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Abstract 12	
  

We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol 13	
  

optical thickness (AOT) product to assess the impact of reduced swath width on global 14	
  

and regional AOT statistics and trends. Ten different sampling strategies are employed, in 15	
  

which the full MODIS dataset is sub-sampled with various narrow-swath (~400 – 800 16	
  

km) and curtain-like (~10 km) along-track configurations.  Although view-angle artifacts 17	
  

in the MODIS AOT retrieval confound direct comparisons between averages derived 18	
  

from different sub-samples, careful analysis shows that with many portions of the Earth 19	
  

essentially unobserved, the AOT statistics of these sub-samples exhibit significant 20	
  

regional and seasonal biases.  These AOT spatial sampling artifacts comprise up to 60% 21	
  

of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in 22	
  

some regions under high aerosol loading.  Compared to full-swath observations, narrower 23	
  

swaths exhibit a reduced ability to detect AOT trends with statistical significance, and for 24	
  

curtain-like sampling we do not find any statistically significant decadal-scale trends at 25	
  

all.  An across-track sampling strategy obviates the MODIS view angle artifact, and its 26	
  

mean AOT converges to the full-swath mean values for sufficiently coarse spatial and 27	
  

temporal aggregation.  Nevertheless, across-track sampling has significant seasonal-28	
  

regional sampling artifacts, leading to biases comparable to the curtain-like along-track 29	
  

sampling, lacks sufficient coverage to assign statistical significance to aerosol trends, and 30	
  

is not achievable with an actual narrow-swath or curtain-like instrument.  These results 31	
  

suggest that future aerosol satellite missions having significantly less than full-swath 32	
  

viewing are unlikely to sample the true AOT distribution well enough to determine 33	
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decadal-scale trends or to obtain the statistics needed to reduce uncertainty in aerosol 34	
  

direct forcing of climate. 35	
  

 36	
  

  37	
  



1.  Introduction 38	
  

The direct and indirect effects of aerosols remain the largest uncertainties in 39	
  

estimates of the anthropogenic forcing of Earth’s climate system (Solomon et al., 2007).  40	
  

Although a conceptually simpler problem than the indirect effects of aerosols on clouds, 41	
  

the direct effect due to scattering and absorption of radiation itself remains poorly 42	
  

constrained owing to uncertainty in aerosol loading, temporal and spatial distribution, and 43	
  

physical properties (Loeb and Su 2010, Kahn 2012).  The uncertainty in the 44	
  

anthropogenic direct aerosol radiative forcing component drives much of the uncertainty 45	
  

in overall anthropogenic climate forcing for current climate models (Kiehl 2007). 46	
  

Attempts to quantify aerosol properties from satellite observations have been 47	
  

made since the 1970s, albeit generally with instruments not optimized for observing 48	
  

aerosols.  Since the late 1990s, a suite of satellite instruments designed to measure 49	
  

aerosol properties has helped refine estimates of aerosol loading, and has contributed 50	
  

some progress on retrieving other properties (e.g., absorption, particle size, shape, and 51	
  

vertical distribution) (see CCSP 2009 and references therein).  Despite these advances, 52	
  

uncertainties remain, and further reduction of the direct aerosol radiative forcing 53	
  

uncertainty requires improved satellite coverage, as well as integration with in situ 54	
  

observations of aerosol type and transport models for synthesis (Diner et al., 2004, 55	
  

Anderson et al., 2005, Kahn 2012). 56	
  

Spatial coverage is among the primary considerations for any future satellite 57	
  

instrument designed to measure aerosols.  Given technological and budgetary constraints, 58	
  

trade-offs are made between spatial coverage (i.e., measurement swath width) and other 59	
  

instrument measurement characteristics, including the number of spectral and polarized 60	
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channels, relative precision and accuracy, angular and temporal coverage, and pixel size.  61	
  

Furthermore, no one single instrument can provide all desired measurements.  A passive, 62	
  

imaging sensor would be aimed at retrieving information about column integrated aerosol 63	
  

loading and composition, and potentially near-source aerosol plume height from multi-64	
  

angle stereography.  Obtaining vertically resolved aerosol amount and type distributions 65	
  

would require an additional, complementary sensor, such as a high-spectral-resolution 66	
  

lidar, likely providing information only along a very narrow, sub-satellite swath. 67	
  

In this paper we assess the implications of swath width choice for an imaging-68	
  

type sensor for sampling a single aerosol parameter—the aerosol optical thickness (AOT), 69	
  

a proxy for aerosol column loading—assuming all other factors are held constant.   We 70	
  

focus on the AOT because to first order it determines the direct aerosol radiative forcing 71	
  

(DARF) of climate.  For example, Hansen et al. (1995) suggest that a change in the 72	
  

global mean AOT of 0.01 corresponds to a climatically important change in the global 73	
  

mean radiative forcing of 0.25 W m-2.  This can be compared with the 0.5 ± 0.4 W m-2 74	
  

Intergovernmental Panel on Climate Change (IPCC) stated uncertainty in the magnitude 75	
  

of the anthropogenic DARF component (Solomon et al., 2007).  Other analyses suggest 76	
  

that the actual uncertainty is far larger than the IPCC estimate (McComiskey et al., 2008; 77	
  

Loeb and Su 2010).  If spatial sampling artifacts introduce sufficient uncertainty in the 78	
  

satellite-derived AOT, we will not be able to meaningfully improve estimates of DARF.  79	
  

It is thus our objective to explore and to characterize these sampling artifacts and their 80	
  

potential impact on AOT.   81	
  

 82	
  

2.  Methodology 83	
  



2.1.  A Conceptual Illustration of the Spatial Sampling Problem 84	
  

 At any given time, nature presents us with a particular three-dimensional spatial 85	
  

distribution of clouds and aerosols, as well as the attendant variability in particle 86	
  

microphysical characteristics, surface reflectivity, and solar illumination.  The passive 87	
  

satellite instrument retrieval problem amounts to inverting a meaningful geophysical 88	
  

quantity (e.g., AOT) from this complexity, given a limited set of measured parameters 89	
  

(e.g., backscattered spectral reflectance).  Our hypothesis is that the ability to tease out 90	
  

the climatically significant portion of this signal for synoptically important events 91	
  

depends in part on the spatial and temporal coverage of the observing system.  In this 92	
  

paper we focus on spatial coverage as determined by the sensor’s viewing swath width. 93	
  

 We illustrate the spatial coverage aspects of the problem conceptually in Figure 1.  94	
  

Here, the “true” scene that nature provides (Figure 1d) is sampled by three notional 95	
  

coverage patterns derived from a single day’s orbit of the NASA Moderate Resolution 96	
  

Imaging Spectroradiometer (MODIS) instrument aboard the Aqua spacecraft.  The 97	
  

underlying image is discernable from the daily sampling only when the full swath 98	
  

MODIS observations are included (Figure 1c).  Orbital gaps, clouds, and bright desert 99	
  

surfaces (where the MODIS “dark target” land retrieval is not applied) are readily 100	
  

apparent.  The “full-swath” MODIS observations in Figure 1c are then sub-sampled 101	
  

along a hypothetical “narrow” swath (Figure 1b) and a “curtain” swath (Figure 1a).  This 102	
  

sampling construction is formally developed in Section 2.3.  Figure 1 illustrates that very 103	
  

different pictures of the “true” scene emerge depending on the spatial coverage of the 104	
  

observing system.  In what follows, we quantify the impact of spatial coverage 105	
  

characterizing the time varying global and regional field of AOT. 106	
  



 107	
  

2.2.  The Moderate Resolution Imaging Spectral Radiometer (MODIS) 108	
  

We use aerosol observations from the space-based MODIS instrument for our 109	
  

study.  MODIS provides near-global, daily AOT retrievals over land and ocean surfaces.  110	
  

