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Abstract 10 

Two advanced receptor modeling techniques Unmix and PMF were applied to a data set of daily 11 

measurements of 11 elements in particulate matters (PM) of 252 samples. Samples were 12 

collected every sixth day as a 24h sample in the 5 year period (1995 – 2000) in the coastal part of 13 

the Herceg-Novi town (Montenegro) of the sea costal side region (Southeast Adriatic Sea). In the 14 

vicinity of the sampling site road traffic is a permanent.   15 

The application of the receptor models to find the emission sources in the reverse order, using 16 

data set of pollutants concentrations measured on the receptor, is not enough to get satisfactory 17 

real solution relying only on the results of the applied models even if used the state-of-the-art 18 

models such as Unmix and PMF. In this work we applied Unmix and PMF on dataset which 19 

already modeled by PCA and EF in order to show how many solutions could be find and how 20 

many errors could be made as well as we harmonized these advanced models to find the most 21 

realistic solution. The model Unmix has the ability to suggest the solution by self-modeling 22 

while PMF model can be adjusted to calculate the solution for the number of emission sources 23 

that we have set. Unmix found thirteen solutions in total for several combinations of species, but 24 

four solutions satisfy its criteria: Min R2 > 0.8 and Min S/N > 2. The PMF model has given 3 25 

possible solutions and by further analysis the best solution of four sources was selected. F-peak 26 

refinement enabled finding a more realistic solution. We noticed that for the species with many 27 

missing values but, their presence is not desirable because of its harmfulness such as cadmium in 28 

this work the knowledge of emission sources is very important. Due to their limitations Unmix 29 



and PMF is not able to give the solution for such cases. Other simple model applied together 30 

with advanced models could help to solve similar problems.   31 
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Introduction  34 

A state-of-the-art multivariate receptor models are applied in the diverse fields of 35 

environmentrics, chemometrics, geology and remote sensing. Multivariate receptor modeling is a 36 

term applied in the field of air quality for the solution of the general linear mixture problem. For 37 

conservative chemical species, i.e. those that do not undergo reactions in the atmosphere, the 38 

principle of mass balance is applied. The mass balance for species i can be written as: 39 ܥ ൌ ∑ ܽேୀଵ ܵ      i = 1,….,m, j = 1,….., n                            (1) 40 

In this equation, Cij is the observed concentration of species i in sample k, Skj is the total amount 41 

of particulate mass from source k in sample j and aik it the composition fraction of species i from 42 

the source k. In air quality studies, the units of Cij are usually micrograms per cubic meter. Thus, 43 

since aik is a dimensionless mass fraction, the units of Sk are also micrograms per cubic meter. 44 

Eq. (1) is the physical basis of all receptor models. Cij is subject to random error and aik to 45 

random variations (Henry, 2002).  46 

Unmix seeks to solve the general mixture problem where the data is assumed to be a linear 47 

combination of an unknown number of sources of unknown composition, which contribute an 48 

unknown amount to each sample. Unmix assumes that the data and the compositions of the 49 

sources are all strictly positive (because of the effects of errors, small values less than zero are 50 

allowed in order to reduce the bias in the results). Unmix further assumes that for each source 51 

there are some samples that contain little or no contribution from that source. For a given 52 

selection of species, Unmix estimates the number of sources, the source composition, and source 53 

contributions to each sample. The usual analytical approach to fitting the model in Eq. (1) is to 54 

find the values of aik and Skj that minimize the weighted mean square error F (Henry, 2002) of 55 

the model:  56 ܨ ൌ ∑ ∑ ൫ݓܥ െ ∑ ܽܵேୀଵ ൯ଶୀଵୀଵ  i = 1,….,m,  j = 1,….., n             (2) 57 

Unmix diagnostic edges plots are used to show how well-defined one or more edge is by the 58 

data. If the edge plots show that all the edges are straight and well defined, then the Unmix 59 



results should be more reliable and should be preferred over the PMF results (Henry and 60 

Christensen, 2010). 61 

The General Mixture Problem and the special case of multivariate receptor modeling are ill 62 

posed problems. There are simply more unknowns than equations and thus there are many wildly 63 

different solutions that are all equally good in the least-squares sense. In a statistical way these 64 

problems are not identifiable. One approach to ill-posed problems is to impose conditions that 65 

add additional equations, which then define more realistic solutions to be closer to unique 66 

solution. The non-negativity conditions as additional conditions are imposed by the physical 67 

nature of the problem (Henry, 2001). Source composition and contributions must be non-68 

negative but non-negativity conditions alone are not sufficient to give a unique solution. More 69 

constraints are needed (Henry, 1987). Under certain, rather mild conditions, the data themselves 70 

can provide the needed constrains (Henry 1997). This is how Unmix works.  71 

Based on the multivariate factor analysis and the results in factor profiles and contributions, 72 

