a except wavelength versus temperature for four 245 

SEVIRI temperature channels is displayed.  For the reflectivity channels, the cloudy 246 

samples generally have a much higher reflectivity than the ocean while the mean 247 

reflectivity of ash over water is only about 5-10% higher than the ocean.  However, 248 

note the large variation in the reflectance of the cloud and ash samples that make it 249 

difficult to use spectral tests alone to separate these features.  Nonetheless, in 250 

general, the reflectance is staying rather constant or increasing for the cloudy 251 

samples when moving from the 0.6 to 1.6 μm channels while the reflectance is 252 

decreasing for the ash over water samples.  The mean ash reflectivity drops to only 253 

about 6% at 1.6 μm which is mostly due to the fact that the majority of ash particles are 254 

generally smaller than this channel wavelength (Weber et al., 2012).  Thus, spectral 255 

tests using the difference of two reflectivity channels can be used to better separate 256 

features.  When analyzing the temperature trend between the 10.8 and 12.0 μm channels 257 

in Fig. 2b, the temperature generally increases with wavelength for ash but decreases for 258 
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the other features which is due to the unique characteristic of the ash imaginary refractive 259 

index being higher at 12.0 than at 10.8 μm causing the slightly lower temperatures at 12.0 260 

μm (Prata, 1998).  However, once again a large variation in the temperatures of the 261 

various features exists which makes it difficult to use only spectral tests for 262 

developing an accurate classification algorithm.  Martins et al. (2002) showed the 263 

utility of using spatial (textural) measures to separate aerosols from clouds over oceans 264 

due to the mean and standard deviation for a group of aerosol pixels being different than 265 

clouds.  Spatial measures are a form of texture identification where a group of aerosol 266 

pixels appear different than clouds due to several measures and one example being their 267 

homogeneity. Therefore, combining spectral and spatial information reduces the 268 

frequency of misclassifications within an image.  269 

In this paper, we take this a step further by using temporal information along with 270 

spectral and spatial information as the high temporal resolution of geostationary satellite 271 

sensors permits the use of these tests, but only a handful of studies have actually used 272 

temporal tests (Calle et al., 2006, de Wildt et al., 2007).  Calle et al. (2006) proposed a 273 

fire detection technique that utilized temporal information from the 3.9 μm SEVIRI 274 

channel and showed that false alarm rates were lower than when detecting fires without 275 

using any temporal information.  Typically the temperature from the 3.9 μm channel does 276 

not encounter large variations with time, but Calle et al. (2006) found that large increases 277 

occur with the onset of fires which helps better detection of fires.  Cloud detection can 278 

also be improved when using temporal information since the temporal variation of the 279 

reflectance and temperature of a pixel is usually greatly impacted by the presence of 280 

clouds.  For example, when analyzing the reflectance of the 0.6 μm SEVIRI channel for a 281 

pixel over a period of time, the variation in the reflectance will be minimal in most clear 282 

sky cases but rather large for most cases where clouds are present since clouds are 283 

typically much more heterogeneous than the underlying land surface.  Then, de Wildt et 284 

al. (2007) developed temporal tests using reflectance and temperature channels from 285 

SEVIRI and found that these tests helped mask clouds and cloud shadows which 286 

ultimately led to more accurate detection of snow cover.  Although the temporal tests 287 

detected most clouds due to their heterogeneity, they had to rely on the spectral tests to 288 

detect the water clouds that were rather homogeneous since the reflectance and 289 
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temperature channels showed little temporal variation.  Another issue that often arises 290 

when using temporal techniques is the overestimation of cloud cover especially in areas 291 

near cloud edges and in areas over broken clouds where a pixel may be cloud free in the 292 

current time-step but cloudy in the previous one.  This situation can cause a significant 293 

increase in the variation of reflectance and temperature with time for a cloud free pixel.  294 

Furthermore, freshly emitted volcanic ash may be detected as cloud when using 295 

temporal techniques since the reflectance and temperature of the pixel can vary 296 

significantly with time.  Therefore, even though temporal techniques have been used 297 

successfully for detecting fires and clouds, they also encounter problems that are 298 

investigated further in this study.  For instance, freshly emitted volcanic ash plumes 299 

can cause large temporal variations    300 

3.1 General flow of algorithm 301 

For our algorithm, we first identify pixels that are land (or over land) and pixels 302 

that are water (or over water) to make the algorithm efficient and save computational 303 

time.  This is necessary since the thresholds used to identify aerosols and clouds are 304 

different over water than over land.  Classification methods are usually easier over water 305 

since water has a low visible reflectance and warmer infrared temperatures when 306 

compared to aerosols and clouds.  However, over land spectral tests pose challenges since 307 

the surface reflectance and temperatures can be highly variable.  After separating land 308 

and water pixels, we identify feature pixels through a temporal test over all surfaces 309 

along with a spectral test over only water.  Feature pixels are simply pixels that are 310 

contaminated with any type of aerosol or cloud.  Then, all pixels labeled as feature are 311 

fed into the second part of the algorithm that identifies cloudy pixels through spectral, 312 

spatial, and temporal tests.  If the feature pixel passes any one of these tests, then it is 313 

labeled as cloud.  If the pixel fails all of these tests, then the pixel is labeled as aerosol.  314 

Since the aerosol spatial distribution maps can be produced every 5 minutes when using 315 