There are two MODIS instruments, both in sun-synchronous polar orbits.  MODIS on the 111	
  

Terra satellite has been operational since early 2000 and has a daytime equator crossing 112	
  

time of about 10:30 AM local at the center of its swath.  MODIS on the Aqua satellite has 113	
  

been operational since mid-2002 and has a daytime equator crossing time of about 1:30 114	
  

PM local.  At the nominal orbit altitude of 704 km, the MODIS instruments observe a 115	
  

swath about 2300 km wide along their ground tracks.  The MODIS orbit is such that the 116	
  

ground coverage is repeated exactly every 16 days.  AOT is retrieved in the daytime 117	
  

portion of the MODIS orbit under cloud-free and glint-free conditions using separate 118	
  

aerosol retrieval algorithms for ocean (Tanré et al., 1996, 1997) and land (Levy et al., 119	
  

2007a, 2007b).  In our analysis, we use the land and ocean AOT retrievals from the 120	
  

MODIS Aqua instrument, valid at 550 nm, from the Collection 5 MODIS algorithm 121	
  

products (Remer et al., 2005, 2008; Levy et al., 2010).  The retrievals are made at a 122	
  

nominal 10 x 10 km2 spatial resolution at nadir.  A quality assurance (QA) flag is 123	
  

reported for each retrieval, indicating its estimated level of confidence as a valid result, 124	
  

from tests performed during the retrieval process.  QA flags range from 0 (lowest 125	
  

confidence) to 3 (highest confidence).  In order to retain the highest quality MODIS data, 126	
  

in what follows we use only the highest confidence (QA = 3) retrievals over land, and 127	
  

require QA > 0 over ocean (Remer et al., 2008).  The uncertainty in the MODIS AOT (τ) 128	
  

product is characterized such that one standard deviation (66%) of the retrievals fall 129	
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within Δτ = ±0.03 ± 0.05τ over the ocean and Δτ = ±0.05 ± 0.15τ over land relative to 130	
  

the AOT from coincident ground-based AERONET sun photometer network 131	
  

observations (Remer et al., 2005).   132	
  

 133	
  

2.3.  Sub-Sampling AOT from the MODIS Full Swath 134	
  

Our spatial sampling strategy is illustrated in Figure 2, which shows an example 135	
  

over-ocean scene comprising a single MODIS Aqua swath.  We consider the AOT 136	
  

retrieved across the MODIS full swath (FS), as well as several sub-sampled swaths in 137	
  

which we retain only the relevant portions of the full swath.  Four narrow swaths (N1, N2, 138	
  

N3, and N4) are chosen to approximate the ~380 km wide swath of the Multi-angle 139	
  

Imaging Spectroradiometer (MISR, on the Terra spacecraft, Diner et al., 1998).  We also 140	
  

consider a “mid-width” swath (MW) with coverage between the narrow and full swath 141	
  

composed of the union of N1 and N2.  To approximate the curtain-like sampling of an 142	
  

instrument such as the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP, 143	
  

aboard the CALIPSO spacecraft, Winker et al., 2010) we consider the samplings C1, C2, 144	
  

C3, and C4, which are extracted at the center of the N1, N2, N3, and N4 swaths, 145	
  

respectively.  We emphasize that in all that follows, we are using only MODIS AOT 146	
  

retrievals, sub-sampling the full dataset along the indicated narrow and curtain swaths.  147	
  

The sampling strategies are summarized in Table 1. 148	
  

The individual retrievals are aggregated onto several regular latitude-longitude 149	
  

spatial grids typical of the grids used in global aerosol transport models.  We consider the 150	
  

following spatial resolutions: (a) 10° x 10°, (b) 2° x 2.5°, (c) 1° x 1.25°, and (d) 0.5° x 151	
  

0.625°.  For each, the grid-averaged AOT is: 152	
  



        (1)

 153	
  

where τi are the 1 through n individual AOT retrievals falling into the grid box and qi is 154	
  

the QA value assigned to each retrieval.  Our aggregation is thus QA weighted.  Over 155	
  

land we have only retained QA = 3 retrievals, based on the MODIS Aerosol Product Data 156	
  

Quality Statement.  The aggregation is performed daily.  The temporally averaged (e.g., 157	
  

monthly, seasonal, annual) AOT at a grid box is: 158	
  

        (2)

 159	
  

where τgrid,j is the grid average value at day j from Equation 1 and nj is the number of 160	
  

retrievals used to make τgrid,j.  This aggregation and weighting strategy is the same as in 161	
  

Remer et al. (2008) and Colarco et al. (2010).  162	
  

 163	
  

3.  Results 164	
  

3.1.  The Sub-Sampled AOT 165	
  

The sub-sampled MODIS Aqua data are analyzed for the years 2003 – 2012.  166	
  

Figure 3 shows an example of the year 2010 annually averaged AOT from the full swath 167	
  

MODIS Aqua retrievals over both land and ocean using the aggregation strategy given by 168	
  

Equations 1 and 2.  Each of our four aggregation spatial resolutions is illustrated.  In 169	
  

general, the spatial patterns of the main aerosol features are coherent among the different 170	
  

resolutions: the Saharan dust and Asian pollution and dust outflow plumes, the biomass 171	
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burning activity over southern Africa and South America, the pollution plume over China, 172	
  

the band of high AOT in the southern ocean, and a region of high AOT over western 173	
  

Russia where a significant biomass burning anomaly occurred in 2010 (Witte et al., 2011). 174	
  

An exception to this coherence in the pattern is particularly evident at the coarsest 175	
  

(10° x 10°) spatial resolution map over northern Africa (Figure 3a).  The MODIS dark 176	
  

target land retrieval does not make retrievals over bright land surfaces such as desert or 177	
  

snow and ice, and indeed at the higher spatial resolutions the Sahara is generally devoid 178	
  

of AOT retrievals.  To the extent that the few retrievals made in these regions fall into 179	
  

one of our 10° x 10° grid boxes, the entire box acquires a value propagated through to the 180	
  

annual mean (i.e., in this illustration, we did not exclude any grid boxes for having only a 181	
  

small number of retrievals).  Additionally, we have applied a simple mask in combining 182	
  

the land and ocean retrievals into a single map in Figure 3.  Where the same grid box has 183	
  

both land and ocean retrievals in it we have retained the ocean retrieval only (i.e., we do 184	
  

not attempt to combine land and ocean together).  That we are making this choice is most 185	
  

apparent at the coarsest spatial resolution, and it is of much less importance as higher 186	
  

spatial aggregation resolutions are considered. 187	
  

Figure 4 shows the same annually averaged AOT for the year 2010, but now for 188	
  

four of the sub-sampling strategies discussed above.  Here we show aggregate maps at 189	
  

our highest spatial resolution (0.5° x 0.625°) only, and show two narrow (N1 and N3) and 190	
  

two curtain-like (C1 and C3) samplings.  As seen in Figure 2, N1 and C1 are on the 191	
  

eastern edge of the MODIS swath, whereas N3 and C3 are down the center of the swath.  192	
  

Because of sunglint, N3 and C3 have relatively poor retrieval sampling over the tropical 193	
  

ocean, especially evident in C3, for which a wide band of essentially no retrievals occurs 194	
  



around the equator.  We emphasize that in Figure 4 the approach is “sample-then-195	
  

average,” and so is done on a “per-orbit” basis (see Table 1).  Only the MODIS retrievals 196	
  

that could have been sampled are pulled from the full swath dataset, then aggregated, and 197	
  

then finally averaged.  This “sample-then-average” approach is how time averages are 198	
  

typically calculated from polar orbiting satellite datasets.  We make this point to 199	
  

distinguish from a different sampling approach discussed later (Figure 8). 200	
  

Many of the features apparent in the full swath annual mean in Figure 3 are still 201	
  

apparent in Figure 4: the biomass burning plumes over South America and southern 202	
  

