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Abstract. This paper presents a validation of a method to deive the vertical profile of carbon
monoxide (CO) from its total column using data assimilation. We choose wsion 3 of MOPITT
CO total columns to validate the proposed method. MOPITT prodicts have the advantage of
providing both the vertical profiles and the total columns of CO. Furthermore, this version
has been extensively validated by comparison with many ingieendent datasets, and has been
used in many scientific studies.

The first step of the paper consists in the specification of thebservation errors based on
the Chi-square (y?) test. The observations have been binned according to 3 typeover land
during daytime, over land during nighttime, and over sea. Tteir respective errors using the
x? metric have been found to be 8%, 11% and 7%.

In a second step, theCO total columns, with their specified errors, are used within he as-
similation system to estimate the vertical profiles. Thesera compared to the retrieved profiles
of MOPITT V3 at global and regional scales. Generally, the tvo datasets show similar patterns
and good agreement at both scales. Nevertheless, total colo analyses slightly overestimate
CO concentrations compared to MOPITT observations. The meanias between both datasets
is 15% and 12% at 700hPa and 250hPa, respectively.

In a third step, the assimilation of total column has been comared to the assimilation of
MOPITT vertical profiles. Both analyses show very good agrement. In terms of lon-lat maps,
the mean bias between the two datasets is6 and 8% at the pressure levels 700 and 200Pa,

respectively. In terms of zonal means, theCO distribution is similar for both analyses with a
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mean bias which does not exceed 12.

Finally, the two analyses have been validated using the airaft MOZAIC independent ob-
servations in terms of vertical profiles over 8 airports. Ove most airports, both analyses agree
well with aircraft profiles. For more than 50% of recorded measurements, the difference be-
tween the analyses and MOZAIC does not exceedgpbv (parts per billion volume).

1 Introduction

Carbon monoxide({O) is an important atmospheric species as it influences tpipmos chemistry
and climate (Crutzen and Andreae, 1990). The main sourc@8agmissions are biomass burning,
fossil fuel and the oxidation of methane and non-methanedoatbons (Granier et al., 2000). For
this reason and because of larger anthropogenic emissiahe iNorthern Hemisphere (NH) than
in the Southern Hemisphere (SH), troposphéti@ background values are much higher in the NH
than in the SH. The major global sink 6fO in the troposphere is the chemical reaction with the
hydroxyl radical OH). Therefore CO concentrations are higher in winter than summer owing to
the seasonal variations 6fH abundances. Sind@H is the only significant tropospheric sink for
CO and many other atmospheric trace gases emitted into thesphyere CO has the potential to
indirectly control the oxidation capacity of the tropospherl herefore, an increase@O emissions
could reduc&®H concentrations and, consequently, the oxidation capatttye troposphere and its
ability to remove pollutants (Mahieu et al., 1997).

Most of theCO in the troposphere is found in the lower troposphere or bagnidyer. Compared
to its inter-hemispheric mixing time of several yedr%) is not well mixed in the free troposphere
where it has a relatively long lifetime of several weeks t@a months. This makeSO a useful
tracer of air pollution, and allows studies of long-rangasport of pollutants in the troposphere.

For more than 1@r, global observations of troposphefitO have been performed from several
satellite instruments which provide many opportunitiesttaly tropospheri€O on a global scale.
The Infrared Atmospheric Sounding Interferometer (IASipoard the MetOP-A (Meteorological
Operational Program) satellite launched in October 2008ides augmented horizontal resolution
of the CO total column. Monitoring of this species will continue witine METOP-B satellite which
carries a suite of sophisticated instruments. These tvedlisad are polar orbiters and provide global
observations. The data they collect on the atmosphere anghttironment are complementary and
allow the monitoring of the atmospheric composition anceitslution in near real-time.

Most tropospheric sensors operate with a nadir-viewingrgeoy and typically provide vertically
integrated information, implying limited vertical restilen. This could present a limitation for some
process studies such as long-range transport of pollutactsuse of missing information on vertical
levels. Furthermore, most chemistry and transport mod&I$4s) are subject to large uncertainties

concerning the distribution afO concentrations. This is becauS® sources are not well known
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since their estimates are generally derived from invenbarged, bottom-up techniques which are
highly uncertain (e.g., Jones et al., 2003). Another issuneerns th&CO emissions from biomass
burning which have unexpected sources in terms of timetimtand magnitude and thus are subject
to large uncertainties (Bian et al., 2007).

Chemical data assimilation consists of combining in anroatiway observations provided by
instruments with a priori knowledge about a physical sysseich as model output. It allows con-
straints to be put on models using observations, and thusecased to overcome model deficiencies.
It also provides a four-dimensional (time and space) deson of the dynamical and chemical state
of the atmosphere. Typically, data assimilation systerodyee observation minus forecast (OMF)
statistics that are used for monitoring biases betweentikerwations and the models (e.g., El Am-
raoui et al., 2010). The specific objective of chemical datinilation is to produce a self-consistent
picture of the atmosphere taking into account both the abkdlobservations and our theoretical un-
derstanding of the atmospheric system.

Assimilation of CO satellite observations in the troposphere has been peefbusing different
sensors. These include MAPS (Lamarque et al., 1999), IM@rt@ux et al., 2001), MOPITT (e.qg.
Pradier et al., 2006; Claeyman et al., 2010; EI Amraoui e28l10) and SCIAMACHY (e.g. Tang-
born et al., 2009). Most of th€O analyses in these studies have revealed improvements of the
CO distribution in comparison to the free model run. Howeverassessment of the impact of the
assimilation of the total column on tl&O vertical profile has been done hitherto.

The main goal of this study is to assess the benefit ofhdotal column assimilation on theO
vertical distribution at global and regional scal@he philosophy of this study is the following :
The CO total column is generally produced from the profiles using a gnple integration over
the vertical levels. The question we pose is : can we use an iasigation system to derive the
CO vertical profile from its total column using the adjoint of th e integration operator ?