Paatero and Tapper (Paatero and Tapper, 1993; Paatero and Tapper, 1994; Paatero, 1997) 73 

established the advanced factor analysis method - positive matrix factorization (PMF). Several 74 

features are incorporated in this model:  75 

- weights data points by their analytical uncertainties,  76 

- constrains factor loadings and factor scores to non-negative values and thereby minimizes 77 

the ambiguity caused by rotating the factors, 78 

-  uses weighted least-squares fits for data,  79 

- expresses factor loadings in mass units, which allows factors to be used directly as source 80 

signatures, 81 

- provides uncertainties for factor loadings and factor scores. 82 

 In PMF, the matrix X (n × m) includes measured mass concentrations, and is represented 83 

as the sum of the product of G (n × p) and F (p × m) matrices and the residual matrix E (n × m), 84 

where n is the number of samples, m is the number of chemical species, and p is the number of 85 

independent source types. This model can give a solution that can be displayed in matrix form: 86 ܺ ൌ ܩ · ܨ   87 (3)                  ܧ

The object function Q that is to be minimized is defined as: 88 ܳ ൌ  ∑ ∑ ൫ߝ/ݑ൯ଶୀଵୀଵ                 (4) 89 



where uij is the uncertainty of the species j in a sample i and residuals ࢿ i.e. the portion of the 90 

measured concentration. 91 

 In addition, non-negativity constraints should be fulfilled, meaning that all the elements 92 

in G and F are to be non-negative. The main process of the PMF is minimizing the Q-value 93 

which is defined in the Eq. (4) as the sum of square of the residuals (ࢿ) weighted inversely with 94 

uncertainty (࢛) of the data point (Polissar et al., 1998; Lee and Hopke, 2006).  95 

The solution of Eq. (4) is obtained by iteration until convergence is reached. 96 

Bootstrapping is an advanced analysis that examines the stability of solutions of the 97 

tested models. The bootstrap method is essentially based on resampling methods in which “new” 98 

data sets that are consistent with the original data are generated. Each “new” data set (which is 99 

essentially a subset of the original database), is decomposed into profile and contribution 100 

matrices, and the resulting profile and contribution matrices are compared with the base run 101 

(Eberly, 2005), giving the distribution for each species to evaluate the stability of the solution. 102 

Numerous studies employing both the PMF and Unmix models have been done in recent years 103 

(Pekney et al., 2006; Poirot et al., 2001; Kim et al., 2004; Chen et al., 2007 in: Hegg et al., 2010).  104 

Paatero’s positive matrix factorization (PMF) approach weights the data by the inverse of the 105 

measurement error for each observation. A major advantage of this approach is that the missing 106 

data can be included as observations with a large error. However, the minimization of F is still 107 

an ill-posed problem, or in other words, the model is not identifiable. Even the inclusion of the 108 

non-negative constraints does not provide an identifiable model. Paatero addresses this problem, 109 

which he named rotationally indeterminacy, by adding one or more user-selected parameters. 110 

Park et al., (2002) have used modern constrained minimization methods on F along with specific 111 

conditions, e.g. each source composition must have at least one species absent from that source. 112 

Finally, Paatero has generalized F in a natural way to include the estimation of even more 113 

unknown parameters associated with spatial variations (Henry, 2002).  114 

Multivariate source apportionment models, Unmix and positive matrix factorization (PMF), 115 

often produce nearly the same source apportionment, however some investigations have shown 116 

that this is not always the case (Henry and Christensen, 2010). These models do not specify a 117 

minimum number of samples, but the stability of their solutions increases with the number of 118 

samples (Chen et al., 2007). In this study, we calculated sources composition and sources 119 

contributions of elements in PM using real data base.  120 



The main aim of this study is to show that a simple application of the most advanced 121 

mathematical models may leads to erroneous conclusions because each of these models can 122 

provide a larger number of mathematically correct solutions. Which solutions are really true 123 

cannot be known only on the basis of the results obtained by modeling, even using models such 124 

as Unmix and PMF. Our goal was to apply these state-of-the-art models, respecting their criteria, 125 

on data-base previously submitted to other models; Principal Component Analysis (PCA) and 126 

Enrichment Factors (EA) to compare, to be able to finding the most accurate solution relying on 127 

Unmix self-modeling and PMF application to adjust and confirm the solutions found by Unmix.    128 