Africa, the Asian outflow across the northern Pacific, Saharan dust transport across the 203	
  

North Atlantic, and dust and anthropogenic pollution over India and China.  On the other 204	
  

hand, the shapes and apparent magnitudes of these features are clearly different, and 205	
  

certain features are notably absent, particularly the Russian fires in the C1 and C3 206	
  

samplings, the Saharan dust plume in the C3 sampling (mostly in the glint region), and 207	
  

the high AOT features over the southwest United States in the C1 and N1 samplings.  208	
  

Figure 5 shows the years 2003 – 2012 time series of global, annual mean AOT 209	
  

over both land and ocean for each of our sampling strategies generated with a similar 210	
  

procedure to what is shown in Figure 4.  The full swath annual mean AOT varies 211	
  

between about 0.13 and 0.14 over the ocean and about 0.16 and 0.18 over the land, 212	
  

similar to the multi-year analysis presented in Remer et al. (2008).  We compare the 213	
  

global, annual mean AOT of our various sampling strategies to the full swath AOT.  Over 214	
  

ocean, except for the N4 and C4 samplings, the global, annual mean AOT is within 0.01 215	
  

of the full swath value.  Over land, most of the sampling strategies differ from the full 216	
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Sticky Note
I disagree with this characterization.  I still see the Russia AOT, but it is simply more speckled, and the gray background mutes the contrast.   But at a suitably large zoom the AOT shows up clearly.



swath by more than 0.01 at some point in the time series, with N1 and C1 notably 217	
  

underestimating the global, annual mean AOT relative to the full swath. 218	
  

Figure 5 shows that there are sometimes large differences even in the global, 219	
  

annual mean AOT resulting from the different spatial sampling of the MODIS dataset.  220	
  

This is important, because if the narrow-swath or curtain-like sampling cannot reproduce 221	
  

the basic statistics of the full swath AOT even at the global and annual scales, the 222	
  

question of whether we can rely on this measurement strategy for narrowing the 223	
  

uncertainties in key aerosol properties and their impacts on climate must be assessed 224	
  

quantitatively.   225	
  

 There is, however, a significant caveat to the results presented in Figure 5.  226	
  

Although the differences between, say, the C1 sub-sample and the full swath AOT 227	
  

certainly contain a component related to the spatial sampling, errors and uncertainties in 228	
  

the MODIS retrievals themselves also contribute to the observed differences.  In 229	
  

particular, the MODIS AOT retrieval has a sensor view-angle dependency (Levy et al., 230	
  

2010).  That is, if the aerosol loading is homogeneous across the MODIS swath, different 231	
  

AOT values will under some circumstances nevertheless be retrieved in different 232	
  

positions across the swath, owing to this angular artifact.  However, the characteristic of 233	
  

that artifact as a function of view angle, sun angle, position on Earth, surface reflectance, 234	
  

etc., is not well understood.  In an earlier study on the sampling question posed here 235	
  

(Colarco et al., 2012) we attempted to correct for this dependency by examining a dataset 236	
  

of MODIS-AERONET collocations sorted by view geometry, similar to what is shown in 237	
  

Levy et al. (2010) (see, for example, their Figure 10).  This proved challenging.  The 238	
  

collocation dataset was relatively small and was only available where AERONET sites 239	
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are located.  The latter point made it difficult to evaluate the view angle dependency of 240	
  

the MODIS AOT retrievals, especially over ocean.  The dataset would have been smaller 241	
  

still for determining these view angle dependencies on a seasonal or regional basis.  For 242	
  

these reasons, we could not separate view angle from spatial sampling differences when 243	
  

the full swath and sub-sample AOT datasets were compared, so we here take a different 244	
  

approach to evaluate the impact of swath width on global AOT statistics. 245	
  

 246	
  

3.2.  Observability and Regional Analyses 247	
  

 Although we cannot correct the MODIS observations for the view angle 248	
  

dependency with confidence, we can investigate the question of observability: what are 249	
  

the characteristics of the observations that are not made in a given sub-sample, and how 250	
  

does this impact the derived AOT statistics? 251	
  

Figure 6 complements Figures 3 and 4.  It shows the 2010 full swath annual mean 252	
  

AOT from Figure 3d, but only in grid boxes where the indicated sub-sampling strategy 253	
  

had no valid annual mean AOT (i.e., in grid boxes where the sub-sample either never 254	
  

visited because of coverage limitations, or else never encountered a good AOT retrieval 255	
  

because of algorithmic issues when it did overfly the grid box).  Similar to Figure 4, we 256	
  

show this for N1, N3, C1, and C3 sub-samples.  This is revealing.  The N1 and N3 257	
  

figures show that, like the full-swath sampling, the narrow-swath sampling permits 258	
  

retrieval of AOT over most points on Earth at least once during the year.  However, in 259	
  

some places where the full swath sampling would have made relatively few observations, 260	
  

the narrow-swath sampling provides no observations at all. (Figure 7 shows, for example, 261	
  

the total number of retrievals in each grid cell that comprise the year 2010 full-swath 262	
  



annual mean.)  These regions are generally where seasonal changes in surface brightness 263	
  

due to vegetation (e.g., the US southwest, the Sahel) or seasonal snow cover (the Tibetan 264	
  

plateau) make retrieval difficult and thus less frequent.  On the other hand, Figure 6 265	
  

illustrates something qualitatively different when only curtain-like sampling is obtained: 266	
  

it is clear that much of the Earth is never visited at all under this sampling. 267	
  

In our analysis of observability, to reduce the issue of the view angle artifact 268	
  

discussed above we create what we call our “average-then-mask” strategy (Table 1).  269	
  

First, we construct monthly, seasonal, or annual mean maps of the AOT from the full 270	
  

swath data, effectively sampling the location at all viewing geometries obtained by 271	
  

MODIS.  Second, we create masks that mark out the grid boxes observed by each 272	
  

sampling strategy over the relevant averaging period.  Finally, we apply the masks to the 273	
  

aggregated maps of the full swath AOT.  This “average-then-mask” strategy is in contrast 274	
  

to the “sample-then-average” strategy described in Section 2.3. 275	
  

The results of this method provide a view of the features each sampling strategy 276	
  

can observe, and estimates of the mean AOT differences that are unbiased by scan angle 277	
  

artifacts.  But it also represents a much richer data set than could be obtained from an 278	
  

instrument having similar retrieval capabilities to the full swath MODIS but having only 279	
  

narrow or curtain sampling.  As a result, this method reduces significantly the difference 280	
  

in AOT variability measured by the different sampling strategies compared to the 281	
  

difference obtained using the “sample-then-average” method.  This reduction in the 282	
  

variability is illustrated in Figure 8, which shows again the time series of annual mean 283	
  

AOT over the ocean and land for each sub-sampling strategy, but now using the 284	
  

“average-then-mask” approach.  It is clear that in the global, annual mean, the AOT for 285	
  



the sub-samples generally differs from the full swath value by much less than 0.01.  286	
  

However, the “average-then-mask” approach for the curtain-like cases provides spatial 287	
  

sampling that would never be acquired by an actual curtain instrument, because they 288	
  

come from different parts of the broad MODIS swath. So although this approach 289	
  

minimizes the view-angle bias, it includes much greater sampling than would be 290	
  

available from a curtain instrument.   291	
  

Using this “average-then-mask” method, we emphasize the issue of observability 292	
  

further in Figure 9, where we zoom in on the key aerosol features in the region 293	
  

surrounding the tropical Atlantic Ocean, focusing on the seasonal AOT for the period 294	
  

