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Abstract

A broad range of different of Bayesian cloud detection schemes is applied to mea-
surements from the Medium Resolution Imaging Spectrometer (MERIS), the Ad-
vanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud
masks were designed to be numerically efficient and suited for the processing of5

large amounts of data. Results from the classical and naive approach to Bayesian
cloud masking are discussed for MERIS and AATSR as well as for their combination.
A sensitivity study on the resolution of multidimensional histograms, which were post-
processed by Gaussian smoothing, shows how theoretically insufficient amounts of
truth data can be used to set up accurate classical Bayesian cloud masks. Sets of10

exploited features from single and derived channels are numerically optimized and re-
sults for naive and classical Bayesian cloud masks are presented. The application of
the Bayesian approach is discussed in terms of reproducing existing algorithms, en-
hancing existing algorithms, increasing the robustness of existing algorithms, and on
setting up new classification schemes based on manually classified scenes.15

1 Introduction

Cloud masking of Earth observation measurements is an important and often crucial
part of various remote sensing retrievals. This includes, but is not limited to, the re-
trieval of cloud and aerosol micro-physical parameters, the estimation of cloud cover,
ocean colour retrievals, and in general, algorithms which include atmospheric correc-20

tion schemes. Cloud masking algorithms differ widely in their complexity, computational
requirements, and in their assumption on what a cloud is and which physical process
is exploited for their detection. Implementation of specific algorithms are often applica-
tion specific which makes the cloud masks as well application specific and generally
complicates the inter-comparison of results from different cloud masks.25
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This paper emphasizes the application of Bayesian methods for the cloud masking
of the complete 9.5 year time series of the Medium Resolution Imaging Spectrome-
ter (MERIS) (Rast et al., 1999) and the Advanced Along-Track Scanning Radiome-
ter (AATSR) (Llewellyn-Jones et al., 2001) on-board the Environmental Satellite (EN-
VISAT) satellite and is part of the European Space Agency (ESA) Cloud CCI (Climate5

Change Initiative) activity (Hollmann et al., 2013). Thus, the requirements for the cloud
masking scheme, which is described in Sects. 2 to 5, are robustness, accuracy, and
computational efficiency. Several applications of the Bayesian method are discussed
in Sect. 7. Results for MERIS and AATSR separately are discussed, but with having
the focus on their combination within the Synergy product, where AATSR measure-10

ments are mapped on the MERIS swath and their mutual overlap is used. This Synergy
dataset in combination with the presented cloud mask will be used for the retrieval of
cloud micro-physical parameters using the FAME-C algorithm which was described by
Carbajal Henken et al. (2014).

Major challenges of cloud detection are validation, the correct classification of scenes15

with clouds in over mountains and over snow and ice covered areas, and the distinction
between clouds and optically thick aerosol plumes such as dust storms. These points
are discussed in detail in Sect. 7.

Common approaches to cloud masking are hierarchies of thresholds (e.g. Rossow
and Garder, 1993; Schlundt et al., 2011), complex statistical models (e.g. Murtagh20

et al., 2003; Gómez-Chova et al., 2008), or other Bayesian approaches (e.g. English
et al., 1999; Uddstrom et al., 1999; Merchant et al., 2005; Mackie et al., 2010a; Hei-
dinger et al., 2012). A classification scheme for Bayesian cloud masks which helps to
clearly distinguish the various approaches to Bayesian cloud masking is introduced in
Sect. 3 and in addition, a short overview of the relevant literature using that scheme is25

given.
The here presented results are computational highly efficient and are very well suited

for the processing of large amounts of data, which makes these results very well suited
for future application to the Ocean Land Colour Instrument (OLCI) (Nieke, 2008) and
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the Sea and Land Surface Temperature Radiometer (SLSTR) (Coppo et al., 2010)
onboard the Sentinel-3 satellite (Miguel et al., 2007) and its operational follow-ups.