 129 

Materials and Methods  130 

The sampling site is situated only 10 meters away from the coast of the Adriatic Sea. Samples of 131 

PM were subjected to gravimetric analysis for determination of total mass concentrations and 132 

subsequently to elemental analysis for Fe, Mn, Ti, Pb, Cr, Cu, Cd, Co, Ni, Hg and Se. Suspended 133 

particles were collected using a high-volume Aerosol Sampler, AQUERO model 400XT 134 

sampling system with inlet for the total suspended particles, on boron-silicate fiberglass filters 135 

every sixth day as a 24h sample in the period of 1995 - 2000. The sampler was located in the 136 

town of Herceg-Novi (Fig. 8) 18033'' N, 42027'', Montenegro (Fig. 1). The meteorological station 137 

is part of the MED POL program. The nearest road is located about 100 m north of the 138 

meteorological station. There are no significant grassy areas around the meteorological station, 139 

and there is no considerable construction work in progress. The terrain surrounding the receptor 140 

is rocky with some small areas of soil (Đorđević et al., 2004). Filters were digested with HNO3 141 

(ultra pure). A Flame Atomic Absorption Spectrometry (F-AAS), Varian AAS–Spectr AA 55 142 

instrument, was used to measure the concentrations of Cd, Co, Cr, Cu, Ni, Pb, Ti, Fe and Mn. 143 

The concentrations of Hg and Se were determined by the hydride vapor AAS method (HV-AAS) 144 

(Đorđević et al., 2005). The maximum expanded uncertainty of measurements for all elements 145 

was about 5%.   146 

The real data set of 11 trace elements in particulate matter (PM) obtained in 252 observations 147 

was analyzed by Unmix 6.0 and PMF 3.0. The applied Unmix and PMF models were available 148 

on the EPA Internet site (www.epa.gov). 149 



Unmix and PMF used in this study do not limit the number of factors. The following initial 150 

operations were subjected to the Unmix model data: Suggest Exclusion, Initial Species, 151 

Additional Species including SAFER and Initial Points. PM was chosen for the total and for the 152 

normalization. The data was screened using the signal-to-noise ratio (Min S/N ratio) criteria 153 

higher than 2, estimated by Unmix. Only the component with S/N value greater than 2 will be 154 

used for sources estimation. The agreement between the true and estimated source contribution 155 

(Min R2 greater than 0.8) was considered as well (Henry, 2003, EPA/600/R-07/089). 156 

Applying of PMF model the procedure of Polissar et al. (1998) was used in this study to 157 

calculate uncertainties in the species concentrations. Briefly, for the data below detection limit 158 

(DL), the concentrations were replaced with the value DL/2 and the uncertainty was set as ହ  159 .ܮܦ

For the missing data, concentrations were replaced by the geometric mean and the respective 160 

uncertainty was set at four times of this mean concentration. At the first set up all elements are 161 

labeled as Strong, since (the signal/noise ratio) S/N > 2 for all of them. Based on input data 162 

statistics, residuals show bimodal distribution in the case of Ni, Mn, and Hg, so their 163 

uncertainties are increased labeling them as Weak. Selenium is excluded from the model because 164 

of a very small contribution and the correlation factor, while for cadmium more than 50% of 165 

samples are below the detection limit. The Q value represents the goodness-of-fit and assesses 166 

how the model fits the experimental data. Qtrue is calculated taking into account all data points 167 

while Qrobust is calculated accounting for outlier points. Data with scaled residuals above 4 are 168 

regarded as outlier points. Evaluation of the validity of a solution is possible by using the G-169 

space scatter plot. Scatter plot of one versus the other factor may indicate the existence of a 170 

rotational ambiguity. Namely, if the points on this graph fill the entire solution space evenly then 171 

the edges of the Scatter Plot correspond to axes. If this is not a case it is indication that there is 172 

rotational ambiguity and should be considered the possible rotation of the solution, using the 173 

function Fpeak. The F-peak functions is used to rotate the data set, make fine tuning and 174 

improvement of the model in the case of data with high noise (positive values F-peak) or clean 175 

data (negative values F-peak). Normally, the default settings give satisfactory results, but in 176 

some cases subsequent adjustments are needed. To ensure the robustness of statistics, 300 177 

bootstrap runs were performed, while the default value of the minimum correlation (R-Value) of 178 