July-August-September 2010.  We show the MODIS full swath seasonal mean AOT at 295	
  

grid cells both where C1 and C3 do and do not observe (i.e., the union of the two C1 296	
  

sampling images, Figures 9a and 9b, yields the full swath seasonal mean for this region, 297	
  

as does the union of the two C3 sampling images, Figure 9c and 9d).  Here the spatial 298	
  

gaps in the curtain-like sampling become more apparent, and visual inspection of the 299	
  

figures reveals differences in the patterns of the aerosol features seen.  For example, the 300	
  

AOT features over the Nile River valley are nearly absent in the C1 and C3 sampling 301	
  

(Figures 9a and 9c) but are readily apparent when looking at the grid cells unobserved by 302	
  

these sampling strategies (Figures 9b and 9d).  Likewise, the shape of the biomass 303	
  

burning plume over South America is more apparently filled in for the grid cells 304	
  

unobserved by C1 and C3 (again, Figures 9b and 9d).  Most readily apparent is the wide 305	
  

equatorial belt over the ocean, encompassing the Saharan dust plume, where the C3 306	
  

sampling is almost completely absent due to glint (Figure 9c versus 9d).  Even for the C1 307	
  

sampling, where the ocean glint is not an issue in this case, the South African biomass 308	
  



burning plume is also missing some of the highest-AOT regions when the observed and 309	
  

unobserved grid cells are compared (Figures 9a and 9b). 310	
  

A similar analysis is presented in Figure 10 over the Asian region for the March-311	
  

April-May 2010 seasonal average.  Here we show only the C1 sub-sample masking.  312	
  

Aerosol features over Iraq, Iran, Turkmenistan, Afghanistan, northern China, and the 313	
  

Sichuan Basin in central China are almost completely unobserved by the C1 sampling 314	
  

(Figure 10a), and the pattern of the main Asian outflow over the northern Pacific is much 315	
  

less well defined. 316	
  

For AOT trend and regional climate impact studies, quantitative differences 317	
  

matter.  We assess the quantitative differences produced by different sampling strategies 318	
  

for several regions exhibiting major aerosol features as highlighted with white boxes in 319	
  

Figures 9 and 10.  In Figure 11, for each of the regions highlighted in Figures 9 and 10 320	
  

we compute the time series of the difference in the regional mean AOT due to sampling.  321	
  

That is, for each region and season we find the full swath regional AOT and the 322	
  

“average-then-mask” regional AOT for each sub-sample.  The ΔAOT shown is the 323	
  

difference between the maximum and minimum AOT for all ten sampling strategies, 324	
  

including the full-swath average.  Because the glint significantly impacts the sampling in 325	
  

the C3 and N3 sub-samples for certain regions, we also show the ΔAOT excluding C3 326	
  

and N3 (dashed lines).  This restriction is especially important for the Southern Africa, 327	
  

African Dust, Nile River, Southeast Asia, and Asian Outflow regions.  To highlight the 328	
  

differences between curtain-like and narrow-swath sampling we show the ΔAOT for the 329	
  

full swath, C1, C2, and C4 samplings only (blue line) and for the full swath, N1, N2, and 330	
  

N4 samplings only (red line).  For all, we additionally show the full swath AOT value 331	
  



and the magnitude of ΔAOT (in all cases, the ΔAOT excluding the C3 and N3 samples) 332	
  

as a fraction of the seasonal-regional full swath AOT.  Finally, the r2 correlation 333	
  

coefficient of the ΔAOT (again, excluding C3 and N3) with the full swath AOT and the 334	
  

fraction of the full swath are also indicated. 335	
  

We refer to ΔAOT as the “sampling artifact,” as it shows the uncertainty in the 336	
  

seasonal-regional AOT due to spatial sampling issues.  We note that for all regions the 337	
  

ΔAOT sampling artifact is highest for the curtain-like sampling (blue line), and so drives 338	
  

the sampling artifact for all sampling strategies (black dashed line).  The ΔAOT artifact is 339	
  

strongly affected by the glint-impacted sub-samples (C3 and N3).  This is especially 340	
  

evident for the African dust and Asian outflow regions, where there is essentially no 341	
  

sampling artifact if the glint-impacted sub-samples are excluded.  The glint impact is also 342	
  

evident in Southern Africa, the Nile River, and Southeast Asia, although in these regions 343	
  

there remain significant sampling artifacts.   344	
  

The South America region (Figure 11a) shows significant annual and inter-annual 345	
  

variability in the full swath AOT, with a peak AOT of between 0.2 and 0.4 typically 346	
  

occurring in JAS or OND associated with seasonal biomass burning.  This peak is 347	
  

modestly correlated (r2 = 0.25) with the ΔAOT, which can be as high as 0.06.  Because 348	
  

this region is over land, it is not significantly affected by the C3 and N3 sunglint-related 349	
  

sampling biases.  Interestingly, ΔAOT is uncorrelated with its fractional comparison to 350	
  

the full swath AOT, although as a fraction of the full swath AOT the ΔAOT typically 351	
  

peaks at 40% and can be as high as 60%.  Thus, for South America, the uncertainty in 352	
  

AOT due to sampling may be as much as 0.06, comprising ~15% of a base magnitude as 353	
  



high as about 0.4, and can also represent uncertainties as great as 60% in the regional 354	
  

AOT when AOT is lower. 355	
  

In Southern Africa (Figure 11b) the glint-affected C3 and N3 samplings introduce 356	
  

significant bias in the ΔAOT.  This is another region affected by seasonal biomass 357	
  

burning, with peak AOT of about 0.4 occurring in JAS.  Excluding the C3 and N3 358	
  

samples, the peak ΔAOT is at most 0.03 and is weakly correlated with the full swath 359	
  

AOT (r2 = 0.14), but much more strongly with the fractional contribution (r2 = 0.72).  360	
  

For African Dust (Figure 11c) the C3 and N3 samplings are determinant, and 361	
  

excluding these, the ΔAOT is small (approximately 0.01) and is consistently less than 362	
  

about 5% of the magnitude of the full swath seasonal-regional AOT.  In other words, for 363	
  

the African Dust region, the average-then-mask sampling does not significantly impact 364	
  

these AOT statistics.  For the Nile River (Figure 11d) the C3 and N3 are similarly 365	
  

important drivers.  Excluding these, the ΔAOT is at most about 0.05 and is modestly 366	
  

correlated (r2 = 0.37) with the full swath seasonal-regional mean AOT signal.  The full 367	
  

swath mean AOT has a seasonal signal, varying between about 0.2 and 0.4 in magnitude, 368	
  

and the sampling artifact may be as much as about 20% of the full swath value. 369	
  

Turning to Asia, for the Indogangetic Plain (Figure 11e), the ΔAOT is mostly 370	
  

unaffected by the C3 and N3 samples.  Peak values of ΔAOT are as high as 0.1 but are 371	
  

uncorrelated with the full swath AOT, which itself peaks in magnitude at about 0.5.  The 372	
  

sampling artifact may thus be as much as about 30% of the full swath signal.  Similarly, 373	
  

in China (Figure 11f), the C3 and N3 samplings do not greatly affect the analysis.  The 374	
  

ΔAOT is as high as 0.09 and is sometimes as large 20% of the full swath mean AOT, 375	
  

which itself varies between about 0.3 and 0.6 in magnitude.  By contrast, the Southeast 376	
  



Asia (Figure 11g) and Asian Outflow (Figure 11h) regions are strongly impacted by the 377	
  