2 Bayesian inference for cloud masking

Bayes’ theorem can be used to reverse joint probabilities. It is appealing to apply it to
cloud masking since its theory is widely adopted, its implementation on a computer sys-5

tem is straightforward, and its results are probabilities which can be directly interpreted.
The theorem allows the computation of the probability P (C,F ) that a particular mea-
surement with feature F is affected by a cloud, if the occurrence probabilities P (F ,C)
and P (F ,C) of the feature under cloudy and non cloudy conditions are known. Here,
P (a,b) denotes the occurrence probability of a under the condition of the occurrence10

of b.
With C being the case that a measurement is affected by clouds and F being a set

of features associated with that measurement, P (C,F ) can be expressed as:

P (C,F ) =
P (C)P (F ,C)

P (F )
=

P (C)P (F ,C)

P (C)P (F ,C)+ P (C)P (F ,C)
, (1)

where P (C) is the background probability of cloudiness and C is the negation of C,15

which states that a measurement is not affected by clouds. The occurrence probability
of the feature P (F ) can be expressed in terms of the joint probabilities P (F ,C) and
P (F ,C) since cloudyness and non-cloudiness are the only two considered classes for
each measurement.

Evaluating Bayes’ theorem involves only few arithmetic operations, such that a spe-20

cific implementation can be very fast and efficient, which is of importance if large
amounts of data are to be processed. Additional computations involve the feature F

and the a priori joint probabilities P (F ,C) and P (F ,C), which is discussed in the follow-
ing sections.
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With an appropriate set of thresholds, one can convert the probability P (C,F ) into
a cloud mask. For instance, any probability strictly higher than 50% could be inter-
preted as cloud, but other thresholds or more classification bins could be used. This
is discussed in more detail in Sect. 7.1, but this choice clearly depends on the target
application and is independent from the Bayesian approach. Other applications, such5

as the construction of a cost function as described by English et al. (1999), are also
viable alternatives.

Estimating the value of the background probability P (C) is not discussed in detail in
this paper and for all following applications a value of 0.5 is used. This choice basically
states, that for each measurement an equal probability of it being cloudy or not cloudy is10

assumed. This assumption is of course neither valid on global or local scales and a rich
body of knowledge about the spatial and temporal distribution of cloud occurrence
probabilities exists. Such knowledge, typical in the form of external climatologies, could
be used to estimate P (C), but would eventually shift derived climatologies towards the
external one, which would then effectively lead to circular arguments. This point might15

be of lower importance for some applications, i.e. operational processing by weather
services, but within Cloud CCI it is planed to derive climatological datasets from the full
MERIS and AATSR time series and circular arguments are best to be avoided. For the
special case of P (C) = 0.5, Eq. (1) simplifies to:

P (C,F ) =
P (F ,C)

P (F ,C)+ P (F ,C)
. (2)20

Setting up a particular Bayesian cloud mask algorithm involves several decisions, such
as specifying the measurement feature F and choosing a technique to estimate P (F ,C)
and P (F ,C), which allows to group the various possible approaches to Bayesian cloud
masking into distinct subgroups. This natural grouping allows to clearly separate the
presented approach from other algorithms and is discussed in Sect. 3. In addition,25

a short overview about the relevant literature is given.
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3 Classification of Bayesian cloud masks

Several papers on Bayesian approaches to cloud masking have been published in
the past and fundamental differences between the various algorithms are often buried
in the technical details of the particular paper. A nomenclature which aims to clearly
separate different approaches to Bayesian cloud masking is discussed in the following.5

Let the feature F from Eq. (1) be a set of nF real numbers F = (F1, . . .,FnF ) ∈RnF ,
where the Fi are typically determined from measurements M ∈RnM , auxiliary data
A ∈RnA , and external data E ∈RnE . The components Fi are computed from prescribed
feature functions fi , which generally depend on all of the above introduced classes of
data: Fi = fi (M,A,E). In the case of the MERIS and AATSR Synergy, the set of mea-10

surements M includes radiances and brightness temperatures for a single collocated
pixel. Auxiliary A data is available with negligible computational cost, such as time
stamps, geolocation, and data flags. External data might be a function of the avail-
able measurements M and auxiliary data A and its retrieval is by definition associated
with non negligible computational cost. This category essentially introduces significant15

external knowledge about the measurement and common examples are online radia-
tive transfer (RT) simulations, nontrivial interpolation in numerical weather prediction
(NWP) data, or the use of climatologies.