We choose Version 3 of MOPITTO measurements to validate the proposed method. The moti-
vation for this choice is presented in Sect. 2.1. The proghasethod has the advantage of allowing
fast computation of the vertical profiles and the analyses©f It will be particularly useful in the
future when there will be many missions providing large woés of data for which level 2 retrievals
with their corresponding characteristics (covariancerited and averaging kernels) will be very
expensive in terms of computer resources (i.e., IASI onh&HETOP-A and METOP-B or future
geostationary missions). Furthermore, the assimilatfauoh data in CTMs taking into account all
these characteristics will likely be very costly in termdiafe computation and memory. This will
be a significant shortcoming regarding the operational fileese data. Thus, the validation of the
method proposed in this paper could be an alternative wayouyzeCO fields at global scale with
relatively modest resources.

First, we describe the approach which consists of deducinde vertical distribution of CO

in the troposphere from the assimilation of total MOPITT column measurements (hereinafter
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noted TOTCOL_ANALYSES). Second, we validate theCO vertical profiles deduced from
TOTCOL _ANALYSES with the MOPITT retrieved vertical profiles. In a th ird step, we com-
pare TOTCOL _ANALYSES against the assimilation of MOPITT CO vertical profiles taking

into account the corresponding error covariance matrices ad averaging kernels (hereinafter
noted PROFILE_ANALYSES). Finally, both analyses, from total column and from profiles,
have been validated using independent in-situ MOZAIC obserations.

The paper outline is as follows: Sect. 2 presents the MORIOTmeasurements as well as the
corresponding total columns, the data assimilation systead in this study, and the data used for
the evaluation of the vertical profiles deduced from thenasaiion of CO MOPITT total column:
the official vertical profiles of MOPITT V3 measurements. Thethod used for the assimilation of
MOPITT CO total columns, the specification of the errors as well as thesteriori diagnostics are
presented in Sect. 3. The comparison€6f vertical profiles deduced from TOTCOANALYSES
to those of MOPITT observations are presented in Sect. 4tidBes presents a validation of the
CO vertical profiles calculated from TOTCQRNALYSES against PROFILEANALYSES. Con-

clusions are presented in Sect. 6.

2 Data and analysis
2.1 Terra/MOPITT carbon monoxide observations

The MOPITT instrument (Drummond and Mand, 1996) is onboledTerra platform and has been
monitoring global tropospheri€O from March 2000 to date. The pixel size3@km x 22 km
and the vertical profiles for MOPITT version 3 are retrieved/qoressure levels (surface, 850, 700,
500, 350, 250 and 15(Pa) with the maximum likelihood method (Rodgers, 2000). Theieged
profiles are characterized by their error covariance megrand their averaging kernels, providing
information on the vertical sensitivity of the measurenseitt particular, the Degrees of Freedom for
Signal (DFS), the trace of the averaging kernel matrix,datés the number of independent pieces
of information in the measurements. It depends, via theasarfemperature, on latitude and time of
day. The MOPITT V3CO level 2 product consists of retrieved values and estimategainties
of the CO total column andCO profile (see: http://www.acd.ucar.edu/mopitt/retrisvsthtml). The
retrievedCO total column is obtained as a byproduct of the retrieved ferddfy integrating the
retrieved profile from the surface to the top of the atmosplieee: www.acd.ucar.edu/mopitt/avg
krnls_app.pdf).

The main motivation for using the MOPITT V3 is because thesta tiave been extensively vali-
dated against many independent datasets (e.g., Emmons2&i; Emmons et al., 2007; Emmons
et al., 2009; Deeter et al., 2007; Yurganov et al., 2008). fEhgporal and spatial behavior of MO-
PITT V3 data is well understood (e.g., Emmons et al., 2009).

For MOPITT V3 the DFS is low for vertical profiles as well as for the total columns. Figure 1
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shows an example of the spatial variation of the DFS of MOPITTV3 profiles in terms of
longitude-latitude averaged over the month of August as wéhs its frequency distribution over
the same period. The typical value of DFS for MOPITT V3 profiles is around 1.5 and is located
primarily on the sea above the tropics.

We will demonstrate in this paper that, for this kind of data, the presented method consist-
ing of deducing the profiles from the total columns, remains alid when only using the adjoint
of the integration operator. For other types of data for which the DFS is greater than that of
MOPITT V3, the present method has to be tested and evaluatedgainst independent obser-
vations. This will be the subject of an ongoing work for whichwe will evaluate the validity

conditions of the adjoint operator with respect to different values of the DFS.
2.2 MOCAGE CTM and data assimilation system

The assimilation system used in this study is MOCAGE-VALENA (e.g., Emili et al., 2013 :
accepted in Atmos. Chem. Phys.) which is an extension of tlECKGE-PALM (e.g., EI Am-
raoui et al., 2008a,b) system initially developed in therfesvork of the ASSET (ASSimilation of
Envisat daTa) European project. It is developed jointly b§tdb-France and CERFACS (Centre
Européen de Recherche et de Formation Avancée en Calmritiique). MOCAGE (MOdele de
Chimie Atmosphérique a Grande Echelle) (Peuch et al. 9)18% 3-D-CTM which covers the plan-
etary boundary layer, the free troposphere, and the spla¢os. It provides a number of optional
configurations with varying domain geometries and resohdj as well as chemical and physical
parameterization packages. It has the flexibility to usesdwchemical schemes for stratospheric
and tropospheric studies. In this study, MOCAGE is forcedadyically by wind and temperature
fields from the ARPEGE model analyses, the global operatiweather prediction model of Météo-
France (Courtier et al., 1991). The MOCAGE horizontal regoh used for this study is°2both in
latitude and longitude and the model uses a semi-Lagranigiasport scheme. It includes 47 hy-
brid (o, P) levels from the surface up tol*a, wherec=P/P,; P and P, are the pressure and the
surface pressure, respectively. MOCAGE has a verticalutisn of about 800 m in the vicinity of
the tropopause and in the lower stratosphere, whereas bothedary layer MOCAGE has 7 levels
with a vertical resolution between 40 and 400 m. In the frepdsphere, MOCAGE has a vertical
resolution which varies from 400 to 800 m.