C3 and N3 sampling.  Excluding these, the peak ΔAOT values are 0.05 and 0.015, 378	
  

respectively.  For Southeast Asia, this sampling artifact can be as large as 20%, but is 379	
  

mostly less than 10% of the full swath signal.  The contribution to the Asian Outflow 380	
  

signal is negligible, with sampling introducing an uncertainty of only about 5% at most 381	
  

for a full swath AOT that peaks above 0.4 in magnitude. 382	
  

In summary, with the “average-then-mask” approach, differences are due solely to 383	
  

sampling, as we are only comparing the data set with sub-samples of itself, and cross-384	
  

swath anomalies are removed by the averaging.  In addition, the average-then-mask 385	
  

approach incorporates much greater sampling than actual reduced-swath instruments can 386	
  

obtain – about three-to-four times more samples for the narrow-swath, and about 16 times 387	
  

more samples for the curtain.  However, significant qualitative and quantitative 388	
  

differences still appear in the seasonal, regional average AOT distributions; minima and 389	
  

maxima do not capture the extreme values, and some regional features are entirely missed. 390	
  

Due to the much greater sampling included in the “average-then-mask” data, results 391	
  

presented in Figures 8-11 are significantly more favorable than would be produced for 392	
  

instruments having such spatial sampling characteristics, and thus the sampling artifacts 393	
  

presented in this section are effectively lower bounds.  The overall magnitude of the 394	
  

sampling artifact is largest for the curtain-like sub-samples, as might be expected.  The 395	
  

nature of this artifact is such that in some regions (South America, Indogangetic Plain, 396	
  

China) it can be as large as 60% of the full swath AOT signal or as great as 0.1 in AOT 397	
  

magnitude. 398	
  

 399	
  



3.3.  Trends in Aerosol Optical Thickness 400	
  

In the previous section we showed that in some regions significant artifacts are 401	
  

introduced in the seasonal-regional mean AOT when the full swath data are sub-sampled.  402	
  

These artifacts increase the uncertainty in seasonal estimates of climate-relevant factors 403	
  

such as aerosol loading and radiative forcing.  In addition to these seasonal “snapshots” 404	
  

of the aerosol loading, the temporal evolution of aerosol loading is also of major interest.  405	
  

In this final section of results we ask how spatial sampling affects the ability to detect 406	
  

statistically significant AOT trends. 407	
  

Our approach follows the trend analysis presented in Zhang and Reid (2010), 408	
  

which employs the statistical tools of Weatherhead et al. (1998) to assess confidence 409	
  

levels in the derived trends.  Briefly, a linear model is fit to the monthly mean AOT time 410	
  

series at a grid box.  A first-order autoregressive “noise” model characterizes the residual 411	
  

of the observed time series from the linear model.  The slope of the linear fit, ω, is the 412	
  

trend in the time series, and the standard deviation of the trend, σω, is defined in terms of 413	
  

the variance of the residual noise model (see Equation 2 in Weatherhead et al., 1998).  414	
  

Where the ratio |ω/σω| > 2 the trend is statistically significant at the 95% confidence level 415	
  

(Weatherhead et al., 1998). 416	
  

In Figures 12 – 14 we illustrate the application of this methodology to our ten-417	
  

year (2003 – 2012) full swath and sub-sampled extractions of the MODIS data set.  We 418	
  

use the monthly mean aggregations from our “sample-then-average” approach for this 419	
  

analysis, as it more realistically represents the data that would be acquired by a narrow-420	
  

swath or curtain instrument.  As in Zhang and Reid (2010), the AOT time series is 421	
  

deseasonalized before the linear model is fit, because the seasonal aerosol signal is so 422	
  



large in many parts of the world.  Our “sample-then-average” approach may contain scan 423	
  

angle biases in the AOT field itself that could alias the magnitude of the derived AOT at 424	
  

some locations. However, this will not affect the statistical significance of the derived 425	
  

trends as long as whatever scan angle artifacts exist they do not vary over time for a 426	
  

given sub-sample of the MODIS swath.  The high calibration stability of the MODIS 427	
  

instruments (Xiong et al., 2006) supports this assumption, although a calibration drift in 428	
  

certain MODIS channels does affect the Collection 5 MODIS AOT data (Levy et al., 429	
  

2010).  For the purpose of the current study, we are concerned primarily with differences 430	
  

in the statistical significance of the trends that can be derived for various distributions of 431	
  

samples.  432	
  

Figure 12 shows the AOT trend for the full swath, mid-width, N1, and C1 433	
  

samplings.  The full swath (Figure 12a) shows strong decreasing trends in AOT over the 434	
  

Amazonian region in South America and in eastern-central Siberia, and moderate 435	
  

decreasing trends across the eastern United States and Canada and the western North 436	
  

Atlantic Ocean, Europe and the Mediterranean, in the Gulf of Guinea and off the west 437	
  

coast of Northern Africa, and in the western Pacific around the Maritime Continent.  438	
  

Strong positive trends are apparent in the Arabian Sea, across India, and in the Bay of 439	
  

Bengal, in Iraq, off the western coast of southern Africa, across Sudan and Ethiopia, near 440	
  

Beijing in eastern China, in eastern central Argentina, and in eastern Siberia and across 441	
  

the northern Pacific Ocean.  Moderate positive AOT trends are seen in the western 442	
  

United States and Canada, over southern Africa, and more generally across northern Asia.  443	
  

Except as noted previously, the oceans generally have no trend in AOT or else a weakly 444	
  

positive trend.  The locations and signs of our computed trends are generally similar to 445	
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Zhang and Reid (2010, their Figure 7a), although we note that they restricted their 446	
  

analysis to over-ocean regions only, covered a shorter time period, and used their 447	
  

“assimilation-grade” version of the MODIS AOT product, which is quality controlled as 448	
  

described in Zhang and Reid (2006).  Our trends differ from theirs primarily in the 449	
  

Pacific west of Mexico, where we show a slight increasing trend and they show a weak 450	
  

decrease. 451	
  

The mid-width sampling trends (Figure 12b) are generally similar in magnitude 452	
  

and sign to the full swath trends.  The N1 sampling trends (Figure 12c) are also similar in 453	
  

pattern and sign to the full swath trends, but differences from the full swath are more 454	
  

clearly visible, including a stronger positive trend associated with the southern African 455	
  

biomass burning plume and a more strongly negative trend across central western Africa 456	
  

and in northeastern Asia.  The lesser coverage associated with the C1 sampling makes the 457	
  

trends harder to discern for that case (Figure 12d), although the overall patterns of 458	
  

increasing and decreasing trends are again fairly consistent with the full swath.  The other 459	
  

narrow and curtain-like samples have similar trend patterns and magnitudes (not shown), 460	
  

but differ in detail, and the N3 and C3 samples have poor coverage over the tropical 461	
  

oceans.   462	
  

The differences in the trend magnitudes between our sampling approaches are not 463	
  

unexpected.  Zhang and Reid (2010) found, for example, weaker magnitude for trends 464	
  

from MISR observations than for MODIS.  Zhang and Reid (2010) attributed this 465	
  

difference in the MODIS and MISR trends at least in part, if not entirely, to the lower 466	
  

spatial coverage of MISR.  Additionally, our “sample-then-average” approach can affect 467	
  

the magnitudes of the trends, due to MODIS view-angle biases discussed previously.  468	
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Our focus is thus on our ability to assign statistical significance to whatever trend appears 469	
  

in the maps. 470	
  

In Figure 13 we present the spatial distribution of statistical significance for the 471	
  

trends shown in Figure 12.  For the full swath (Figure 13a) our analysis shows that the 472	
  

computed trends are significant at the 95% level broadly across the tropical Pacific Ocean, 473	
  

in the Arabian Sea and Bay of Bengal, in the Mediterranean, and then across Sudan and 474	
  