SEVIRI, they can provide near real-time information on the location of volcanic ash 316 

which is a major aviation concern (Casadevall, 1992).  Also, understanding the spatial 317 

distribution of aerosol and cloud is very important as this is the first step to accurately 318 

quantifying the cloud and aerosol radiative forcing (Kaufman et al., 2002).  319 

3.2 Input data for algorithm 320 
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The U.S. Geological Survey (USGS) global land cover characteristics database 321 

version 2.0, SEVIRI viewing and solar zenith angles, and the SEVIRI channels 322 

highlighted in Table 1 are input into our algorithm.  SEVIRI viewing and solar zenith 323 

angles are primarily used for masking sun glint regions while the SEVIRI channels 324 

provide the critical reflectivity and temperature values for each pixel.  The USGS global 325 

land cover data is used immediately in the algorithm to separate land and water pixels 326 

and to find bright (e.g. desert) and non-bright (e.g. vegetation) pixels over land since 327 

certain threshold tests are not valid over bright surfaces with high reflectivity.  Next, we 328 

develop a clear sky reflectance map by finding the minimum top of atmosphere (TOA) 329 

0.6 μm reflectance for each pixel over a 14 day period (Jolivet, et al., 2008).  In order 330 

for this algorithm to be used operationally, the 14 days prior to the time of interest 331 

is used to find the minimum TOA reflectance for a pixel.  For example, if analyzing a 332 

1300 UTC SEVIRI image on 19 April 2010, then we find the minimum 0.6 μm 333 

reflectance from 5 April until 19 April at 1300 UTC for each pixel which generates the 334 

clear sky reflectance map.  For bright surfaces determined by the USGS global land cover 335 

map, we find the highest 10.8 μm temperature during the 14 day period and then extract 336 

the 0.6 μm reflectance from this particular pixel.  Dust over desert regions can reduce the 337 

observed TOA reflectance below the actual clear-sky reflectance since dust is slightly 338 

absorbing at 0.6 μm (Patadia et al., 2009).     339 

3.3 Algorithm Over Land 340 

After generating the clear sky reflectance maps, the algorithm over land begins 341 

with a snow detection scheme (not shown in Table 2) so that these bright pixels can be 342 

ignored throughout the remainder of the algorithm.  This snow detection scheme uses the 343 

normalized difference snow index (NDSI), which takes advantage of snow being more 344 

reflective at 0.6 μm than at 1.6 μm (Riggs and Hall, 2004), along with other temporal 345 

tests.  For all the temporal tests used in Table 2, the standard deviation (σ) of three 346 

successive 15 minute SEVIRI images centered on the current image is computed for the 347 

highlighted channels in Table 1.  Temporal tests help reduce the frequency of falsely 348 

detected clouds as snow (Riggs and Hall, 2004), and for this study we use the σ of the 1.6 349 

and 10.8 μm as the reflectance and temperature of snow generally varies slowly with time 350 

(de Wildt et al., 2007).  However, we will not go any further into the specifics of the 351 
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snow detection scheme because it is not critical to the main goal of the algorithm and the 352 

results of this paper. 353 

The first test in Table 2, which uses the 0.6 μm clear sky reflectance maps to 354 

determine whether a pixel is a feature, is the most important to the success of the 355 

algorithm.  If the difference between the 0.6 μm reflectance for the current SEVIRI pixel 356 

and its clear sky reflectance is greater than 1.5% (i.e. |0.6 μmcur-0.6 μmclr| > 1.5% in 357 

Table 2), then the pixel is classified as a feature.  The 0.6 μmcur-0.6 μmclr test detects 358 

features well since in the presence of an atmospheric feature such as ash where the 0.6 359 

μm reflectance is typically higher than in clear sky conditions.  Fig. 3 shows bispectral 360 

plots for the SEVIRI channels of most interest to this study from the samples used to 361 

produce Fig. 2.  The colors represent the same features as in Fig. 2.  Fig. 3a shows the 362 

0.6 μmcur-0.6 μmclr values on the x-axis and the BTD10.8-12.0 values on the y-axis.  363 

The ocean (blue) and land (green) samples have 0.6 μmcur-0.6 μmclr values mostly 364 

less than 1.5%.  There are a few land pixels with values slightly higher than 1.5% 365 

which is likely due to some cloud contamination occurring within the land samples 366 

as the persistent cloud cover over land made it difficult to hand pick completely 367 

clear sky samples.  Nonetheless, there is quite good separation between the clear sky 368 

samples and the atmospheric feature samples when analyzing the 0.6 μmcur-0.6 μmclr 369 

values alone which gives us confidence in using this test.  However, there is some 370 

significant overlap between the ash (red and pink) and cloud (black) samples which 371 

is why this test is only used to separate clear sky and atmospheric feature pixels.  372 

Note that we introduce the absolute value in this first test in order to account for 373 

scenarios over bright land surfaces where the higher 0.6 μm clear sky reflectance over 374 

these surfaces can completely mask the cloud or aerosol signal.  In fact, the presence of 375 

an absorbing ash or dust layer over a bright surface can actually reduce the 0.6 μm 376 

reflectance below the clear sky reflectance.   377 

The second test in Table 2 which uses the BTD between the 8.7 and 10.8 μm 378 

channels (BTD 8.7-10.8) along with BTD 10.8-12.0 has been shown to detect ice clouds 379 

quite accurately (Zhang et al., 2006).  Thus, this test is specifically used to detect 380 

clouds in our study over all pixels including the feature pixels just detected by the 381 

first test.  Fig. 3b shows the BTD 8.7-10.8 on the x-axis and BTD 10.8-12.0 on the y-382 
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axis where there is not as good separation between the various sample types as in 383 

Fig. 3a.  However, these tests have some utility in separating atmospheric features as 384 

the samples with BTD 8.7-10.8 > -2 K and BTD10.8-12.0 > 0 K are nearly all cloud 385 

pixels.  As a result, we use these threshold values in this test to detect clouds.  Also, 386 

note that the ash samples (red) that are associated with BTD 8.7-10.8 > -2 K have 387 