0.60 was used. 179 

 180 



 181 

Results and Discussion  182 

We applied the Unmix and PMF models on dataset from our previous work regarding trace 183 

elements in the PM (Đorđević et al., 2005). Fig. 2 shows the comparison of measured and the 184 

predicted concentrations of trace elements in PM through time series and Min R2. Model Unmix 185 

did not calculate R2 values for Cd, Co, Hg and Se and neither satisfactory solution included these 186 

elements since these variables contain a large number of missing values and outliers. Min R2 187 

values are given in table 1.   188 

From statistical parameters displayed for each species, after input data and the following 189 

operations: Suggest exclusion, Influential points, Initial species, Additional species and SAFER, 190 

Unmix finds six combinations of species that give any kind of solution (Table 2). Min S/N for 191 

each principal component and Min R2 of all combinations of elements estimated by Unmix was 192 

selected as good solutions that are in accordance with the Unmix criteria (Henry, 2003). Thirteen 193 

solutions in total were found, but four solutions satisfy the above criteria, signed in bold in Table 194 

2. The standard deviation of variable (sigma) is the criterion for evaluation whether the variable 195 

eligible for modeling or not. The sigma-based parameters (Significant/Strong Species in Sources) 196 

for each of satisfactory solution are also given in Table 2.  197 

Taking into account the calculated good solutions presented in Table 2, the Edges plots were 198 

done for these solutions (Fig. 3). The source profile of the solutions chosen according to the 199 

criteria S/N > 2 and R2 > 2 are given in Fig. 4.  200 

In the first solution (combination of species Mn-Ti-Pb-Cr-Cu, 3 Sources Solution) the second 201 

and third source are well defined by many points on the y-axis while source 1 has just a few 202 

points on the x-axis. Pb is strong in the first source and this source can be attributed to traffic. In 203 

the second source Cr and Cu are strong and Ti and Mn are significant. This source can be re-204 

suspension of elements previously settled from anthropogenic sources. In the third source neither 205 

element is strong or significant.       206 

The second satisfactory solution is for Fe-Mn-Ti-Pb combination of elements it also found 3 207 

sources (Table 2, Fig. 4b) and does not show good accumulation of points on the x and y axes 208 

(Fig. 3). This solution has the best values of Min R2 and Min S/N compared to all combinations. 209 

The first and the third source contain Pb which is a tracer for traffic. In the third source Pb is 210 



strong, and it is reasonable to associate this source with traffic, while the first source could be 211 

local re-suspension. The second source in this combination could be a long range transport of 212 

Saharan dust since it contains crustal elements.    213 

The third solution (combination of species Fe-Mn-Ti-Pb-Cr-Cu-Ni, 4 Sources Solution) shows 214 

the edges on the y-axis defined by many points for the third and the fourth source, but the x-axis 215 

has just a few points (Fig. 3).  216 

In the fourth solution (combination of species Fe-Mn-Ti-Pb-Cr-Cu, 3 Sources Solution) good 217 

accumulation of points are on the y-axis, for sources 2 and 3 while the x-axis has just a few 218 

points for source 1 (Fig. 3).  219 

In the third and the fourth solution, the sources where Pb is strong can be attributed to traffic; 220 

namely, source 3 for Fe-Mn-Ti-Pb-Cr-Cu-Ni combination (Table 2, Fig. 4c) and source 1 for Fe-221 

Mn-Ti-Pb-Cr-Cu combination (Table 2, Fig. 4d). Another source in which Pb is present as 222 

significant but not strong could be re-suspension. Source 4 for Fe-Mn-Ti-Pb-Cr-Cu-Ni 223 

combination and source 2 for Fe-Mn-Ti-Pb-Cr-Cu combination could be attributed to re-224 

suspennsion, probably from various locations depending on wind directions. Factors containing 225 

Cr and Ni indicate the existence of an anthropogenic emission source in the region (Đorđević et 226 

al., 2005).          227 

In our previous work (Đorđević et al., 2005) we applied the PCA method on this data set and 4 228 

significant groups of sources contributions were found. The following contribution sources were 229 

identified: re-suspension combined with re-suspended Saharan dust that had previously settled 230 

(Fe, Mn, Ti) and settled combustion products mostly from traffic, and probably some local 231 

stationary source (Cu, Pb). The remaining three factors represent the following combinations F2 232 

by Cr and Ni, F3 by Cd and Se and F4 by Hg and Co.  233 

The EF model revealed that in the region of the investigated receptor, the main contribution 234 

source of Fe, Mn and Ti is the process of local re-suspension and that local re-suspension has no 235 

influence on the content of Se in the atmospheric aerosol. The re-suspension is the dominant 236 

emission source of Cd from the south-southeast direction from the nearby peninsula (Luštica) but 237 

this source is not permanent (Đorđević et al., 2005).  238 

The application of positive matrix factorization (PMF) to solve the number and profile of the 239 

sources applied to the same database resulted in obtaining possible solutions for 3, 4 and 5 240 

sources. For 6 or more sources the model does not find the convergence of the functions Q, 241 



which implies that the model did not find any minima. Varying simulation conditions did not 242 

contribute to significant improvement, even when the uncertainty is significantly increased. 243 