Let us call the feature set F independent, if it is only a function of the measurements
M and auxiliary data A and dependent if in addition external data E is exploited. Both20

classes can be further subdivided with respect to weak and strong dependence to de-
scribe F even more precise. A weakly dependent feature set could for example depend
on interpolation in NWP data which is of negligible computational cost, while a strongly
dependent feature set could depend on online RT with non negligible numerical cost.
Strongly independent feature sets would then depend only on measurements M, while25

weakly independent feature sets could in addition depend on auxiliary data A.
This paper is focused on Bayesian cloud masks based on strongly independent fea-

tures. Only MERIS and AATSR measurements and trivial functions operating on them
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are used to construct the feature set. This class of features allows to implement a nu-
merically highly efficient algorithm with simple opportunities to parallelization and vec-
torization. With no dependency on external data, the algorithm can be used in non
operational environments, where the acquisition of NWP data can pose a significant
effort. However, there is no obvious reason why the techniques which are discussed in5

the following section should be limited to the independent case.
The second major branch in Bayesian cloud masking schemes involves the compu-

tation of the joint probabilities P (F ,C) and P (F ,C). The classical approach aims at the
direct computation of these two joint probabilities, while the naive approach treats the
components Fi of the feature set F as statistically independent and decouples the joint10

probabilities on F into a product of joint probabilities in the Fi :

P (F ,C) =
∏
i

P (Fi ,C). (3)

One can either construct the feature set very carefully, such that this strong assump-
tion holds (e.g. follow Merchant et al. (2005) and their discussion on cloud texture and
cloud top temperature), or simply accept its violation and the possible effects on the15

cloud masking scheme. Formally proving the statement of Eq. (3) seems to be only
possible for a rather limited class of features.

Computing the joint probabilities in the classical approach can be greatly simplified
by assuming an analytic form and estimating its parameters. Depending on the as-
sumed form, for instance multivariate Gaussian (e.g. see Uddstrom et al., 1999; Mer-20

chant et al., 2005), the resulting cloud mask could be called classical Gaussian. As for
the naive approach, it will be difficult to formally prove the validity of such assumptions.

The classical and naive approaches can be mixed if one or more subsets of the Fi
are treated as statistically independent, such that the decoupling of P (F ,C) and P (F ,C)
becomes partial. For this class of Bayesian cloud masks we propose to use the terms25

mostly naive if the majority of features are decoupled and mostly classical if the majority
of features are not decoupled.
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This paper is mainly concerned with the discussion of the classical and naive ap-
proach with an emphasis on the classical one. In conclusion, this paper is mostly
concerned with the application of classical Bayesian cloud masks based on strongly
independent features. As it will be shown later in the paper, the classical approach
gives better results for the cloud masking in our scenario and the strongly independent5

feature set was chosen to allow the implementation of a very fast algorithm.
Cloud detection methods based on Bayesian probabilities have been used for cloud

masking in the past and a short overview, but without the attempt to fully outline them,
is given now. English et al. (1999) used Bayesian probability with strongly dependent
features to derive a cost function for a 1-D var retrieval of cloudiness. The classification10

is based on the exploitation of microwave and infrared channels and in addition exter-
nal data from NWP simulations. Uddstrom et al. (1999) used AVHRR channels, derived
channels such as reflectance ratios and brightness temperature differences, and tex-
tural measures to construct strongly independent features. It was found, that textural
measures are of most importance for night time measurements. The joint probabili-15