BTD 10.8-12.0 values primarily less than 0 K which means most ash pixels will not 388 

be classified as cloud by this test.   389 

Next, the algorithm separates the feature pixels as cloud or aerosol by using a 390 

series of cloud detection tests.  If a feature pixel is not labeled as cloud by the cloud 391 

detection tests, then the pixel is labeled as aerosol.  The first cloud detection test 392 

labels pixels as cloud when the 10.8 μm < 240 K and BTD 10.8-12.0 > -0.5 K.  393 

Freshly emitted volcanic ash can have a temperature that is closely related to its 394 

height so it is possible that the 10.8 µm temperature can be less than 240 K for ash.  395 

Therefore, we also include the BTD 10.8-12.0 µm test since freshly emitted volcanic 396 

ash will typically have strongly negative values.  Fig. 3b shows an example of the 397 

strongly negative BTD 10.8-12.0 values that can occur with freshly emitted ash 398 

where the fresh ash samples have a BTD 10.8-12.0 µm around -1 K and BTD 8.7-399 

10.8 near 0 K.  Then, we apply a test that labels a pixel as cloud if the 1.6 µm > 30% 400 

and BTD 10.8-12.0 > -0.5 K.  This study found that even the thickest ash regions will 401 

typically have 1.6 μm < 30% after picking samples of the freshly emitted ash nearby 402 

the Eyjafjallajökull volcano on 7 May. is a scatter plot with the 1.6 µm on the x-axis 403 

and BTD 10.8-12.0 on the y-axis which clearly shows that all our samples with 1.6 404 

µm > 30% are cloud contaminated.  The next cloud test simply labels the pixel as 405 

cloud if the BTD 10.8-12.0 > 1.5 K.  Fig. 3c shows the utility of this test as ash 406 

samples all have BTD 10.8-12.0 < 1.5 K while the cloudy samples are dominant 407 

above this threshold.  Thin ash (AOD < 0.2) can have very similar BTD 10.8-12.0 as 408 

the land surface since areas of thin ash will have minimal impact on terrestrial 409 

radiation.  Consequently, thin ash regions can potentially be labeled as cloud by this 410 

test but only if the |0.6 μmcur-0.6 μmclr| test labels it as a feature.  These thin ash 411 

regions do not pose a threat to aviation so it is not a major issue if thin ash is missed 412 

by our algorithm.   413 
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The remaining cloud detection tests in Table 2 utilize either spatial or 414 

temporal techniques.  In this study, the temporal tests take three successive 15 415 

minute SEVIRI scans and calculate the σ for each pixel which is referred to as a σT 416 

test throughout the remainder of the paper.  We decided to use only 3 successive 417 

SEVIRI images to calculate σ because using more successive images increases the 418 

likelihood that both aerosol and cloud could be included in the σ computation for a 419 

pixel where aerosol and cloud reside nearby, and we want to limit these scenarios as 420 

much as possible.  Also, by using only 3 successive images, this algorithm can be 421 

used in time sensitive situations, such as volcanic ash plumes interfering with air 422 

traffic, that require real-time decision making.  We use σT tests with the 1.6 μm 423 

channel where the appropriate thresholds were chosen based on analyzing the 424 

scatter plot in.  All the ash over land samples (pink) were associated with σT 1.6 μm 425 

< 1.5% while cloudy samples were dominant above this threshold.  Ash plumes are 426 

generally more homogeneous than clouds which is the reason for the fairly good 427 

separation between ash and cloud samples in Fig. 3d.  However, a portion of the 428 

cloud samples have very low σT 1.6 μm and cannot be labeled as cloud by this test.  429 

The next test in Table 2 uses the |0.6 μmcur-0.6 μmclr| technique along with BTD 10.8-430 

12.0 since we observed good separation between the ash and cloud samples in this 431 

multi-spectral space as revealed by Fig. 3a.  This test labels clouds when the |0.6 432 

μmcur-0.6 μmclr| > 3.5% and BTD 10.8-12.0 > 0 K.  We include the BTD 10.8-12.0 433 

technique in this test since moderate (AOD > 0.5) and thick (AOD > 1.0) ash regions 434 

with BTD 10.8-12.0 < 0 K can have |0.6 μmcur-0.6 μmclr| > 3.5%.  Thus, by including 435 

the BTD 10.8-12.0 technique the moderate and thick ash plumes will generally not 436 

be labeled as cloud.  In fact, Fig. 3a shows that as the |0.6 μmcur-0.6 μmclr| increases 437 

beyond 3.5% the BTD 10.8-12.0 primarily decreases with increasing |0.6 μmcur-0.6 438 

μmclr|.  Fig. 3a suggests that this test can be quite powerful in accurately labeling 439 

atmospheric features (e.g. cloud and dust) correctly.   440 

The final two tests utilize spatial techniques along with the BTD 10.8-12.0 441 

technique once again.  The spatial techniques (i.e. σs tests) compute the σ over a 3 X 442 

3 pixel region.  For the first test, if σs 12.0 μm > 1.5 K and the BTD 10.8-12.0 > 0 K, 443 

then the center pixel of the 3 X 3 pixel group is classified as a cloud.  The σs and σT tests 444 
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work on the similar principles of cloud typically being more heterogeneous than aerosol 445 

except that the σs test operates in space instead of time.  This is demonstrated in Fig. 3e 446 

where the cloudy samples tend to have higher σs 12.0 μm values than shown for the 447 

ash pixels, but there is considerable overlap between a portion of the cloudy samples 448 

and the ash samples.  Consequently, we introduce one more spatial test that has the 449 

ability to detect many of these cloudy samples that went undetected by the σs 12.0 450 

μm test.  This second spatial test labels cloud when the σs 1.2 μm > 1.2% and BTD 451 