The technique implemented within VALENTINA and used for #ssimilation of MOPITTCO
observations, is the 3-D-FGAT (First Guess at Appropriatec) method. This method is a compro-
mise between the 3-D-Var and 4-D-Var techniques (Fisherfardersson, 2001). It compares the
observation and background fields at the correct time andrassthat the increment to be added to
the background state is constant over the entire assionlatindow. The choice of this assimilation
technique limits the size of the assimilation window, siitceas to be short enough compared to
chemistry and transport timescales. This technique haadyrproduced good-quality results com-



pared to independent data especially@randCO (e.g., Semane et al., 2007; EI Amraoui et al.,
165 2010; Claeyman et al., 2011; Rabier et al., 2010; Bencheaif £2011; Lahoz et al., 2012).

3 Assimilation of MOPITT CO total column: methodology and error specification
3.1 Assimilation methodology

For variational systems, the assimilation method is basedmthe minimization of the cost func-

tion, J. They exist in a variety of formulations. We use the notatiorof Ide et al. (1997):

170 J(x) =

> ly°(t:) — Hi (e(ti)] " R [y°(ti) — Hi(x(t:))] (1)

i
The first term on the right-hand side of Eq. (1) is the misfit to the background state and the
second term represents the misfit to the observationsx®(¢y) and y(t;) are the background
state at the initial time and the observation at timet;, respectively. B and R are the back-

175 ground and the observation error covariance matrices, resectively. x(¢;) is the model state at
the observation timet; and represents the propagation of the initial statex(ty) by the model
operator M:

X(ﬁi) = Mix(to) (2)

H; is the observation operator, generally non-linear, which naps the model statex(¢;) to the
180 measurement space wherg®(t;) is located. The subscript refers to time and IV is the number
of time steps in the assimilation window{t, ¢ x].
For the incremental variational 3-D-FGAT method, the cost finction, J in Eq. (1) can be
expressed as:

T [5%(to)] = %6x(t0)TB_16x(t0) +

K2

N | =

N
[d(t:) — Hy(5x(t:))]" Ry [d(t:) — Hi(6x(t:))]  (3)
=0
185 (dx(to) = x(to) — x(t0)) is the increment vector which represents the difference beteen the
model statex and the background statex® at time t,, and 0x(t;) = M(t;, to)dx(to), where M
is the tangent linear of M.
The first term on the right-hand side of eq.3 is the backgroundcost function (.J;,), and the
second term represents the observation cost functiofi),). d(t;) = y°(t;) — H; [x"(t;)] is
190 the departure, at the observation timet;, between the observation vectoy®(¢;) and its model
equivalent in the observation spacéd; [xb(ti)} . The H operator represents the tangent-linear
of the H operator.
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For the assimilation of MOPITT total columns, the observaton vector y° contains the 2D
field of CO total columns, while the model statex and, consequently, the background state
x" is the 3D field of CO vertical profiles updated by the model during the forecast stp. The
observation operatorH which maps the model state to the observation space is then anical
integration over all model levels taking into account the vetical profile of both the pressure
and the density of air.

Note that, in this study, although we assimilate theCO total column the control variable
is the 3D CO field. The assimilation process seeks for the optimal 3D inement jx of the
CO vertical profiles and thus the observation component of the @st function acts just as one
constraint. Another constraint, regularizing the solution by keeping it in the proximity of the
background information, is the background cost function(.J,)

in which we use the background error covariance matrixB. The assimilation increment is
therefore a 3D field and its vertical structure depends on theéH operator through its adjoint
HT, mapping back a variation in the 2D total column space, towad the model 3D space, and
the vertical correlation coefficients in B.

More explicitly, the variational 3D-FGAT method consists d minimizing the cost function
of equation 3. Since the observation operator is linear, thanalysis state can be expressed as:

x* =x" + K (y — Hx") where K = BH" (HBH" + R) ' 4)
The update ofx* after the minimization of the cost function is done by using:
x* =x” 4 ox* ; ox* = BHT (HBH” + R) ™' -d (5)

d is the innovation vector. The correctiondx® to be added tox’ to obtain x* is normalized
by BH' (HBH™ + R)_l, after it is introduced into the model space (here theCO vertical
profile) via H™ and is finally multiplied by B.

3.2 Background error covariance matrix

The background error covariance matrix is a key component indata assimilation. It con-
tributes first to filter and propagate spatially the observedinformation, and second to define
the correlations between the control variables of the modslduring the assimilation process.
For the MOCAGE-Valentina assimilation system, the backgraind covariance matrix B is split
into a diagonal matrix of the forecast error variances of theassimilated species in each grid

point of the model X and a positive definite symmetric correlation matrix C :
B =xCxT (6)

The correlation matrix C contains both horizontal and vertical operators. The horiontal
correlationis modeled using a two dimensional diffusion egation (Weaver and Courtier, 2001)
with a homogenous length-scale both in latitude and longitde. The vertical correlation is
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modeled using a Gaussian function in terms of the logarithm tthe pressure. Thus the vertical

correlation Cy'; between two pressure levelp; and p; is as follows:

C; =exp [—kz -log? (&)] @)
by

The dimensionless parametek is determined from many validation experiments of the MO-

PITT V3 vertical profiles assimilation in comparison to other independent data such as AIRS

and MOZAIC (e.g., El Amraoui et al., 2010). It was found that £ = 100 gives better analyses

compared to the independent data and consequently better elnacterizes the vertical correla-

tion of the B matrix in the troposphere.