Ethiopia and into the western Indian Ocean.  Our patterns for significance are again 475	
  

similar to those of Zhang and Reid (2010) (their Figure 7b), except that their broad region 476	
  

of significance between southern Africa and South America is much less pronounced in 477	
  

our analysis.  Over land we find statistical significance in the full swath for southern 478	
  

India, near Beijing, across the central United States, in Argentina, and across portions of 479	
  

the biomass burning region in Amazonia. 480	
  

The over-ocean patterns of significance are nearly identical in the mid-width 481	
  

(MW) sampling (Figure 13b), but over land there are notable differences, with MW 482	
  

indicating no significance in the trends over Amazonia, in China, or in the central United 483	
  

States.  The regions of significance in the trends over India and in the Sudan and Ethiopia 484	
  

area are much reduced in area.  This reduction in areal extent of significance patterns 485	
  

worsens for the N1 sampling (Figure 13c), with significance essentially gone over Sudan 486	
  

and Ethiopia, and as well being much reduced over Argentina.  The patterns over ocean 487	
  

are still generally similar to the full swath, but the individual regions are less coherent.  488	
  

For the C1 sampling (Figure 13d) the statistical significance at the 95% confidence level 489	
  

is essentially gone, with nothing identifiable over land and only a hint of significance in 490	
  

the tropical Pacific and in a few other ocean regions.  The patterns of significance for the 491	
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other narrow and curtain-like samplings (not shown) are similar to the N1 and C1 shown 492	
  

in Figure 13, respectively, though different in detail.  N2 and C2 have somewhat better 493	
  

coverage over the oceans.  N3 and C3—again, because of the glint— show poor coverage 494	
  

over the oceans.  C4 in particular has far worse coverage over the ocean than C1. 495	
  

 496	
  

4.  Discussion and Conclusions 497	
  

We have investigated the impact of spatial sampling on the statistics of the 498	
  

MODIS AOT.  We showed significant differences in the global, annual mean AOT 499	
  

arrived at as a function of our sampling strategy (Figure 5).  The “sample-then-average” 500	
  

approach employed, however, could not disentangle the spatial sampling artifacts (which 501	
  

we are most interested in isolating) from the sensitivity of the MODIS AOT retrieval to 502	
  

viewing geometry.  Subsequently, we considered instead the observability problem: 503	
  

where the sub-sample could have obtained aerosol retrievals, where it could not, and 504	
  

where—compared to the full-swath values—important differences in the regional and 505	
  

seasonal AOT are inferred.  The “average-then-mask” approach (Section 3.2) mitigates 506	
  

biases associated with location in the MODIS swath, but greatly increases the sampling 507	
  

compared to an actual instrument having a narrower swath, because the full swath 508	
  

MODIS instrument obtains much more frequent observations of any given location than 509	
  

an actual narrow-swath instrument would.  This approach yielded global, annual mean 510	
  

AOT values that were insignificantly different from the full-swath AOT values (Figure 8), 511	
  

in contrast to what was shown in Figure 5. 512	
  

For several regions with important aerosol features, we calculated a “sampling 513	
  

artifact,” shown graphically in Figure 11, illustrating deviations in the seasonal-regional 514	
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mean AOT due to spatial sampling considerations.  The sampling artifacts were small for 515	
  

our more ocean-influenced regions, but could be as large as 0.1 in the seasonal AOT for 516	
  

high-loading, near-source regions such as China and the Indogangetic Plain.  As a 517	
  

percentage of the full-swath seasonal, regional mean AOT, the sampling artifact could be 518	
  

as large as 60% (South America), and was in many places of order 20% (China, 519	
  

Indogangetic Plain, Nile River).  In almost all cases the magnitude of the sampling 520	
  

artifact was largest for the curtain-like sampling, with smaller artifacts inferred when the 521	
  

narrow-swath sampling was compared to the full swath, as might be expected.  The 522	
  

“average-then-mask” strategy applied to the regional analysis discussed here is a lower 523	
  

bound on the actual sampling artifact because this approach actually draws from the full 524	
  

swath observations and simply excludes places never observed by the sub-sample. 525	
  

We additionally investigated our ability to detect statistically significant trends in 526	
  

aerosol features as a function of spatial sampling.  Although the signs of the trends were 527	
  

similar for the various sampling strategies employed, magnitudes were in some places 528	
  

quite different.  This is attributable in part to the MODIS view angle bias, but also to 529	
  

differences in the spatial coverage.  Again, most places on Earth are simply never 530	
  

observed with curtain-like sampling, including some major aerosol source regions.  That 531	
  

reduced spatial coverage had a profound impact on the ability to assign statistical 532	
  

significance to the trends (Figure 13).  For example, even the widest of our sub-samples 533	
  

(MW) could not assign significance at the 95% confidence level (generally used as the 534	
  

criterion for trend detection) to any decadal-scale trends over Amazonia or the central 535	
  

United States, and had reduced confidence in western Africa and India.  The patterns of 536	
  

significance were even less coherent for the narrow-swath sampling, and were essentially 537	
  



gone for the curtain-like sampling.  Without relying on direct comparison with the 538	
  

significance patterns in the full swath observations, it is not clear what could be said at all 539	
  

about aerosol trends from the curtain-like observations alone.   540	
  

A recent paper by Geogdzhayev et al. (2013) is of particular relevance to this 541	
  

study, as they provided a similarly motivated analysis of the MODIS AOT data.  Their 542	
  

approach was to develop sub-samples by aggregating individual scans across the MODIS 543	
  

swath.  They argued that this removed the view angle artifact when compared to the full 544	
  

set of MODIS observations, versus a comparison to along-track sampling (i.e., samples 545	
  

similar to our C1-4 sub-samples).  This across-track sampling is illustrated for a portion 546	
  

of the MODIS Aqua orbit in Figure 14a (compare with our along-track sampling shown 547	
  

in Figure 2). 548	
  

We implemented this sampling approach in the same framework as the along-549	
  

track samplings discussed earlier, selecting five evenly spaced across-track sub-samples 550	
  

(L1, L2, L3, L4, and L5, with the “L” standing for “latitudinal”).   The year 2010 annual 551	
  

mean AOT for the L1 sub-sample is shown in Figure 14b.  When compared with the full 552	
  

swath annual mean AOT (Figure 3d) we see a lot of “noise” (small-scale variability) in 553	
  

the AOT field for the L1 sub-sample.  Consistent with the earlier discussion of our along-554	
  

track sub-samples, there are important aerosol features missed by this sampling, 555	
  

including the South American biomass burning plume and the Russian fires.  556	
  

Nevertheless, when the global, annual mean AOT is compared to the full swath AOT, 557	
  

there is essentially no difference between any of the latitudinal sub-samples and the full 558	
  

swath (Figure 14c, shown for ocean, but the results are essentially the same over land).  559	
  

This result is consistent with Geogdzhayev et al. (2013). 560	
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When considering the seasonal-regional statistics, however, it is clear a significant 561	
  

spatial sampling artifact still remains in the across-track sampling, as might be expected 562	
  

from the small-scale variability in the map of global AOT (Figure 14b).  Figures 14d and 563	
  

14e show the across-track sampling seasonal-regional mean ΔAOT for, respectively, 564	
  

South America and the Indogangetic Plain (compare with Figures 11a and 11e).  The 565	
  

sampling artifact ΔAOT for the across-track sampling was indeed smaller than for our 566	
  

along-track, curtain-like sampling, but even so, ΔAOT for the across-track sampling is 567	
  

substantial in places.  Over South America, the peak ΔAOT is about 0.04, smaller than 568	
  

the peak ΔAOT of 0.06 in Figure 11a, but over the Indogangetic Plain the artifact is 569	
  

roughly the same as shown in Figure 11e.  Note that these results were obtained similarly 570	
  

to those shown in Figure 11, from our optimistic “average-then-mask” approach.  As the 571	
  

latitudinal sampling should obviate the MODIS view angle bias (Geogdzhayev et al., 572	
  