10.8-12.0 > 0 K, and the scatter plot that shows the separation of the various 452 

samples in this multi-spectral space is displayed in Fig. 3f.  We see that the cloudy 453 

samples that were associated with very low σs 12.0 μm and BTD 10.8-12.0 near 0 K 454 

in Fig. 3e are detectable when using the σs 1.6 μm technique.  There is more scatter 455 

with the ash samples in Fig. 3f but these ash samples with σs 1.6 μm > 1.2% have 456 

mostly BTD 10.8-12.0 < 0 K which means that they will not be labeled as cloud by 457 

this test.  These are likely thick ash plumes (AOD > 1.0) that tend to be more 458 

heterogeneous.  However, we do notice that a few ash samples will be incorrectly 459 

labeled as cloud since they have BTD 10.8-12.0 > 0 K and σs 1.6 μm > 1.2%.  These 460 

ash samples were actually taken near the boundaries of thick ash plumes which 461 

means this spatial test can encounter problems due to strong boundaries occurring 462 

in SEVIRI imagery.  Lastly, the feature pixels that fail all of the final cloud 463 

detection tests are labeled as aerosol.  Note that we do show ash above cloud samples 464 

(light blue) in the panels in Fig. 3, but we do not discuss them in the preceding 465 

paragraphs.  The main point for showing the ash above cloud samples is to stress 466 

that it is extremely difficult to separate the ash above cloud from the ash-free cloud 467 

samples.  The other possible way to separate the ash above cloud from the ash-free 468 

cloud samples is by using the BTD 10.8-12.0 technique which our algorithm is using 469 

in nearly all the tests.  Therefore, this algorithm is capable of detecting ash above 470 

cloud samples only if the ash influences a negative BTD 10.8-12.0 value.  We will 471 

show examples of our algorithm detecting ash above cloud in Section 4.  472 

3.4 Over Water Algorithm   473 

We briefly discuss the over water algorithm since it has many similarities to the 474 

over land algorithm.  The only differences between the land and water algorithms are 475 
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the slightly lower thresholds that are used to detect clouds for the σs 1.6 μm and σs 12 476 

μm techniques and the inclusion of the 1.6 μm – 0.6 μm technique.  The threshold is 477 

lowered to 1% for the σs 1.6 μm test and 1.0 K for the σs 12 μm test due to the 478 

relative homogeneity of the water.  The 1.6 µm – 0.6 µm test can be quite powerful 479 

over the homogeneous water surface as indicated in Fig. 3g where 1.6 µm – 0.6 µm is 480 

on the x-axis and the BTD 10.8-12.0 on the y-axis.  The clear-sky ocean samples 481 

(blue) and ash over water samples (red) have very similar 1.6 µm – 0.6 µm  values 482 

ranging mostly from -7% to -3%.  Even the thick ash samples with BTD 10.8-12.0 483 

near -2.0 K have 1.6 µm – 0.6 µm values no larger than -3%.  Nevertheless, we 484 

include the BTD 10.8-12.0 technique in this test to ensure that thick ash does not get 485 

labeled as cloud.  The pixel is labeled as cloud by this test when the 1.6 µm – 0.6 µm 486 

> -2% and BTD 10.8-12.0 > -1 K.  Similar to the over land algorithm, after applying 487 

all the cloud detection tests to the feature pixels, the pixels that fail all the tests and 488 

remain as features are labeled as aerosol.    489 

 490 

4. Results and Discussion 491 

4.1   13 May 2010 Case     492 

 Fig. 4a is a SEVIRI dust RGB image on 13 April 2010 at 1200 UTC when a 493 

substantial amount of ash was being emitted from the Eyjafjallajökull volcano.  The 494 

dust RGB image was produced by assigning the BTD 12.0-10.8 values as the red 495 

component, the BTD 10.8-8.7 as the green component, and the BTD 10.8 µm as the 496 

blue component.  The volcanic ash is identified in the SEVIRI dust RGB image by 497 

the reddish colors extending eastward from Iceland.  Fig. 4b is a SEVIRI 0.6 μm 498 

visible image where the clouds appear white against a dark background.  The visible 499 

image shows extensive cloud coverage across the domain with clouds evident in the 500 

location of the volcanic ash plume.  This ash plume is primarily associated with BTD 501 

10.8-12.0 < 0 K with strongly negative values of -4 K within the core of the plume 502 

(i.e. Fig. 4c).  Note that a substantial amount of pixels not associated with the main 503 

ash plume also possess negative BTD 10.8-12.0 as revealed by the reddish colors in 504 

Fig. 4c.  According to the SEVIRI dust RGB and the visible image, these pixels are 505 

primarily cloudy pixels that do not appear to be associated with any ash.  For 506 
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instance, the clouds to the southwest of Iceland have a BTD 10.8-12.0 as low as -0.4 507 

K.  The final results of the SEVIRI algorithm are in Fig. 4d with the pixels labeled 508 

as clear sky (white), cloud (gray), and aerosol (orange).  Our algorithm is able to 509 

identify the ash plume even though clouds reside beneath it since many of the cloud 510 

tests in Table 2 include the BTD 10.8-12.0 technique.  Also, the ash free cloudy 511 

pixels that were associated with the negative BTD 10.8-12.0 in Fig. 4c are labeled as 512 

cloud by our algorithm.  Therefore, overall the algorithm performs well for this 513 

particular case.   514 

A few pixels are labeled as aerosol outside of the main ash plume which we 515 

further investigate by analyzing the MISR and MODIS Aqua AOD around the time 516 

of interest (~1300 UTC) on 13 May.  Note that MISR has limited spatial coverage 517 

due to its limited field of view, but the MISR transect occurring near the center of 518 

the domain passes over the eastern section of the ash plume (Fig. 4e).  The MISR 519 

fails to retrieve any significant area of AOD for the ash plume due to the fact that 520 

the retrieval algorithm recognizes the plume as mostly cloud. The MODIS also has 521 

difficulty retrieving any AOD for the ash plume due to the extensive cloud coverage 522 

in this region.  The lack of MISR and MODIS AOD retrievals of the ash plume is 523 

not surprising since their algorithms attempt to retrieve AOD for cloud-free regions 524 

only.  However, the MODIS retrieves AOD where our SEVIRI algorithm labels 525 

clear sky pixels across much of the domain.  Much of the MODIS AOD across the 526 

domain is less than about 0.15 which suggests that the aerosol concentrations are 527 

very low.  Volcanic ash with low concentrations (< 0.2 g m
-2

) pose no threat to 528 

aviation.  Therefore, the fact that our algorithm is not detecting these areas of low 529 