Therefore possible solution should be sought among three possible cases.  244 

Table 3 shows the categories of elements and the R2 values for each of the three possible 245 

solutions. 246 

Each of the possible solutions obtained by PMF analysis will be considered. Fig. 5 shows F peak 247 

strengths for 3 sources solution (Fig. 5a), 4 sources solution (Fig. 5b) and 5 sources solution (Fig. 248 

5c).  249 

3 Sources Solution: The relatively good correlation was obtained only for Cr and Pb, while 250 

bimodal distribution is still present in the case of Co, Ti and Fe. Also, significant outliers are 251 

present in the model. In addition, G-Space plots show considerable rotational ambiguity between 252 

the sources 1 and 3.  253 

Rotational ambiguity, which was found between the sources 1 and 3, decreases when the value 254 

of Strength factor reaches -1.2 (Fig. 5a). This is mostly reflected in the increase of Ti 255 

concentration in the source 2. However, such large values for Fpeak is unlikely because the 256 

quality of the fit decreases rapidly. The usually dataset rotations are generally much smaller and 257 

they are close to the basic solution. 258 

However, a small degree of correlation between the model and database indicates that the model 259 

with three sources is insufficient to adequately describe a number of sources. 260 

In this case, only Co, Ni and Fe show relatively good interquartile range of about 20%, while 261 

other species show considerable variation and therefore represent a less stable solution. This is 262 

especially pronounced in the case of Hg, Cr and Mn. Also, in some cases (Hg, Ti) base run 263 

values are not within the interquartile range in the bootstrapping of results. This is probably a 264 

consequence of assuming the model with only three sources. Profiles of sources are given in Fig. 265 

6. 266 

4 Sources Solution: The model with four sources shows a significantly better correlation with 267 

measured concentrations of elements. Although the agreement of time series for Ti and Cr is 268 

excellent (R2 > 0.95), and for Pb satisfactory (R2 = 0.70), in the case of other elements there are 269 

still episodes with very high concentrations that this model cannot fit. It should be noted that Cu 270 

shows very good agreement between the predicted and observed concentrations, but the 271 



existence of outliers have reduced the correlation to 0.34. A small degree of correlation in the 272 

case of Co is the result of a significant number of measurements below the detection limit. 273 

Bimodal distribution is still present in the case of Ni and Hg. G-Space plot shows that there is a 274 

rotational ambiguity between sources 1 - 3 2 - 3, 3 – 4. 275 

For a model with four sources, rotational ambiguity disappears when the F-Peak strength reaches 276 

-0.8 (Fig. 5b). This rotation is mostly reflected in the increase of Ti content in source 1, and 277 

largely in sources 2 and 3. On the other hand, this may just mean that the content of titanium in 278 

this solution is divided among several sources. As in the case of a solution with three sources, a 279 

significant rotation of the dataset (Fpeak = -0.8) is less likely. It is necessary to consider these 280 

results carefully and determine whether there is justification for it to be included in further 281 

solving of the composition of the sources. 282 

Interquartile range of solutions obtained by bootstraping in the case of Fe, Pb, Cu and Cr are 283 

about 20%, while in the case of other species this range is much higher indicating the instability 284 

of the solution. Base run values which are not within the interquartile range in the bootstrapping 285 

of the results are, in the case of Cu, Mn, Pb and especially Hg, calculated by the model only in 286 

the fourth source. 287 

5 Sources Solution: The model and data from the database show agreement (R2) over 90% for 288 

Cr, Ti, Fe and Pb, while just over 50% for Mn. The model also fits Cu real data very well, and 289 

the correlation of 0.47 is caused by significant outliers that are related to individual episodes of 290 

Cu emissions. In spite of the increased uncertainty Mn, Ni, Co and Hg show a lack of fit. 291 

G-Space plot only shows some rotational ambiguity in the case of sources: 2 – 5, 3 – 5 and 4 – 5. 292 

The F-Peak in the range -2 to 2 (Fig. 5c) showed the most impact on the sources of Cu, 293 

especially at higher strength values, while the ambiguity between the sources mentioned above 294 

still exist. The Peak F-curve is generally symmetrical in the examined interval.  295 