ties were separated by assuming a multivariate Gaussian form and were expressed
in terms of mean values and associated covariances. Merchant et al. (2005) used
night time thermal infrared measurements at 3.7, 11, and 12µm to construct a mostly
classical Bayesian cloud mask. Textural features were assumed to be independent
from measurements in thermal channels and were separated when computing the joint20

probabilities. P (C) was estimated from NWP data and the algorithm was discussed
with an emphasis on operational NWP centers, such that these feature are likely only
weakly dependent. Mackie et al. (2010a, b) discussed a mostly classical Bayesian al-
gorithm with strongly dependent features for the 3.9, 11, and 12µm channel of the
SEVIRI instrument. External knowledge is introduced by NWP data and a fast radiative25

transfer model and textural features were separated from spectral features assuming
independence. Heidinger et al. (2012) discussed a naive Bayesian cloud mask with
strongly dependent features for the AVHRR instrument. A surface type classification
using external MODIS data was used to maximize the detection rate. CALIPSO lidar
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measurements were used as truth data to compute histograms from which the occur-
rence probabilities for each feature were estimated.

4 Construction of feature sets

Channels of the MERIS and AATSR instruments cover the spectral range from 412nm
to 12µm and are referenced in this paper by their central wavelength, while for MERIS5

the unit of nm and for AATSR the unit µm is used. Figures 1 and 2 show examples
of possible features for two particular interesting scenes at Greenland and the vicinity
of the Korean peninsula. Each Figure shows an RGB image, various single channels,
and a selection of trivial functions which combine two channels. Both figures include
a panel with results of the non Bayesian Synergy cloud mask, which is briefly dis-10

cussed in Sect. 6. Figure 1 shows a scene over Greenland with its center located at
59◦31′12′′W and 79◦0′0′′N with high and low clouds over a large ice or snow covered
region. Figure 2 shows a scene in the vicinity of the Korean peninsula with its center
located at 125◦52′12′′ E and 37◦45′36′′N. This scene shows a pronounced dust storm
mixed with a deck of clouds.15

Strongly independent features are constructed using a single channel or any com-
bination of channels in a trivial function. Such combinations have been called de-
rived channels in the literature (e.g. Uddstrom et al., 1999). Considered here are
all basic arithmetic operations +,−,×,/ and in addition the index function dx(a,b) =
(a−b)/(a+b), which can be used to create indices such as the normalized difference20

vegetation index (NDVI) (see Kriegler et al., 1969), the normalized difference snow in-
dex (NDSI) (see Hall et al., 2002), or other general channel indices. Even if well known
and generally accepted combinations of channels and indices are used, it is unclear
whether a specific combination is the best possible candidate for the particular data set
and one has to rely on the experience of the involved experts.25

In contrast to such approaches, an objective measure for any given set of feature
functions is exploited to numerically search for the best possible set of feature functions.
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Maximizing the Hanssen Kuipers skill score (see Hanssen and Kuipers, 1965; Wood-
cock, 1976) with respect to a given validation dataset is an appropriate metric for this
problem. It is also sometimes referred to as Hansen Kuipers discriminant and is es-
sentially the difference of the hit rate and the false alarm rate of the cloud mask with
respect to a validation data source. It covers the range of −1 to +1, with +1 being a per-5

fect representation of the validation source. From now on, only the term skill score is
used.

Validation of cloud masks for MERIS and AATSR onboard ENVISAT is a difficult task
since no generally accepted and available set of truth data exists. A generally used
approach is to generate truth data by means of manual classification of images by hu-10

man experts or the use of data from ground based stations. Converting a ground truth
to a pixel by pixel truth can be complicated and possibly insufficient spatial coverage
can limit the applicability of that approach. Consequently, most approaches for gener-
ating truth data for MERIS and AATSR are one way or the other based on the manual
classification of sample data by human experts (e.g. Gómez-Chova et al., 2006, 2008;15

Schlundt et al., 2011). Such datasets can be called artificial truth since they are used
as if they were truth’s, but it is as least arguable whether such data sets are in fact
truth’s.