AOD is not problematic.  Some limited areas of AOD > 0.2 appear just south of 530 

Great Britain and southeast of Iceland in the MODIS AOD image which our 531 

algorithm mostly identifies as cloud or clear sky.  The fact that some of these areas 532 

of AOD > 0.2 reside among clouds as seen in the SEVIRI dust RGB and visible 533 

image suggest that these may be bad retrievals.  For instance, the AOD > 0.2 to the 534 

southeast of Iceland is retrieved in a dominantly cloudy region.  The retrievals of 535 

AOD > 0.2 just south of Great Britian are also occurring either among cloud or 536 

adjacent to clouds.  It is known that the MODIS AOD tends to have a high bias 537 
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when the retrievals are adjacent to clouds (Zhang et al., 2006).  Nonetheless, a close 538 

inspection of the SEVIRI dust RGB reveals pinkish colors over the ocean just to the 539 

south of Great Britain which implies that some ash may be present here.  The fact 540 

that our algorithm labels some pixels as aerosol in this same location suggests that 541 

the MODIS AOD > 0.2 in this particular region may be real.  Fig. 4d also reveals 542 

that our algorithm may falsely detect aerosols along cloud edges.  These false 543 

detections are difficult to see in Fig. 4d but there are a few occurrences among the 544 

cloud edges to the south of Iceland.     545 

4.2  16 and 17 May 2010 Case 546 

 Figs. 5a-f are similar to Figs. 4a-f except that the former pertain to the 17 May 547 

2010 case study at 1300 UTC where a significant area of volcanic ash resided over the 548 

North Sea around 56°N and 7°W (Turnbull et al., 2012).  This ash plume is not as 549 

apparent on the SEVIRI dust RGB due to the fallout of ash particles during its 550 

transport from Iceland.  In fact, it is difficult to decipher the ash plume from the low 551 

level clouds (yellowish colors) across the domain.  Analyzing both the dust RGB and 552 

visible image along with the BTD 10.8-12.0 map (i.e. Fig. 5c) helps better understand 553 

where the potential ash regions are located.  The pink to yellow colors associated 554 

with the ash plume in the dust RGB appear darker than the whiter clouds in the 555 

visible image across the North Sea.  By this time, the ash plume has become only 556 

slightly more reflective than the background ocean.  There are some clouds among 557 

the ash plume that are only noticeable when closely inspecting the visible image 558 

which shows the utility of analyzing both the dust RGB and visible image.  The BTD 559 

10.8-12.0 map shows a considerable area over the North Sea and Norwegian Sea 560 

that has BTD 10.8-12.0 < -1 K suggesting that ash is present across the area.  Our 561 

algorithm is easily able to identify these areas where the BTD 10.8-12.0 < -1 K and 562 

thick ash is likely present.  According to the dust RGB and visible image, our algorithm 563 

successfully disregards cloud contaminated areas within the ash plume region over the 564 

North Sea.  For example, clouds are shown off the coast of the Netherlands (~56°N, 5°E) 565 

and this area is labeled as cloud by our algorithm.  Overall, our algorithm appears to 566 

identify clouds very well across the domain which is critical as the final aerosol 567 

spatial distribution maps depend on the success of the cloud detection.  Moreover, 568 
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our algorithm identifies aerosol in locations across the North Sea that have BTD 569 

10.8-12.0 > 0 K and appear to be cloud-free.  These results are in fairly good 570 

agreement to the spatial distribution of MODIS AOD across the North Sea which 571 

implies that our algorithm is performing accurately on this day.  MODIS retrieves 572 

AOD primarily ranging from 0.2 to 0.4 across the North Sea with the exception of a 573 

few higher AOD regions where values near 0.7 are present.  The location of the 574 

higher AOD regions coincide with BTD 10.8-12.0 < -1 K while the AOD from 0.2 to 575 

0.4 coincide with near zero to positive BTD 10.8-12.0 values.  The MISR AOD 576 

agrees fairly well with MODIS in the limited locations of MISR availability over the 577 

North Sea and Norwegian Sea which gives us better confidence that the MODIS 578 

retrievals are good on this day.  Although our algorithm is able to detect these areas 579 

of optically thinner ash identified by MODIS and MISR, it is likely that they are 580 

below the mass concentration threshold of 0.2 g m
-2

 and do not pose a threat to 581 

aviation (Francis et al., 2012; Prata and Prata, 2012).  Again, our algorithm mostly 582 

misses the very low AOD regions below about 0.2 that are detected by MODIS and 583 

MISR.  For example, our algorithm labels the area just north of Great Britain as 584 

clear sky while the MISR and MODIS retrieves AOD around 0.15.  Finally, note 585 

that our algorithm is able to detect the thick ash over the Norwegian Sea (~64°N, 586 

0°E) even though it is above a considerable area of clouds according to the SEVIRI 587 

visible image.  Once again, this shows the ability of our algorithm to detect thick ash 588 

above cloud which can pose a threat to aviation.     589 

 The FAAM BAe146 aircraft flights on 16 and 17 May are very helpful for 590 

verifying the proposed SEVIRI algorithm.  Fig. 6c is a SEVIRI RGB image on 16 May at 591 