The horizontal correlation C,’;l between two pointsk and [ separated by a distancey, ; is:

_52
Ch — k.l 8
k,l exp 9 (Li +L§) ( )
L, and L, are the longitude and latitude length scales irkm, respectively.
. QT . [QyT
L, = 2R, -sin (%) and L, = 2Re - sin (%) 9)

Re is the Earth radius (6371.22km), o, and «,, are the longitude and latitude length scales,
respectively in°. In this study, both «, and «, are constant and are fixed to 2 which corre-

sponds to a length scale of about 22km.
3.3 Error specification

The first step of the proposed method consists in specifyiagbservation error covariance matri-
ces. The assimilation process needs, at least, specifiaatihe error covariance matriceR.@nd
B matrices in Egs. 1 and 2).

To validate the method, we assume in this study tha€ibeotal column from MOPITT has nei-
ther error covariance matrix nor averaging kernel infoioratWe specify the corresponding errors
of the CO total columns based on thé test (e.g., El Amraoui et al., 2010): observation errorief t
MOPITT CO total columns are estimated using this test. Differenteslof the observation error
have been selected and several assimilation tests with tladises have been conducted over a one-
month study, August 2008. The appropriate value of the ehsien error is that for which thg?
test is the closest to 1. A value gF close to 1 indicates consistency between both error-cavegi
matrices R andB), whereas a value of? lower (greater) than 1 implies an overestimation (under-
estimation) of the observation and/or background errags,(eahoz et al., 2007).

Since the sensitivity of MOPITT measurements in the theinfedred (TIR) wavelength depends,
via the surface temperature and thermal contrast, on daim nighttime periods, specification of
the measurement error is made by binning the observatiarsding to day, night, land and sea.
The specification of the errors will be done for three typesngfasurements: over land during
daytime (LAND_DAY), over land during nighttime (LANDNIGHT) and over sea during daytime
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and nighttime (SEA). For each type of measurements we asthahall observations have the same
percentage error and that errors are uncorrelated.

Figure 2 shows an example of the time evolution of fffetest over the period of study, Au-
gust 2008 (left hand side) and the corresponding Gaussiahtfie normalized(? test (right hand
side) for different observation error values (diagonaRgjfcorresponding to the measurement type
SEA. We note that thg? test is very sensitive to the observation error value. Fanalues ofR,
thex? test gives high values and vice-versa. The optimal observatror value (diagonal dR) for
which x? is the closest to 1 for SEA measurements i %.

Table 1 summarizes the’ results for all type of measurements. The optimal valueb®@bbser-
vation error (diagonal oR) are indicated in boldface. They ar&8 11% and 7% for LAND _DAY,
LAND _NIGHT and SEA measurements, respectively. These valuébavilsed as the observation
error values for each corresponding type of measuremetttg iassimilation of MOPITTCO total

column measurements.
3.4 A posteriori diagnostics

Each of the three types of MOPITT measurements (LABAY, LAND _NIGHT and SEA) has been
assimilated, in terms of total column, using the corresjpumdbservation error selected according
to the x2 test discussed in Sect. 3.3. Figure 3 shows the OMF and the Qi¥gervation minus
analysis) diagnostics for TOTCORNALYSES for the whole assimilation period (August 2008).
Figure 3-left shows the OMF distributions normalized by tiservation errors for the three types
of measurements. The OMF histograms are fitted by a Gaussiatidn. The comparison between
the OMF histograms for all types of measurements and thesgponding fitted Gaussian function
is very good. This good agreement supports the assumpbihth specified observations and their
corresponding forecasts have Gaussian errors. We notéhthatean of all the normalized OMF
values is positive but close to zero (lying between 0.4 aiyl &thich suggests that the bias between
the model and the observations is very small for all the thypes of measurements.

Figure 3-right shows the OMA and OMF histograms for all MOPITO total columns during
the whole assimilation period. For the three types of measents, the OMA histogram is narrower
than that for OMF and the bias is reduced. Furthermore threlatd deviation of OMA is smaller
than that of OMFoop a4 = 4.9, 4.8 and 4.®OU (Dobson Unit) for LAND DAY, LAND _NIGHT
and SEA measurements, respectively. The correspondingvdbroo,r are: 14.1, 13.7 and
7.1DU, respectively. This indicates that, as expected, the analfor the different types of mea-
surements are closer to the observations than the forecasts
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4 Comparison of CO derived from total column assimilation to MOPITT V3 observations
4.1 Comparison in terms of horizontal maps

In this section we validate the vertical profiles calculafiein TOTCOLANALYSES in compar-
ison to the MOPITTCO observations in terms of vertical profiles at global and aegl scales.
Figure 4 presents a comparison between both datasets is ¢étongitude-latitude maps at 700 and
250hPa for the three types of observations. Since the sensitifiOPITT measurements through
the averaging kernels is not vertically uniform, TOTC@NALYSES in terms of vertical profiles
have been smoothed by the MOPITT averaging kernels to ta@eagtount the vertical resolution
as well as the a priori information used in the retrieval psscof MOPITT vertical profiles. This
is performed through the transformation of the verticaffigassued from TOTCOLANALYSES
(xassim) USiNg the averaging kernels of the MOPITD vertical profiles A) and the a prioriCO
profile (xapriori) t0 Create an analysed vertical profile.{.p) appropriate for a quantitative compar-
ison to the MOPITTCO retrievals:

Xcomp = AXassim + (I - A) Xapriori (10)

Note that the two quantities: MOPITT observations angl,, have been averaged in boxes of
2° x 2° (corresponding to the grid mesh of the MOCAGE model) ovemttomth of comparison,
August 2008. Figure 4 shows that the general features ofdaiisets are consistent over the globe at
700 and 250.Pa and that th& O concentrations in the two fields have the same patternsphatiy
over the emission regions over central Africa, South-Ea#isia and southern America. Generally,
the fields of TOTCOLANALYSES slightly overestimat€O concentrations, especially at 70Da.