2013), generating the seasonal-regional statistics using the “sample-then-average” 573	
  

approach would better represent the observations of an actual curtain instrument.  When 574	
  

we tried this, we found the sampling artifact was actually worse in all regions (Figure 15 575	
  

for South America and Indogangetic Plain). 576	
  

In Figure 16 we show the AOT trend and statistical significance pattern for the L1 577	
  

sub-sample.  The global distribution of the sign of the trends is generally consistent with 578	
  

the full swath dataset (Figure 12a), but there are considerable differences in coverage.  579	
  

The full swath observations have hundreds-to-thousands of observations per year 580	
  

informing a given grid box (Figure 7), whereas the L1-type sampling has at most a few 581	
  

dozen (not shown).  The relatively poor coverage for the L1 sampling at this resolution 582	
  

renders the trend statistically insignificant almost everywhere (Figure 16b).  This is also 583	
  



true for the other latitudinal sub-samples (not shown).  The particular areas of coverage 584	
  

and trend magnitudes differ somewhat among the different latitudinal sub-samples, but in 585	
  

all cases there is almost no ability to assign statistical significance. 586	
  

For completeness, we performed this same trend analysis at a coarser 10° x 10° 587	
  

spatial aggregation, compatible with the resolution of the analysis performed in 588	
  

Geogdzhayev et al. (2013).  The AOT trends and the map of 95% statistical significance 589	
  

for the full swath, L1, N1, and C1 samplings are presented in Figures 17 and 18, 590	
  

respectively.  Results may be compared with Figures 12, 13, and 16.  The assignment of 591	
  

statistical significance to a detected trend is of course more robust at the coarser spatial 592	
  

resolution, since relatively more of these larger grid boxes have valid monthly means at 593	
  

the coarser spatial resolution.  Thus, unlike what was seen at higher spatial resolution 594	
  

(Figures 16b and 13d, respectively), at 10° x 10° spatial resolution it is possible to assign 595	
  

statistical significance more broadly for the L1 and C1 samples (Figure 18).  596	
  

Geogdzhayev et al. (2013) suggest that spatial coverage does not matter to the 597	
  

statistics of AOT.  We strongly disagree.  Their approach certainly reduces the across-598	
  

track view angle bias in the MODIS AOT retrievals.  For sufficiently coarse spatial and 599	
  

temporal averaging scales (e.g., global, annual mean), the cross-track, globally sampled 600	
  

AOT should converge to the full-swath values, as it does.  At finer scales (e.g., regional, 601	
  

seasonal means), however, significant sampling artifacts remain, consistent with our 602	
  

analysis of along-track sampling.  In addition, the associated estimates of changes in 603	
  

DARF obtained from trends derived at coarse spatial and temporal scales would be 604	
  

complicated by the variability in aerosol single scattering albedo, aerosol vertical 605	
  

distribution, and surface properties across the large grid boxes.   606	
  



Our conclusion is that spatial sampling matters.  Our study shows the limitations 607	
  

of curtain-sampling instruments at capturing the statistics of AOT values at regional 608	
  

scales, compared to the full-swath MODIS observations.  It further calls into question the 609	
  

ability of curtain-sampling instruments to reliably detect trends in aerosol loading on 610	
  

decadal time scales.  Although the narrow (~400 km) swath sampling fares better, 611	
  

without the context of a full swath imager’s observations, there is little confidence in 612	
  

even these derived trends, a conclusion similar to one obtained by Zhang and Reid (2010). 613	
  

The global aerosol system is temporally and spatially variable, and any realizable 614	
  

sampling and aggregation method applied to observing this system will introduce 615	
  

sampling biases.  Simply acquiring a data set with abundant statistics does not guarantee 616	
  

that it will reflect the planet’s mean aerosol loading and especially not its variability, nor 617	
  

the radiative perturbation caused by that loading.  However, broad-swath sampling 618	
  

maximizes the likelihood of obtaining a representative picture. 619	
  

Our study establishes the limitations of a curtain instrument having retrieval 620	
  

capabilities similar to those of MODIS.  Note that the MODIS data set does not capture 621	
  

all aspects of the actual aerosol field, in part due to contextual limitations of the 622	
  

measurement technique, such as the lack of diurnal observations and the inability to 623	
  

retrieve AOT under and in the immediate vicinity of clouds (e.g., Zhang and Reid, 2009).  624	
  

For these reasons we cannot directly assess the results for a curtain instrument having 625	
  

arbitrarily greater accuracy or fewer spatial gaps caused by unfavorable retrieval 626	
  

conditions.  However, even if such an instrument could retrieve aerosol properties with 627	
  

no cloud exclusions, it would still be sampling only about ~10% of the globe.  In addition 628	
  

to aerosol amount and type, DARF depends strongly on the reflective properties of the 629	
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surface over which the particles reside, most of which would be unobserved by the 630	
  

curtain instrument.  What we do have, however, is MODIS, which represents the best 631	
  

available combination of broad swath, high quality, and long running coverage of 632	
  

satellite-based aerosol properties at our disposal.  We find that the full-swath trends in 633	
  

our study actually match the “contextually less-biased” assimilation-grade trends in 634	
  

Zhang and Reid (2010), suggesting that although contextual bias can be an issue, it 635	
  

probably does not diminish the applicability of our conclusions. 636	
  

An extension of our work here would be to explore the spatial sampling 637	
  

dependencies in the context of a data-assimilation grade instance of the MODIS dataset 638	
  

(e.g., Zhang and Reid 2006) that has been processed to reduce as much as possible 639	
  

MODIS AOT artifacts.  A further extension would be to perform similar sampling 640	
  

analyses in the context of a global aerosol transport model, which would obviate the 641	
  

context biases noted above and could help characterize these spatial and temporal 642	
  

sampling dependencies.  A significant challenge in that approach, however, is to ascertain 643	
  

how well any aerosol transport model represents actual aerosol variability.  Another 644	
  

approach would be to formally assimilate various sub-sampled MODIS data sets into a 645	
  

transport model and investigate the impact on predicted aerosol distributions and 646	
  

radiative forcing. These additional avenues of study would complement the work 647	
  

presented here. 648	
  

 649	
  

 650	
  

  651	
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Table 1.  Summary of spatial sampling strategies illustrated in Figure 2 and summary of 756	
  

temporal averaging approaches. 757	
  

Sample	
  Name	
   Sample	
  Width	
  
Full	
  Swath	
  (FS)	
   ~2300	
  km	
  
Mid-­‐Width	
  (MW)	
   ~800	
  km	
  
Narrow	
  (4	
  variants:	
  N1,	
  N2,	
  N3,	
  N4)	
  ~380	
  km	
  
Curtain	
  (4	
  variants:	
  C1,	
  C2,	
  C3,	
  C4)	
   ~10	
  km	
  (width	
  of	
  MODIS	
  pixel)	
  
	
   	
  
Averaging	
  Strategy	
   Procedure	
  
Sample-­‐then-­‐Average	
   1. Per orbit, sample the MODIS full swath at the 

indicated sub-swath 
2. Aggregate sub-sample to spatial grid 
3. Average aggregates to the desired time period 

(e.g., monthly, seasonal, annual) 
Average-­‐then-­‐Mask	
   1. Per orbit, aggregate the MODIS full swath to 

spatial grid 
2. Average to the desired time period 
3. Use “sample-then-average” result for relevant 

sub-sample/temporal average to retain or 
exclude grid boxes visited in sub-sample  