1500 UTC with the intricate BAe146 aircraft flight track shown in white.  The BAe146 592 

aircraft took off in southeast England (52.1°N, 0.3°W) at approximately 1255 UTC and 593 

landed in northwestern France (47.7°N, 2.1°W) at about 1810 UTC.  Fig. 6a has 355 nm 594 

AOD from the BAe146 aircraft in red with the corresponding AOD scale on the right y-595 

axis and SEVIRI BTD10.8-12.0 in black with its scale on the left y-axis.  The dots along 596 

the black line indicate the results from the SEVIRI algorithm along the aircraft flight with 597 

green, blue, and red denoting clear, cloud, and aerosol, respectively.  Fig. 6b shows 598 

SEVIRI BTD10.8-12.0 again in black along with 0.6 μm reflectivity in blue with its scale 599 
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on the y-axis from 0 to 50%.  A nearest pixel approach is used to collocate SEVIRI to the 600 

BAe146 aircraft in space while we find the closest SEVIRI overpass time to each point 601 

along the BAe146 aircraft track to collocate in time.  Thus, 15 minute SEVIRI scans 602 

beginning 1130 UTC and ending 1700 UTC were used to produce Fig. 6a-b even though 603 

only the 1500 UTC SEVIRI RGB imagery is in Fig. 6c.   604 

The aircraft flight began in cloudy conditions across southeastern England and 605 

then headed northwest into an ash plume with scattered clouds as shown by Fig. 6c where 606 

the ash is highlighted by the pinkish colors and clouds by the green and yellowish colors.  607 

Since clouds were the dominant feature in southern England, AOD was not reported but 608 

as the aircraft tracked northwestward the AOD jumped to about 0.2 until thick ash was 609 

measured at about 55°N and 4.3°W with an AOD of nearly 0.9.  The SEVIRI algorithm 610 

accurately classifies clouds in southern England, but then classifies a mix of clear skies, 611 

clouds, and aerosols where the low AOD of 0.2 is measured which again suggests that the 612 

SEVIRI algorithm has uncertainties in detecting optically thin aerosol regions.  However, 613 

Fig. 6b shows several significant increases in 0.6 μm reflectivity in the low AOD region 614 

which hints at cloud contamination.  Furthermore, the aerosol extinction coefficient 615 

profiles from the BAe146 aircraft on 16 May shown in Marenco et al. (2011) reveal some 616 

low level clouds in the low AOD region which suggests the SEVIRI algorithm is 617 

classifying clouds properly in this region.  When the AOD reaches nearly 0.9, the 618 

SEVIRI algorithm classifies nearly all aerosol pixels adequately except for a few pixels 619 

which are associated with 0.6 μm > 40% indicating possible cloud contamination.  The 620 

aerosol extinction coefficient profiles in Marenco et al. (2011) also indicate low level 621 

cloud contamination below the thick ash.  Thus, according to the BAe146 aircraft data, 622 

the SEVIRI algorithm is accurate in labeling a few cloud pixels among the ash.  Then, 623 

another region of low AOD is measured by the aircraft before flying over thicker ash 624 

around 55.2°N and 3.9°W with an AOD of about 0.7.  The aerosol is almost entirely 625 

missed by the SEVIRI algorithm in this low AOD region as the algorithm classifies 626 

mostly clouds.  The highly varying 0.6 μm reflectivity among the low AOD suggests that 627 

clouds are a dominant feature in this region.  In Marenco et al. (2011), low level clouds 628 

are revealed all along this section of the BAe146 flight track further hinting at the 629 

accuracy of the SEVIRI algorithm.  The algorithm classifies some aerosol pixels in the 630 



21 

 

higher AOD region, but clouds are classified more frequently here as the 0.6 μm 631 

reflectivity has a significant increase near the minimum in BTD10.8-12.0 indicating the 632 

presence of clouds among the thick ash.  Also, fairly thick lower level clouds are shown 633 

along the aerosol extinction profiles in Marenco et al. (2011) with this thicker ash region.  634 

Next, the aircraft encounters very thin ash along its track as AOD drops to near zero 635 

values.  As expected the SEVIRI algorithm fails to detect any of this ash and classifies 636 

mostly clear skies along this portion of the aircraft track.  The aircraft flies over one more 637 

noteworthy ash region as AOD jumps to about 0.4 and then quickly drops to 0.2 at about 638 

53.8°N and 2.2°W.  The ash associated with the AOD of 0.4 is successfully detected by 639 

the algorithm which appears to be cloud-free from analyzing the 0.6 μm reflectivity and 640 

aerosol extinction profiles in Marenco et al. (2011).  However, immediately as the AOD 641 

decreases clouds become an issue once again as the 0.6 μm reflectivity jumps to about 642 

35%.   643 

   The 17 May BAe146 aircraft flight is overlaid in white on the SEVIRI RGB 644 

image from 1400 UTC on that same day in Fig. 7c.  However, for this flight, the aircraft 645 

started in northwestern France at 1126 UTC and landed in southeast England at 1658 646 

UTC.  As seen in the RGB image, the aircraft encountered the main ash plume over the 647 

North Sea while scattered clouds impacted the flight over England and Scotland.  Fig. 7a-648 

b are the same as Fig. 6a-b except the aircraft AOD and SEVIRI measurements from 17 649 

May are shown.  The times when the aircraft were above the scattered clouds over land 650 

are clearly seen in Fig. 7b by the very significant increases in 0.6 μm reflectivity, and the 651 

SEVIRI algorithm successfully classifies these regions as cloud.  After the first period of 652 

scattered clouds over land, the aircraft flies over ocean (~53°N, 2.5°W) before making a 653 

west to east path over land.  When the aircraft is over the ocean, the SEVIRI algorithm 654 

classifies mostly clear skies with a mix of some cloud and aerosol.  At this time, 355 nm 655 