In the case of five sources there are also unmapped results, suggesting a reduced stability of the 296 

solution. In general, the most stable solutions are obtained for those elements that are present in 297 

the source with the highest percentage. In these cases, the distribution of solutions obtained by 298 

bootstrapping lie in the range of 15% of the concentration calculated in the base run. This is the 299 

case for Fe, Pb, Ti. A slightly worse result of the bootstrap analysis is obtained for Cu, Mn, Cr, 300 

Co and Ni (bootstrapping distribution of solutions equal or higher than 20%). The least stable 301 

solution is for Hg with considerable dispersion in the bootstrap analysis solutions. 302 



When discussing the number and origin of pollution sources, it is preferred to take into account 303 

the real situation on the field. In this case the following sources that contribute to the overall PM 304 

deposition can clearly be predicted: marine aerosols, traffic, re-suspension from the ground, 305 

probably some local stationary source, as a shipyard located in the vicinity. Based on these 306 

obvious sources, PMF analysis solution with only three sources is exempt from further 307 

consideration.  308 

In the case of PMF solution of five sources it may be noted that source No. 5 (Fig. 8), in which 309 

Co, Cu, Ni and Mn are present, can be described rather as a splitting factor than as a separate 310 

source. The most realistic solution that is imposed upon a detailed analysis is the solution with 311 

four sources (Fig.7). 312 

Identification of sources was carried out and it agrees with the results of the Enrichment Factors 313 

analysis well (Đorđević et al., 2005).  The F-peak profiles shown in Fig. 7 in rotation of data set 314 

for -0.8, increase the contents of Ti, in the case of sources 2 and 4. 315 

Source 1 has been identified as re-suspension in combination with the long-range transport of 316 

Saharan dust. The prevailing wind directions are over open sea (Đorđević et al., 2005).    317 

Source 2 is attributed to the re-suspension, indicated in our previous work. Titanium found by F-318 

peak is in better accordance with the EF analysis (Đorđević et al., 2005).   319 

Source 3 corresponds to the composition of the particles that come from some anthropogenic 320 

source. 321 

Source 4 with the highest content of Pb, is characteristic for urban traffic. F-peak is increasing 322 

the value for Ti which is in better agreement with the traffic profile.  323 

   324 

Conclusion  325 

In this work we applied state-of-the-art mathematical models Unmix and PMF on database 326 

previously modeled using more simple models (PCA and EF) to be compared. In this study we 327 

have shown that only application Unmix and PMF for sources apportionment is not guarantee to 328 

obtain the unique realistic solution. Thirteen solutions in total were found, but four solutions 329 

satisfy the Unmix criteria: three solutions with three sources and one with four sources. In terms 330 

of modeling all four solutions found by Unmix are satisfactory. PMF model has given three 331 

possible solutions: one with three sources, one with four sources and one with five sources. By 332 

further analysis of the results of PMF model the best solution with four sources was selected. F-333 



peak refinement was enabled to find a more realistic solution. Also we have shown that due to 334 

their limitations Unmix and PMF were unable to calculate Cd and Se in used database, due to 335 

large number of missing values. For example, although the presence of cadmium in terms of 336 

concentration is negligible and there are many missing values the knowledge of emission sources 337 

is very important regarding its harmfulness. The simple model of EF applied could help to solve 338 

similar problem. For obtaining the best results using Unmix and PMF models our 339 

recommendation is to start modeling by Unmix relying on its self-modeling to estimate all 340 

possible types of sources and then apply PMF for confirmation. For the species that are 341 

important and that cannot be modeled by advanced models like Unmix and PMF should be apply 342 

other, even, the simple model.                343 
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 406 

Tables 407 

Table 1. R2 values obtained by Unmix of measured and the predicted concentrations of PM and 408 

trace elements in PM 409 

 PM Fe Mn Ti Pb Cr Cu Ni 

R2 0.46 0.75 0.92 0.66 0.83 0.40 0.99 0.00 



Table 2. All combination of elements for solutions obtained by calculation by Unmix 

Combination of species Number 
of sources Min R2 Min S/N Significant/Strong Species in Sources (sigma-based) 

Mn-Ti-Pb-Cr-Cu 
3 0.84 2.49 

Source 1: *Strong – Pb; 
Source 2: *Strong - Cr, Cu, **Significant - Ti, Mn; 
Source 3: *Strong – None, **Significant - None 

4 0.89 1.94  
5 0.90 1.59  

Cr-Cu-Pb-Ti-Mn-Se-Cd-Co-Fe 3 0.68 2.41  
4 0.76 2.13  

Cu-Ti-Fe-Mn-Pb-Cr-Hg-Se 2 0.56 2.29  

Fe-Mn-Ti-Pb 3 0.90 2.85 
Source 1: *Strong – None, **Significant - PM, Pb, Fe 
Source 2: *Strong – None **Significant - PM, Fe, Mn; 
Source 3: *Strong - Pb, Mn, **Significant - Ti, Fe 