The maximum differences between both datasets for thisaypeeasurements range frorl0 %

to 40 % for the 700 Pa pressure level with a mean bias of 15 %. Whereas, at the pecteuel of
250hPa, the differences range from10 % to 15 % with a mean bias of 12 %. The mean differences
between both datasets are slightly higher ativ@®than at 25(Pa. This could be explained by

the way the assimilation system redistributes the incremerafter the minimization of the cost
function. The information in terms of CO content given to the system is important in the lower
levels compared to the higher levels.

4.2 Comparison in terms of zonal means

In this section, we compare tHeO vertical profiles calculated from TOTCQANALYSES, in
terms of zonal means, to the MOPITT observations. Figuredsvshfor the three types of mea-
surementsCO monthly zonal means of MOPITT observations and their cpaeding collocated
TOTCOLANALYSES in terms of vertical profiles for August 2008 frometlurface up to 150Pa:

the upper level of the MOPITT V3 observations. For the thypes of measurements, the two zonal

10



mean distributions (observation and TOTC@NALYSES) show similar patterns. They both show
the regions ofCO emissions, particularly the biomass burning region in #iude range between
0° and 20 S as well as th€ O emissions in the NH.
For LAND_DAY and LAND_NIGHT measurement types, tligO vertical distribution is similar
330 inbothfields: over the emission regions, the maximur@Ofextends up to 220Pa over Africa and
up to 150hPa in the subtropical regions of the NH. These features of ugrpeospher€O outflow
reflect surfacaCO emissions lifted by convection. Nevertheless, MOPITT lto@umn analyses
slightly overestimat&”O concentrations in the NH and in the tropical regions (up-+30 % for
LAND _NIGHT and +20 % for LAND _DAY). For the SEA measurement type, both zonal means
335 have generally the same distributions. In the NH, both fishitswv highCO concentrations corre-
sponding to the anthropogenic emissions over North AmgEaeope and Asia. However, in the SH
the maximum difference between the two zonal means for thet@ge ranges between10 % and
+20%. Generally, in the SH both fields show very modekae concentrations reflecting very low

CO emissions over this region.
340 4.3 Comparison in terms of vertical profiles at regional scads

In this section, we compare the vertical profiles calculdtech TOTCOLANALYSES at differ-
ent regional scales in to the MOPITT observations. Figuredvs the main regional domains for
which the evaluation of MOPITT total column analyses is dbpeomparison to MOPITT obser-
vations. These domains are considered as the regions hingngulk of theCO sources which
345 are significantly different. The choice of these domainsoissistent with the results of Liu et al.
(2006) who state that the most important source€©fvariability in the troposphere are synoptic
disturbances which have spatial scales of hundreds to &noigsof kilometers. Consequently, it is
important to have a statistical assessment of the vatigbilithe two fields (MOPITT observations
and TOTCOLANALYSES) over these regional areas. This will allow us taemne their respective
350 behavior with respect to different types of emissions atiifferent regional scales.

Figure 7 presents a comparison between MOPCKT profiles and their co-located profiles de-
rived from theCO total column analyses over the six regional domains. Botas#ds are averaged
over each domain for the 7 MOPITT levels. Over the six domdims different mean profiles are
matching very well. Note also that tl{¢O concentrations over sea are generally lower than those

355 over land, especially at lower levels. The vertical proffiesn the two datasets are very similar
and agree within their standard deviations Note also that the most significant variabilities of
both datasets over all domains, especially domains 5, 6 aate3ocated at the lowermost levels
(between the surface and 70Ba). This reflects the variability o€ O sources near the surface in
Africa, South America and East Asia.

360 The mean bias as well as the corresponding RMS (Root Meanr&gbetween both datasets
over the six domains of comparison for the three types of oreasents are presented in Fig. 8.
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The absolute mean bias does not exceétlo, and is generally higher at lower levels (from the
surface up to 708Pa). For LAND_NIGHT and SEA types, the mean bias is generally positive
for all domains at all pressure levels, reflecting an ovéreston of the vertical profile deduced
from TOTCOLANALYSES in comparison with MOPITT observations. The LANDAY type is
generally characterized by a large positive bias with asspronding RMS higher than that of other
types particularly at the lowermost levels. This reflectg@ér variability of TOTCOLANALYSES
for LAND _DAY compared to the other types of measurements.

For all types of measurements over all domains, both thedndsthe RMS are large between
the surface and 7Q@Pa. This is in agreement with the results of Fig. 7 showing highability in
this altitude range. From 50(Pa up to 150hPa, both quantities have generally small values. The
vertical profile of the correlation coefficient between bd#tasets over the six domains of compar-
ison is presented in Fig. 9. The correlation coefficient emnfyjom~ 0.6 to 0.95. The correlation
is generally good in the mid-troposphere (50%). This means that the added value to the model
from MOPITT total column is more pronounced in the mid-trepbere compared to the lower lev-
els. This is due to the redistribution of th# column information by the assimilation system which
is important in the lower levels compared to the high levels.

The results show that the vertical profiles deduced from TOL@NALYSES and those of MO-
PITT observations are generally in good agreement fromuhface up to 150Pa, particularly in

the mid-troposphere.

5 Comparison of CO deduced from total column assimilation andCO deduced from vertical

profile assimilation

In this section, we compare the vertical profiles calculétech MOPITTCO TOTCOL ANALYSES

for which the observation errors have been specified usiagnéthod presented in this paper (see:
Sect. 3.3) and the vertical profiles issued from PROFANRALYSES. The objective is to evaluate
the differences between both analyses.

5.1 Comparison in terms of horizontal maps

In this section, we compare the vertical profiles derivedrftmoth analyses in terms of horizontal
maps at different pressure levels.