AOD from the aircraft is very low with most values being less than 0.1 which suggests 656 

the SEVIRI algorithm has difficulty detecting aerosol over water when the AOD is < 0.1.  657 

The aircraft measures AOD near 0.2 during its brief west-east transect over land, but the 658 

SEVIRI algorithm classifies cloud in this region, and the algorithm appears to be correct 659 

according to the strong peak in 0.6 μm reflectivity and the BAe146 aerosol extinction 660 

profiles along this section of the aircraft track in Marenco et al. (2011).  After traversing 661 
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land, the aircraft immediately encounters the main ash plume when flying over the North 662 

Sea as indicated by the large increase in 355 nm AOD to about 0.6 in Fig. 7a.  However, 663 

the aircraft then descends beneath the ash plume which is why the AOD drops to zero 664 

while the SEVIRI algorithm detects aerosols.  When the aircraft ascends, it measures the 665 

ash plume again as the AOD increases to nearly 0.4 before descending and measuring 666 

zero AOD the remainder of its flight path.  From analyzing the SEVIRI 0.6 μm 667 

reflectivity along with the SEVIRI RGB image, it appears that cloud contamination is 668 

very minimal across the main ash plume region.  Thus, the algorithm performs very well 669 

over the ash plume region as only one cloud pixel is detected amongst the aerosol pixels.   670 

4.3 Validation experiment 671 

 In order to obtain a better understanding of the accuracy of our SEVIRI 672 

algorithm, we perform an additional experiment where we choose 28 independent 673 

samples for three different days and times (i.e. 7 May at 1100 UTC, 11 May at 1300 674 

UTC, and 18 May at 1600 UTC) during the Eyjafjallajökull volcanic eruption 675 

period.  An example of the 28 samples chosen for the 7 May at 1100 UTC case is 676 

shown in Fig. 8a where boxes 1-4 are clear sky ocean, 5-12 are volcanic ash, and 13-677 

28 are clouds.  We had very limited clear sky land pixels available on this day which 678 

explains why we did not choose any samples of clear sky land.  The 84 samples taken 679 

on these three days represent the truth.  Then, we run our SEVIRI algorithm for 680 

these three cases and compare the results against truth samples.  Overall, we picked 681 

30 ash over water samples on these three days which gave a total of 1080 individual 682 

ash pixels to compare against our algorithm results as the size of the each sample 683 

spanned 6 by 6 boxes.  According to the truth samples, the algorithm performed 684 

very well as 936 of the 1080 pixels were accurately labeled as ash by our algorithm 685 

giving a success rate of 87%.  Not surprisingly, our algorithm performed even better 686 

with identifying clouds.  Overall, the 60 samples of clouds that we picked provided 687 

us with 2160 individual cloud pixels as truth.  Our algorithm successfully labeled 688 

2127 of these truth pixels as cloud which gives a 98% success rate for cloud 689 

identification.  Of course, when performing a validation experiment where we are 690 

carefully hand picking truth samples, it is easy to make an algorithm appear more 691 

accurate than reality by choosing samples that should be easy for the algorithm to 692 
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handle.  For this validation experiment, we chose samples that, in our opinion, 693 

would be easy to very difficult for the algorithm to identify.  Finally, we present the 694 

SEVIRI algorithm results for the 7 May at 1100 UTC case where the majority of the 695 

ash plume is accurately labeled by the algorithm.  This is another case where ash 696 

resided above clouds which can make it difficult to identify the ash due to the 697 

presence of the cloud.  In fact, our algorithm is not able to identify the full extent of 698 

the ash plume since the BTD 10.8-12.0 values increase to near or above 0 K.  As a 699 

result, our algorithm recognizes parts of the ash plume as cloud.      700 

5.  Conclusions 701 

 In this study we have developed a unique algorithm combining spectral, spatial, 702 

and temporal threshold tests using SEVIRI measurements to separate between clear skies, 703 

clouds, and aerosols.  The algorithm is capable of detecting both dust and ash, but for this 704 

paper we only focus on the Eyjafjallajokull volcanic eruption period during April and 705 

May 2010 where substantial ash was transported from the volcano to over the North Sea 706 

and Europe.  Aerosol (e.g. ash) spatial distribution maps were generated every hour 707 

during the daytime beginning with the initial eruption on 14 April and ending on 23 May.  708 

In this paper we focus specifically on the daytime volcanic ash cases on 13 May, 16 May, 709 

and 17 May when numerous sources of validation data were available.  By using MODIS, 710 

MISR, and BAe146 aircraft data as verification data, we show that the algorithm is 711 

capable of generating accurate aerosol spatial distribution maps for solar zenith angles < 712 

65°.  First, the SEVIRI aerosol spatial distribution maps show important similarities to 713 

the MODIS and MISR AOD products which suggests that the proposed algorithm works 714 

well.  Second, the BAe146 aircraft shows that the SEVIRI algorithm detects nearly all 715 

ash regions over both land and water when AOD > 0.2.  However, the MODIS, MISR, 716 

and BAe146 aircraft data suggests that the algorithm may encounter some problems 717 

detecting ash when AOD < 0.1 over water and AOD < 0.2 over land.  We noticed that at 718 

solar zenith angles > 65° the aerosol plumes that were once identified by our 719 

algorithm begin converting to cloud.  Another major limitation of this algorithm is 720 

that it can only be applied during daytime, and for these high latitude regions 721 

daytime hours can be severely limited.     722 
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Since the damaging effects of volcanic ash to commercial airplanes can be life 723 

threatening, accurately tracking ash during volcanic eruption periods is vital.  Polar 724 

orbiting satellite sensors do not have the temporal resolution to effectively track volcanic 725 

ash.  Thus, geostationary sensors, such as SEVIRI, are absolutely critical for tracking 726 

volcanic ash and ensuring the safety of people onboard commercial airplanes.  The 727 

accurate aerosol spatial distribution maps which can be generated every 15 minutes by 728 

the proposed SEVIRI algorithm can serve as an extremely important tool during volcanic 729 

eruptions.        730 
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Fig. Legends 1004 