To demonstrate the feasibility of the Bayesian approach, results from the Synergy
cloud mask (see Sect. 6 for a brief description) were chosen as source of artificial truth20

data and it is therefore assessed whether Bayesian cloud masks can reproduce this
Synergy cloud mask. The major advantage of this approach is that large amounts of
artificial truth data can be created without significant effort. Clearly, all shortcomings of
this seeding algorithm will be present in this dataset and will limit the success of the
application of the Bayesian technique.25

Optimizing the choice for a particular set of feature functions is not straightforward,
since this problem is noncontinuous with a varying number of free parameters. First,
the number of feature functions has to be set. Then, for each feature, a feature function
from the pool of considered functions has to be selected. The identity function, all four
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basic arithmetic operations, and the index function are considered as feature functions.
As a last step, the input channels for each feature function must be set. Depending on
the chosen functions and channels, a maximum of 2×nF channels can be included in
the computation of a feature set with nF elements.

Then, for a particular feature set, the prerequisites for computing the joint proba-5

bilities must be carried out, which is described in detail in Sect. 5. Once this step is
completed, the Hanssen–Kuipers skill score for the selected set of validation data can
be computed.

The only numeric optimization procedure that we are aware of, which is generally ap-
plicable to this situation, is a random search in the huge search space spanned by this10

outlined procedure. This is quite a different approach to that of a human expert, who
would likely start an educated search, but might not attempt to cover the whole search
space. The number of possible combinations depends on the number of chosen fea-
tures and the number of available channels (22 in the case of the MERIS and AATSR
Synergy) and can be estimated using the binomial coefficient. In the simplest case,15

where merely the identity function is used, no channel is used more than once, and

four features are to be selected, the search space spans
(

22
4

)
= 7315 elements. If only

functions of two channels are to be selected and re-selected and channels can be used
multiple times, then the search space consists of

(
5×(222−22)

4

)
=
(

2310
4

)
≈ 1.2×1012 en-

tries. The enormous size of the search space makes it difficult to completely cover it20

by a search, but the random search can be allowed to run appropriately long such
that a result of sufficient quality is obtained. One can expect that a large number of
different sets of feature functions will essentially exhibit very similar classification skills.
The considered feature function are not symmetric under a change of the parameter
order, but the overall classification result might be approximately symmetric. This alone25

would decrease the search space by a factor of approximately 16. In addition, the clas-
sification results might be only weakly dependent with respect to the feature function
itself, i.e. the index function dx(a,b) might be as effective as a ratio a/b, which would
decrease the effective size of the search space.
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The proposed random search might not be able to cover the complete search space,
but with sufficient long runtime one will be able to find solutions with sufficiently high skill
score. In addition, unusual combinations of channels might be found which wouldn’t be
considered in an educated search by a human expert. The features shown in Figs. 1
and 2 are frequently found in searches when results from the non Bayesian Synergy5

cloud mask are used as artificial truth.
The physical meaning of a certain feature set and why it might be better or worse

than a different one is not discussed here and is also not within the scope of this paper.
This knowledge is very useful for educated searches, but is not necessarily needed
in this setup. However, for the experienced expert it is of course no surprise which10

channels are found to be successful by the optimization scheme.
Implementing such a search strategy is straightforward. A generator of random fea-

ture functions must be implemented and each of these instances can be tested for
its skill score with respect to the artificial truth. This procedure is easy parallelizeable
and one could store only results with higher skill score than some predefined value. At15

any given time of an ongoing search, one can sort these results and evaluate the top
results.