 758	
  

  759	
  



Figures 760	
  

a 

 

b 

 
c 

 

d 

 
Figure 1.  Conceptual illustration of the spatial sampling problem.  Nature presents us 761	
  

with a “true” scene (d).  The truth is sampled according to a “curtain” sampling (a), a 762	
  

“narrow” sampling (b), and the “full swath” sampling of the MODIS instrument on the 763	
  

Aqua spacecraft (c).  For purposes of this illustration we are recovering only parts of the 764	
  

“true” image that had valid aerosol retrievals on June 5, 2010 from the MODIS over 765	
  

ocean and “dark target” land retrievals.  766	
  



 767	
  

Figure 2.  Example of spatial coverage of the MODIS Aqua instrument for an ocean 768	
  

region on June 5, 2010.  The colored dots indicate the locations of the MODIS AOT 769	
  

retrievals, with the grey dots indicating the full MODIS swath (MO).  Overlaid on the 770	
  

grey dots are different colors for our various sampling strategies (N1 = light blue, N2 = 771	
  

orange, N3 = magenta, N4 = light green, C1 = dark blue, C2 = dark red, C3 = deep 772	
  

purple, C4 = dark green, and MW = combined N1 and N2 swath).  The light-grey shaded 773	
  

areas on the left and right side of the figure are outside the swath, while the central white 774	
  

region (labeled “glint”) is where no aerosol retrievals are made due to glint.  Remaining 775	
  

patchy white areas are where aerosol retrievals were not made due to clouds.  776	
  

  777	
  



a) 

 

b) 

 
c) 

 

d) 

 
 778	
  

Figure 3.  Full swath year 2010 annual mean AOT using the sampling and aggregation 779	
  

strategy in Equations 1 and 2 for each of our four aggregation resolutions: (a) 10° x 10°, 780	
  

(b) 2° x 2.5°, (c) 1° x 1.25°, and (d) 0.5° x 0.625°.  The grey shading indicates locations 781	
  

where no MODIS AOT retrievals were made during the year. 782	
  

  783	
  



a) 

 

b) 

 
c) 

 

d) 

 
Figure 4.  As in Figure 3, but at 0.5° x 0.625° resolution and for four of our sub-sampling 784	
  

strategies: (a) N1, (b) N3, (c) C1, and (d) C3.  785	
  



a) 

 

b) 

 
Figure 5.  Years 2003 – 2012 time series of the global, annual mean MODIS Aqua AOT 786	
  

over ocean (a) and land (b).  The solid black line indicates the full swath AOT, and the 787	
  

different colors and line styles indicate our different sampling strategies.  The bottom 788	
  

panel in each is the difference of the sub-sampled average from the full swath average. 789	
  

  790	
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b) 

 
c) 

 

d) 

 
Figure 6.  Full swath year 2010 annual mean AOT shown only at points never sampled 791	
  

by the indicated sub-sample swath: (a) N1, (b) N3, (c) C1, and (d) C3. 792	
  

  793	
  



 

 

Figure 7.  Number of MODIS Aqua AOT retrievals made per 0.5° x 0.625° grid box for 794	
  

the entire year 2010 as used to compose the full swath annual mean shown in Figure 3d. 795	
  

  796	
  



a) 

 

b) 

 
Figure 8.  As in Figure 5, but now using the “average-then-mask” strategy to construct 797	
  

the annual means described in Section 3.2. 798	
  

  799	
  



 800	
  
a) 

 

b) 

 
c) 

 

d) 

 
Figure 9.  Full swath seasonal (July-August-September 2010) MODIS Aqua AOT over 801	
  

the tropical Atlantic Ocean.  The full swath seasonal mean is masked to show only grid 802	
  

cells where the C1 and C3 sub-samples do (a, c) and do not (b, d) have a seasonal mean 803	
  

value.  Figures 9a and 9c illustrate the “average-then-mask” seasonal mean AOT. 804	
  

  805	
  



a) 

 

b) 

 
Figure 10.  As in Figure 9, but for the C1 sub-sampling mask for March-April-May 2010 806	
  

over Asia.  The full swath seasonal mean AOT is shown both where the C1 sub-sample 807	
  

does (a) and does not (b) have a valid seasonal mean. 808	
  



a) 

 

b) 

 
c) 

 

d) 

 
Figure 11.  Seasonal-regional sampling artifact as ΔAOT between minimum and 809	
  

maximum AOT values for each sampling strategy (top, solid line) and for all but the C3 810	
  

and N3 samples (top, dashed).  For all, the “average-then-mask” sampling approach is 811	
  

used.  The blue line is the ΔAOT computed using only the full swath, C1, C2, and C4 812	
  

samplings.  The red line is the ΔAOT using only the full swath, N1, N2, and N4 813	
  

samplings.  Also shown are the full swath mean AOT (bottom, solid line) and ΔAOT as a 814	
  

fraction of the full swath AOT (bottom, dashed).  The r2 correlation coefficient between 815	
  

the sampling artifact ΔAOT (in all cases, excluding C3 and N3) the full swath seasonal-816	
  

regional mean AOT and the ΔAOT as a fraction of the full swath mean are also shown. 817	
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e) 

 

f) 

 
g) 

 

h) 

 
 820	
  

Figure 11 (continued). 821	
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 823	
  
a) 

 

b) 

 
c) 

 

d) 

 
Figure 12.  Trend for the ten-year (2003 – 2012) time series of MODIS Aqua AOT.  We 824	
  

show the trend for the full swath (a), mid-width (b), N1 (c), and C1 (d) samplings.  Grey 825	
  

areas are locations with either no valid retrievals or where the time series has fewer than 826	
  

12 monthn and monthn-1 pairs. 827	
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Figure 13.  As in Figure 12, but showing the statistical significance for the trends shown 829	
  

in Figure 12.  Regions colored blue (bottom plots) are showing statistically significant 830	
  

trends at the 95% confidence level.   831	
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a) 

 

b) 
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d) 

 

e) 

 
Figure 14.  Examples from latitudinal (across-track) sampling exercise after Geogzhayev 834	
  

et al. (2013).  (a) Sampling pattern for five latitudinal sampling strategies tried: L1 (blue), 835	
  

L2 (orange), L3 (green), L4 (magenta), and L5 (red) (compare with Figure 2).  (b) Year 836	
  

2010 annual mean AOT for L1 sampling (compare with Figure 3d).  (c) Time series of 837	
  

global, annual mean AOT over ocean for full swath and all latitudinal samplings 838	
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(compare with Figure 5).  The full swath annual mean AOT (black line) is obscured by 839	
  

the latitudinal sub-samples (red lines).  Also shown are the ΔAOT sampling artifacts for 840	
  

two regions: South America (d) and the Indogangetic Plain (e) (compare with Figure 11). 841	
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a) 

 

b) 

 
Figure 15.  ΔAOT seasonal-regional sampling artifact for across-track latitudinal 843	
  

sampling using the “sample-then-average” approach for (a) South America and (b) 844	
  

Indogangetic Plain.  Note the different y-axis scale from Figures 14d and 14e. 845	
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a) 

 

b) 

 
Figure 16.  AOT trend (a) and statistical significance (b) for the L1 across-track sub-847	
  

sample. 848	
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a) 

 

b) 

 
c) 

 

d) 

 
Figure 17.  Aerosol trends for the full swath (a), L1 (b), N1 (c), and C1 (d) samplings at 850	
  

10° x 10° aggregation resolution. 851	
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b) 
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d) 

 
Figure 18.  As in Figure 17, but for the 95% statistical significance interval. 853	
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