Fig. 1. SEVIRI RGB image (see text for details) on 17 May 2010 at 1330 UTC over 1005 

Europe and the Atlantic Ocean where the 28 boxes indicate the location of extracted 1006 

samples for various scenes of clear sky water (boxes 1-4), clear sky land (boxes 4-8), 1007 

ash over water (boxes 9-14), and cloud (boxes 15-28). 1008 

Fig. 2. a) Wavelength versus reflectivity plot for the three SEVIRI reflectivity channels 1009 

showing the mean along with minimum and maximum reflectance for the 80 1010 

extracted samples where the ocean is blue, land is green, ash over water is red, ash 1011 

over land is pink, ash above cloud is light blue, and cloud is black.  b) Same as panel 1012 

(a) except wavelength versus temperature for four SEVIRI temperature channels is 1013 

displayed. 1014 

Fig. 3. Bispectral plots for the SEVIRI channels of most interest to this study from the 1015 

samples in Fig. 2 where ocean is blue, land is green, ash over water is red, ash over 1016 

land is pink, ash above cloud is light blue, and cloud is black.  a) 0.6 μmcur-0.6 μmclr 1017 

versus BTD 10.8-12.0, b) BTD 8.7-10.8 versus BTD 10.8-12.0, c) 1.6 μm versus BTD 1018 

10.8-12.0, d) σT 1.6 μm versus BTD 10.8-12.0, e) σs 12.0 μm versus BTD 10.8-12.0, e) 1019 

σs 0.6 μm versus BTD 10.8-12.0, and f) 1.6 μm – 0.6 μm versus BTD 10.8-12.0. 1020 

Fig. 4. a) SEVIRI dust RGB image on 13 May 2010 at 1200 UTC when a substantial 1021 

amount of ash was being emitted from the Eyjafjallajökull volcano.  The volcanic ash is 1022 

identified in the SEVIRI RGB image by the reddish colors extending east of Iceland.  b) 1023 

SEVIRI 0.6 µm visible image where clouds appear white against a dark background.  c) 1024 

BTD 10.8-12.0 map.  d) Final results of the SEVIRI algorithm with the pixels labeled as 1025 

clear sky (white), cloud (gray), and aerosol (orange).  e)  MODIS Aqua AOD results for 1026 

13 May where MODIS pixels with cloud fraction larger than 80% are removed.  f)  MISR 1027 

AOD across the region on this day.   1028 

 Fig. 5. Panels (a)-(f) are same as in Fig. 4 except that this is a SEVIRI RGB image on 17 1029 

May 2010 at 1300 UTC where a significant area of volcanic ash resided over the North 1030 

Sea around 56°N and 7°W.   1031 

Fig. 6. a) 355 nm AOD from the BAe146 aircraft in red with the corresponding AOD 1032 

scale on the right y-axis and SEVIRI BTD10.8-12.0 in black with its scale on the left y-1033 

axis.  The dots along the black line indicate the results from the SEVIRI algorithm along 1034 
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the aircraft flight with green, blue, and red denoting clear, cloud, and aerosol, 1035 

respectively. b) SEVIRI BTD10.8-12.0 again in black along with 0.6 μm reflectivity in 1036 

blue with its scale on the y-axis from 0 to 50%. c) SEVIRI RGB image on 16 May at 1037 

1500 UTC with the intricate BAe146 aircraft flight track shown in white.  The BAe146 1038 

aircraft took off in southeast England (52.1°N, 0.3°W) at approximately 1255 UTC and 1039 

landed in northwestern France (47.7°N, 2.1°W) at about 1810 UTC.   1040 

Fig. 7. Panels a-b) are the same as panels a-b) in Fig. 6 except the aircraft AOD and 1041 

SEVIRI measurements from 17 May are shown here.  c) The 17 May BAe146 aircraft 1042 

flight is overlaid in white on the SEVIRI RGB image from 1400 UTC where the aircraft 1043 

took off in northwestern France at 1126 UTC and landed in southeast England at 1658 1044 

UTC.   1045 

Fig. 8. a) SEVIRI RGB image on 7 May 2010 at 1100 UTC over Europe and the 1046 

Atlantic Ocean where the 28 boxes indicate the location of extracted samples for 1047 

various scenes of clear sky water (boxes 1-4), ash above cloud (boxes 5-12), and ash 1048 

free cloud (boxes 13-28).  b)  SEVIRI algorithm results for this 7 May case. 1049 

 1050 
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Table 1.  SEVIRI channels with the center, minimum, and 

maximum wavelengths where the channels used in the SEVIRI 

algorithm are highlighted in red. 
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Tests 

Feature Tests 

|0.6 μmCUR-0.6 μmCLR|> 1.5% 

Cloud Tests 

BTD 8.7-10.8 > -2 K and BTD 10.8-12.0 > 0 K 

10.8 µm < 240 K and BTD 10.8-12.0 > -0.5 K 

1.6 µm > 30% and BTD 10.8-12.0 > -0.5 K  

BTD 10.8-12.0 > 1.5 K  

σT 1.6 μm > 1.5% and BTD 10.8-12.0 > 0 K  

|0.6 μmCUR-0.6 μmCLR|> 3.5% and BTD 10.8-12.0 > 0 K 

σs 1.6 μm > 2.5% and BTD 10.8-12.0 > 0 K   

σs 12.0 μm > 1.5 K and BTD 10.8-12.0 > 0 K  

 
  1275 

Table 2.  Outline of the algorithm applied over land which shows the various thresholds 1276 

used for the feature tests and cloud tests. 1277 
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