Figure 10 presents a comparison, at &P@, between the vertical profiles calculated from TOT-
COL_ANALYSES with those from PROFILEANALYSES. These later are considered as the ref-
erence since they are assimilated with all their retrietalracteristics. Consequently, they should
present the most realistic state of the atmosphere. Botlsfimle presented at global scale and
averaged over the month of August 2008. T@ total column analyses and vertical profile anal-
yses are very similar at 70Pa. The mean bias between both quantities over the globe is very
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low (~ 6% in average). This mean bias is still in the range of the meanifipd observation errors
(~7—8%) except over some local areas where the maximum diffen@nges between—12 % and

~ +14%. However,CO fields are different from the fields of the model free run higihting the
added value of the assimilation results (Fig. 10). For eXamgver the regions of South-America,
central Africa and Asia, the free run results differ from tirealyses at 700Pa. Figure 11 presents
the same comparison as for Fig. 10 but at BB@. The same conclusion as for 7RBa can be de-
duced: the profiles deduced from TOTC@INALYSES are very close to those issued from PRO-
FILE_ANALYSES with exactly the same patterns especially overeimission regions : Africa and
south of Asia. The maximum mean bias between both fields igimgrbetween-3 and 410 %.
However, the comparison between the model free run field la@dertical profile analyses shows
a bias which exceeds 60 even if the general patterns between both fields are almessame.
These results confirm again that t6© fields deduced from PROFILENALYSES and obtained
from TOTCOLANALYSES are almost the same with very small differencese Télative mean

bias between the two datasets is very small and is generahinthe specified errors.
5.2 Comparison in terms of zonal means

In this section, we evaluate the differences between thetayses in terms of zonal means. In this
way, we presentin Fig. 12 a comparisor(tfd zonal mean fields between the PROFIARNALYSES,
TOTCOL ANALYSES and the MOCAGE free run model. TIt& distribution is similar for both
analyses (total column and vertical profiles). Over the StHéextratropics both fields show moder-
ate values of£O from the surface up to the mid-troposphete400hPa). CO concentrations from
TOTCOL ANALYSES are slightly overestimated compared to those fRROFILEANALYSES.
The mean bias between both analyses (Fig. 12-Middle) isipesind does not exceed 12% over the
vertical. In the tropics, both fields show strof@) emissions over Africa that can reasi200hPa.
Over this region, the differences between the two fields arg small ranging from-5 % to +9 %.

In the NH, the two fields show very highO concentrations in the mid-troposphere. These kigh
concentrations correspond to anthropogenic emissions forth America, Europe and East Asia.
The mean bias between both analyses ranges betwe2and+12 % which shows that both fields
are very similar over the altitude range from the surfaceouf50hPa. However, the comparison be-
tween the zonal means deduced from PROEAMALY SES against those of the MOCAGE model
free run (Fig. 12-Bottom) shows a bias ranging betwe&h % and 45 %, particularly in the mid-
troposphere of the tropical regions and the lower tropospbethe extra-tropics< 40%). These
results show that the information derived from the totaliomhs using data assimilation is capable of
modifying the vertical structure of theO distribution over the whole troposphere, showing features

very similar to those obtained from the assimilation of MOPICO profiles.
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5.3 Comparison in terms of vertical profiles at regional scas

In this section, we evaluate the differences between theatadyses in terms of vertical profiles
at regional scales. We compare, at the same regional s¢adesmsn Fig. 6, theCO vertical pro-
files deduced from TOTCQOIANALYSES, and those obtained from PROFILANALYSES. The
vertical profiles calculated from both analyses are avetager different domains for August 2008.
Figure 13 presents the vertical profiles with their assediatandard deviations. This later repre-
sents the variability of th€O concentration over each domain for the month of August 200&.
profiles calculated from both analyses as well as their &ssutstandard deviations are similar for
all domains.

Both analyses show the same behavior for ¢h@ fields in terms of vertical structure at the
regional scales, and have similar variability. The maximstandard deviation is generally found at
pressure levels between the surface andnf@0for both analyses, especially for domains 5 (Africa),
6 (South America), and 3 (East Asia). This is in good agreemh the results of Fig. 8 which
illustrates again the variability €O sources over Africa, South America and East Asia. Figure 13
confirms that TOTCOLANALYSES and PROFILEANALYSES provide almost the same vertical
structure over regional scales. This shows again that gimaation of total column impacts all the
vertical levels of the profile in the same way as the assiioilatf the vertical profiles.

Figure 14 presents the vertical profiles of the mean biask@nddrresponding RMS between the
two assimilation set-ups (TOTCQANALYSES and PROFILEANALYSES) averaged over each
domain for the month of August 2008. For all regional domaithe mean bias has low values at
all pressure levels and is generally less than 10% excepltdimains 2 (Europe) and 3 (East Asia)
at 150hPa, where it reaches 13%. The values of the RMS range betweei0 % and-+15 % for
most domains. All these values are smaller or in the rangeeoéxpected errors of the assimilation
results, and are generally smaller than the observation eatues used in the assimilation process.
The only exception concerns domain 6 (South America), factwthe corresponding RMS is about
20% in the altitude range between the surface andi4®Q This could be attributed to the large
variability of the CO field in this domain (see Fig. 12). The vertical profiles of twarelation
coefficient between the two analyses over the six domainsmiparison are presented in Fig. 15.
For the different domains, the correlation coefficientgehbetween 0.75 and 0.99, with most of the
values close to 0.9. This shows a very good agreement betivedwo assimilation results.

The results shown in this section concern the followingstias calculated between both datasets:
bias, RMS and correlation coefficient. They show that theganison between the vertical profiles
deduced from TOTCOLANALYSES and those obtained from PROFILANALYSES is consistent.
Both analyses are in very good agreement at the global amshadgcales.
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5.4 Validation of the analyses with MOZAIC independent data

To further evaluate both analyses, we compare theme to MGZAdasurements. The MOZAIC
programme was launched in January 1993. The measuremaritdsin August 1994, with the
installation of ozone and water vapor sensors aboard 5 coamhaircraft. In 2001, the instrumen-
tation was upgraded by installing carbon monoxide senso@laircraft and a total odd nitrogen
instrument NO,,) aboard one aircraft. Ozone is measured by UV absorptioar{fib Instruments,
Model 49—-103). The instruments are calibrated before ated @hch period of deploymentévery
12 months) and in-flight quality control is achieved, bothlias and calibration factor, with a built-
in ozone generator. A comparison of the firste3rs of MOZAIC observations with data of the
ozonesonde network showed good agreement (Thouret et988).1 ForCO measurements, the
infra—red (IR) gas filter correlation technique is employ@tiermo Environmental Instruments,
Model 48CTL). This IR instrument provides excellent stailwhich is important for continuous
operation without frequent maintenance. The sensitivityhe instrument was improved by several
modifications (Nédélec et al., 2003), achieving a precisif +5ppbv (parts per billion volume) or
+5% for a 3G response time.