Fe-Mn-Ti-Pb-Cr-Cu-Ni 

3 0.76 2.20  

4 0.83 2.18 

Source 1: *Strong - Cr, Ni, **Significant – None 
Source 2: *Strong – None,    **Significant – Cu; 
Source 3: *Strong – Pb, **Significant - PM, Cr, Cu, Ti, 
Fe, Mn; 
Source 4: *Strong – Ti, **Significant - PM, Cr, Pb, Fe 

5 0.89 1.67  

Fe-Mn-Ti-Pb-Cr-Cu 
3 0.83 2.57 

Source 1: *Strong -  Pb, **Significant – Cu; 
Source 2: *Strong – None,    **Significant - PM, Cr, Pb, 
Ti, Fe; 
Source 3: *Strong – None, **Significant - PM, Cr, Cu, 
Ti, Fe, Mn 

4 0.88 1.97  
5 0.90 1.62  

*   Source Composition ≥ 1 sigma 
**Source Composition ≥ 2 sigma 
 



 
 
Table 3. R2 values obtained by PMF of measured and the predicted concentrations  

Species Category R2 
3 sources 4 sources 5 sources

Cr Strong 0.617 0.980 0.998 
Ti Strong 0.381 0.962 0.959 
Fe Strong 0.401 0.472 0.942 
Pb Strong 0.695 0.701 0.905 
Mn Weak 0.394 0.340 0.528 
Cu Strong 0.345 0.337 0.473 
Ni Weak 0.027 0.031 0.025 
Co Weak 0.006 0.013 0.018 
Hg Weak 0.002 0.005 0.003 

 
 
Figure Legends 
 

Fig.1 Sampling site and prevailing wind directions 

Fig. 2 Predicted and measured concentrations  

Fig. 3 Edge plots for chosen solutions that satisfy the conditions of Min S/N and Min R2 

Fig. 4 Source profiles for selected solutions that are in accordance with the Unmix criteria 

Fig. 5 F-peak analysis for three a), four b) and five c) source solutions. The red mark represents 
the value of F-peak Strength, at which the rotational ambiguity disappears. 

Fig. 6 Profiles in the case of three sources solutions. Comparison of base run profile and F-peak 
run profile with the strength of -1.2 (disappearance of rotational ambiguity). 

Fig. 7 Profiles in the case of three sources solutions. Comparison of base run profile and F-peak 
run profile with the strength of -0.8 (disappearance of rotational ambiguity). 

Fig. 8 Profiles in the case of three sources solutions. Comparison of base run profile and F-peak 
run profile with the strength of -2.0 where it can be seen that F-peak Strength does not affect the 
existing rotational ambiguity.  
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In the study presented by Dordevic et al., a characterization of the possible sources of 
TSP (?) was carried out in a coastal area (Southeast Adriatic Sea). An attempt to 
identify the PM sources is made using two receptor modelling techniques (UNMIX and 
PMF). The results obtained by both techniques are compared with the results obtained 
using other models like Enrichment Factors (EF) and Principal Component Analysis 
(PCA). From my point of view the main problem of the article, is that it is not clear what 
the objective of the manuscript is. It seems that both models (PMF and Unmix) are used 
to find a solution similar to that found in the previous article written by the authors 
(Dordevic et al 2005). If that is the aim then the article does not add anything new to the 
scientific knowledge which already exists on this subject. If however the overall 
objective is to present a new attempt to identify the PM sources in the region, the article 
should be re-written in a different way. In this case, the results of the best solution 
ofboth models can then be compared with the result obtained using the other models. 
 
In this manuscript were not only made an attempt to identify the PM sources 
using two receptor modeling techniques (UNMIX and PMF) and these results 
compared with the results obtained using other models like Enrichment Factors 
(EF) and Principal Component Analysis (PCA) but our main goal was to show how 
many mistakes could be made during the modeling even using the state-of-the-art 
models such as Unmix and PMF. We corrected the manuscript in this manner 
including the correction of Abstract, Main goals, Discussion and the Conclusion 
as well as the title of the Manuscript. 
 
Another thing that concerns me is the use of only 11 elements for the determination of 
the possible sources affecting the study region. Some of the 11 sources are normally 
below the MDL (Co, Hg, Cd, Se), so the analysis is mainly done with 7 elements only. I 
am not sure that the results obtained are meaningful. This should be commented 
throughout article. I have serious doubts that this article is suitable for publication in this 
journal. I recommend a major revision of the article including a complete restructuring of 
the contents. 
 