The comparison was conducted with collocated vertical le®for the three datasets (MOZAIC,
TOTCOLANALYSES and PROFILEANALYSES) over eight MOZAIC airports visited over the
assimilation period (Atlanta, Caracas, Dallas, Frankfttyderabad, London, Philadelphia and
Windhoek). These airports are located in the domain laf3-22.6'S], lon:[96.8W-78.£4E].
For the three datasets, collocated observations are selgc® radius area over each of the eight
airports. The comparisons of TOTCOANALYSES and PROFILEANALYSES to MOZAIC ob-
servations at all visited airports are presented in Fig. e two analyses behave similarly over
all airports. The agreement of both analyses compared to MO4s very good. We note that at
only one level (85@Pa) over Caracas, the difference between MOZAIC and both aealgxceed
40ppbv. Note also that for only 6% of measurements, the differeretevden the analyses and
MOZAIC is in the range of 20—2bpbv. This difference does not exceegpbv for more than 50%
of measurements. These results show a very good agreentertinehe two analyses compared to
the in—situ MOZAIC independent data.

6 Conclusions

The aim of this paper is to describe a method to derive the vertal profile of CO from its total
column with no associated error covariances and averagingeknels using data assimilation.
We have chosen version 3 of MOPITTCO total columns to validate the proposed method
since it has the advantage of providing both the vertical prdiles and the total columns ofCO.
The method is based on the estimation of the observation erraccovariance matrices (di-

agonal of theR matrix) using the x? test to obtain consistency between model and observa-
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tion errors. This specification has been done by discriminahg the observations according
to day, night, land and sea. The appropriate observation emrs are 8% and 11 % for mea-
surements performed over land during daytime (LAND_DAY) and over land during nighttime

(LAND _NIGHT), respectively. For measurements performed over seauring daytime and

nighttime (SEA), the observation error is 7%. The a posterioi diagnostics concerning the
analyses for all specified total column observations confirnthat the specified errors, for dif-

ferent types, using the proposed method as well as the corqgsnding forecasts error, have
a Gaussian structure.

In the first comparison, CO profiles from MOPITT total column analyses and MOPITT ob-
servations show similar patterns in terms of longitude—laitude maps at 700hPa and 250hPa.
The mean bias at 700Pa between the two datasets is 1%, 18% and 12% for LAND _DAY,
LAND _NIGHT and SEA types, respectively. At 25(hPa, these respective mean biases are
+12%, +8 % and +7 % for LAND _DAY at 250hPa. The comparison of the zonal means shows
that the CO vertical distribution is homogeneous in both fields from thesurface up to 15GhPa.
At regional scales, the comparison of the two datasets in ters of vertical profiles shows very
good agreement. The mean bias is generally large at low leggbut does not exceed-10 %.

In the second comparison, the analyses issued from the MOPTTvertical profiles and the
CO total column analyses show a very good agreement over the gl@. The general aspect
is consistent. TheCO fields present the same features particularly over the emigsn regions
in central Africa, South-Eastern Asia and Southern America The mean bias between both
datasets is 8 and 8% at 700 and 20thPa, respectively. In terms of zonal means, th€CO
distribution is similar for the two analyses with very low differences. The total column analyses
tend to slightly overestimate theCO concentrations. The maximum mean bias does not exceed
15% over all levels. Over regional scales, the vertical profilesalculated from both analyses
are in very good agreement. The mean bias is very small and gerally does not exceed-10 %,
whereas the vertical profile of the correlation coefficient anges from 0.75 to 0.99. These results
concerning theCO distributions, vertical profiles, mean bias, RMS and correhtion coefficient,
confirm that the analyses of theCO total column assimilation are in very good agreement with
the analyses calculated from the assimilation of the MOPITTCO profiles. This agreement is
confirmed at global and regional scales.

Both analyses have also been validated using in-situ MOZAIGhdependent data. The com-
parison was conducted with collocated vertical profiles forthe three datasets over eight air-
ports visited over the assimilation period located in the dmain lat:[51.6°N-22.6'S], lon:[96.8°W—
78.4E]. The comparisons of the two analyses to MOZAIC data over dlthe visited airports
show a very good agreement. Only at one level (8%Pa) over Caracas, the difference be-
tween MOZAIC and the two analyses exceeds 48pbv. However, the difference between the
analyses and MOZAIC is in the range of 20-2ppbv for Only 6% of measurements. This
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difference does not exceed ppbv for more than 50% of measurements.

Note finally that the DFS of MOPITT V3 is relatively low for ver tical profiles (~1.5) as well
as for the total columns¢-1). In this paper we have demonstrated that for this kind of dda,
the present method consisting of deducing the profiles fromhte total columns, remains valid
when only using the adjoint of the integration operator. Nok that for other types of data for
which the DFS is greater than that of MOPITT V3, the present mehod has to be tested and

evaluated against independent observations.
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Table 1. Mean and median values gf test for different error values of MOPITT V3 total column ebsations.
The error values of the observations for which fifetest is the closest to 1 are indicated in boldface. They
are 8% for LAND.DAY; 11 % for LAND_NIGHT and 7 % for SEA. These error values are fixed within the
assimilation system for all experiments concerning MOPVBTtotal columns.

2

X
LAND _DAY LAND _NIGHT SEA

R (%) Mean value Median value R (%) Mean value Median value R (%) Mean value Median value
4 4.37 3.98 8 2.15 2.04 4 2.59 2.54

5 2.66 2.36 9 1.60 151 5 1.70 1.67

6 1.78 1.59 10 1.15 1.16 6 1.26 1.24

7 1.27 1.18 11 1.05 1.01 7 0.96 0.94

8 0.97 0.92 12 0.85 0.79 8 0.75 0.74

9 0.78 0.72 13 0.72 0.68 9 0.51 0.50

DFS of CO MOPITT V3 (Averaged August 2008)
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Frequency distribution of CO MOPITT V3 DFS (August 2008)
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Fig. 1. (Top):Lon-lat map of the averaged DFS over August 2008 epording to the vertical profiles of
MOPITT 3. (Bottom): the frequency distribution of the DFSr@sponding to all vertical profiles measured

during the same period.
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Fig. 3. A posteriori verification of the observation error specifica for the analyses issued from the MOPITT

CO total column for which the observation errors are estimatgdg the proposed method. (Left): histograms
of OMF (Observations Minus Forecast) differences nornadlilzy the specified observation errors. The red line
is a Gaussian fit to the histogram. The good agreement bettlvedristogram and the fit function supports the
assumption of Gaussian errors in the observations and teedst. (Right): histograms of Observations Minus
Analysis (OMA: red lines) and OMF (blue lines).
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TOTCOL_ANALYSES - MOPITT 3 observations @ 700 hPa %o TOTCOL_ANALYSES - MOPITT 3 observations @ 250 hPa %

Fig. 4. Comparison ofCO analyses obtained by the assimilation of MOPITT @@ total column observations
with the optimal error estimated by the test (top) to the operational MOPITT VBO retrieved profiles
(middle) at 700hPa (left panels) and 25t Pa (right panels). The corresponding relative differencesvben
both datasets (TOTCQRANALYSES —observations) are indicated in the bottom pafulboth pressure levels.
Blue and red colors indicate negative and positive diffeesnrespectively. Note that this figure corresponds to
an average over August 2008 for all observations carriedweertland during daytime.
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Fig. 5. Zonal mean of MOPITTCO TOTCOLANALYSES (left panels) compared to the zonal mean of the
MOPITT CO observations (right panels) for August 2008. The comparisodone for observations made:

over land during daytime (upper panel), over land 2&rindttijme (middle panel) and over sea during daytime
and nighttime (bottom panel).
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Fig. 6. Main domains ofCO emissions considered for the regional validation of theopsed method dealing
with the validation ofCO TOTCOLANALYSES.
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Fig. 7. The meanCO vertical profiles in parts per billion by volume (ppbv) dedddrom MOPITT V3CO
TOTCOLANALYSES (blue) compared to the operational MOPITT V3 olystions (red). Both datasets are
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Fig. 8. The mean bias and the corresponding RMS (Root Mean SquareddreCO vertical profiles deduced
from the MOPITT V3CO TOTCOLANALYSES and the MOPITT V3 observations. The comparison é&lm
for observations carried out over land during daytime (r#)se carried out over land during nighttime (black)

and those carried out over sea (blue).
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Fig. 9. Same as Fig. 8 but for the correlation coefficient betwe®h vertical profiles deduced MOPITT
CO TOTCOLANALYSES and the MOPITT V3 observations. The comparison &lmfor each level of the
MOPITT V3 retrievals.
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CO derived from MOPITT3 vertical profiles assimilation @ 700 hPa

ppbv

Total column assimilation - vertical profiles assimilation @ 700hPa o, MOCAGE - vertical profiles assimilation @ 700 hPa %

Fig. 10. Maps of CO field at 700hPa for: (top) MOPITT PROFILEANALYSES taking into account aver-
aging kernels and observation error covariance matriceigldle-left) MOPITT TOTCOLANALYSES, and
(middle-right) the MOCAGE free-run field. The Figures in thettom present the difference in % between
TOTCOLANALYSES and PROFILEANALYSES (left), and the difference between the model andDPR
FILE_ANALYSES (right).
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CO derived from MOPITT3 vertical profiles assimilation @ 200 hPa

0

CO derived from MOPITT3 total column assimilation @ 200 hPa ppbv MOCAGE CO @ 200 hPa
200

Total column assimilation - vertical profiles assimilation @ 200hPa o,

Fig. 11. Same as Fig. 10 but for the pressure level RDQ.
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Zonal mean of MOPITT 3 assimilated profiles
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Fig. 12. Zonal means ofCO field for the month of August 2008 as obtained by: (top) : MOPIFRO-
FILE_ANALYSES taking into account averaging kernels and obgermzerror covariance matrices ; (middle-
left) : MOPITT TOTCOLANALYSES ; and (bottom-left) : the MOCAGE free-run model. dfigures in the
right present the difference in % between TOTCANALYSES and PROFILEANALYSES (middle); and the
difference between the free-run model and PROEANALYSES (bottom).
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Fig. 13. Mean CO vertical profiles and their associated standard deviationsarts per billion by volume
(ppbv) deduced from MOPITTO TOTCOLANALYSES (red) compared MOPITT PROFILENALYSES
taking into account the averaging kernels as well as the eowariance matrices (blue). Both datasets are
averaged over the month of August 2008 and over all the regmmains defined in Fig. 6.
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Fig. 14. Same as Fig. 13 but for the mean bias and the corresponding(Rbt& Mean Square).
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Fig. 15. Same as Fig. 13 but for the correlation coefficient betweeh aoalyses (TOTCOIANALYSES and
PROFILEANALYSES).
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Fig. 16. Comparaison of both analyses with MOZAIC in terms of veitipafiles. Black: MOZAIC ; Red:
analyses of MOPITT V3 profiles (taking into account avergdiarnels, covariance error matrices and a priori

profile) ; Green: analyses of MOPITT V3 total columns for which the error sfieation was done following
the x? test (see sec. 3.) 36