This data base was chosen because of measurements over longer period of time 
allow the greater accuracy than one obtained in a shorter time period. We also, 
modeled other data sets with large number of variables but we didn’t get 



satisfactory solutions, even we didn’t get any solution due to a large number of 
excluded variables by the model because of a lot of outliers or missing values. So 
this data set has got the most representative solutions although with 11 
elements.   
 
Specific comments: The abstract should be rewritten. The location of the 
measurements, duration of the sampling campaign, sampling time, PM inlet used 
should be included. The remainder of the abstract should be completed once the aim of 
article is clarified. The same can be applied to the introduction. Both models are 
described in quite a lot of detail. That can be replace for some references.  
 
The Abstract has rewritten and the location of the measurements, duration of the 
sampling campaign, sampling time added. PM inlet have included in the Material 
and Methods section in the part P4948L6. In the manuscript it is highlighted in 
yellow. 
 
The Introduction has shortened.  
 
Part of the introduction, like the Polissar criteria, should be in the experimental section.  
 
It is moved to Material and Methods part along with another the paragraph which 
belong to this section 
 
The procedure of Polissar et al. (1998) was used in this study to calculate uncertainties 
in the species concentrations. Briefly, for the data below detection limit (DL), the 
concentrations were replaced with the value DL/2 and the uncertainty was set as   .ࡸࡰ
For the missing data, concentrations were replaced by the geometric mean and the 
respective uncertainty was set at four times of this mean concentration. 
… 
At the first set up all elements are labeled as Strong, since (the signal/noise ratio) 
S/N > 2 for all of them. Based on input data statistics, residuals show bi modal 
distribution in the case of Ni, Mn, and Hg, so their uncertainties are increased 
labeling them as Weak. Selenium is excluded from the model because of a very 
small contribution and the correlation factor, while for cadmium more than 50% of 
samples are below the detection limit. 

Depending on the aim, the rest of the introduction should be changed to include more 
important references. A detailed main goal should appear at the end of this section. The 
materials and methods section should be expanded. Detailed information about the 
sampling point, the PM inlet used, sampling period, etc… are needed. A description of 
how the models are configured is also needed (Initial operations of the Unmix model, 



data preparation for the PMF model, S/N ratio, Min Rˆ2, IM, IS, G-space plots, ...). A 
table with the data (geometric mean, max, min, standard deviation, number of samples 
under the mdl) should be added as well.  
It is not usual to use the values of FPEAK of -0.8, -1 and -1.2 to eliminate the rotational 
ambiguity. An explanation for that should be added because it is not evident how you 
have used Fpeak and the G-space plots. What should be done is to use G-space plots 
of the base run to identify possible rotations in the solution.  
 
It is corrected: 
In addition, G-Space plots show considerable rotational ambiguity between the 
sources 1 and 3. … However, such large values for Fpeak are unlikely because 
the quality of the fit decreases rapidly. The usually dataset rotations are generally 
much smaller and they are close to the basic solution. 
…  
G-Space plot shows that there is a rotational ambiguity between sources 1 - 3 2 - 
3, 3 – 4. …. As in the case of a solution with three sources, a significant rotation 
of the dataset (F peak = -0.8) is less likely. 
 

Corresponding G-space plots of F peak solution factors should be examined to see if 
any edges viewed in the base runs are more or less evident in the F peak runs. 
Additionally, profiles and contributions should be examined for species that deviate from 
the base run to ensure that they are reasonable. 
 
It was observed that all the basic solutions cases of 3, 4 and 5 sources, the 
analysis of G-space plots there are couples of factors which indicate rotational 
ambiguity. It is improved – highlighted in the yellow in the new Manuscript. In the 
new part Results and Discussion in the part of PMF modeling for results for 3, 4 
and 5 sources now is existing. These cases were analyzed using F-peak function 
and the solutions were analyzed. It is improved – highlighted in the yellow in the 
new Manuscript. In the new part Results and Discussion in the part of PMF 
modeling for results for 3, 4 and 5 sources now is existing.     
 
The conclusion should also be rewritten once the objective of the article has been 
clarified. The conclusion is not a summary of the results and discussion sections. It 
should answer the objective proposed in the introduction. About the figures: Figure 1 is 
very small and the units are not present. Figure 5, 6, 7: There are some errors in the 
axis labels. The errors of the concentrations should be added. The caption in Figure 6 
should state “four” instead of “three”. 
 
The conclusion is corrected 



The errors in the axis labels of Figures 5, 6, and 7 are corrected, now these 
Figures are 6, 7 and 8. 
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