5 Estimation of background joint probabilities

The background joint probabilities P (F ,C) and P (F ,C) could be computed in various
ways, but here only the frequentistic approach based on sample data is considered.20

A sufficiently large number of already classified measurements is converted into its
corresponding set of features and probability density histograms are produced from
which the probabilities are estimated. In the naive Bayesian approach, as many one di-
mensional histograms as there are features are needed, while in the classical Bayesian
approach a single nF dimensional histogram is used. If these histograms are stored in25

a computer system, the handling of any reasonable number of one dimensional his-
tograms poses no specific problem, while an array of dimension nF grows rapidly in
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memory with increasing number of bins nB. For the sake of simplicity, the same num-
ber of bins is assumed for each particular dimension. With four bits per float and twenty
bins per feature, one would need 0.6GB to store a single histogram for four features,
but already about 4883GB for seven features. This limits the practical number of fea-
tures for the classical Bayesian approach to about four to six at the time of writing this5

paper.
However, the main argument of Uddstrom et al. (1999) and Heidinger et al. (2012)

against the use of the classical approach is, that one has generally not enough truth
data available to robustly derive the histograms in a completely frequentistic way. This
can be a valid point for real truth data which, is limited in principle, but not so much for10

artificial truth data. Here, the number of available data is merely a function of the avail-
able human labor for manual classification or computational resources if an existing
cloud masking scheme is used to produce artificial truth data.

Both left panels of Figs. 3 and 4 show results of two dimensional histograms for
MERIS and AATSR Synergy data. For both cases, almost one million spectra were15

used to compute both histograms. Shown is the difference of the histograms for C
and C. Both choices of features recreate the Synergy cloud mask reasonably well with
a skill score of about 0.76. The cloud masking setup is discussed in detail in Sect. 7.
The main point here is that with enough data points these histograms can be computed.
The two dimensional case was chosen since this is simple to visualize.20

Both right panels of Figs. 3 and 4 show remarkably similar histograms with just barely
smaller skill score values of about 0.75, but only 1000 measurements were used to
produce these histograms. A simple Gaussian smoothing filter was applied to both
histograms and the Gaussian smoothing factor was chosen such that the skill score
as a function of the Gaussian smoothing was maximized. This is the first main result25

of this paper. This numerical experiment shows, that at least for some sets of fea-
ture functions, the nF dimensional histograms can be approximated by using very few
data points and an appropriate Gaussian smoothing factor. The best smoothing factor
for both cases was slightly different and is obtained from optimization. More detailed
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results are shown in Sect. 7.1. In addition to the previously discussed parameters, e.g.
the construction of features, classical Bayesian cloud masks are defined by the number
of bins used in the histograms and the chosen Gaussian smoothing parameter, which
is discussed in Sect. 7.1.

The Gaussian smoothing approach works reasonably well and is so far only justified5

by its actual success for a particular problem, where in fact sufficient amounts of ar-
tificial truth data is available. Its general application to situations with limited amounts
of such data is therefore not very well justified. However, numerical experiments with
the available data have shown that this approach yields remarkably good results. Other
functional kernels have not been tested, but the Gaussian approach seems sufficient10

since the convoluted histograms yield nearly the same skill score as the original his-
tograms. Success of this approach is likely based on the fact that the smoothing pro-
cedure distributes data to neighbour bins, but does not strongly change the defining
spectral features of the measurements. In that, it implicitly creates data which could
represent different viewing geometries or situations with slightly varying optical param-15

eters. Hence, this approach is not justified by first principles, but rather with working
examples which strengthen our expectations that this approach will work reasonably
well for any other set of features.

6 Synergy cloud mask

The Synergy cloud mask is discussed in detail by Gómez-Chova et al. (2008) and20

is implemented as an external processor for the BEAM toolbox (Fomferra and Brock-
mann, 2005). It is based on radiative transfer simulations covering all spectral bands of
MERIS and AATSR and statistical analysis of classified data by human experts. It has
been applied to process the years 2007 to 2009 of the MERIS and AATSR time series,
such that a large number of artificial truth data is available.25
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7 Application to MERIS, AATSR, and their synergistic product

If the computation of P (F ,C) and P (F ,C) is based on the frequentistic approach and
artificial truth data, then three major applications of the technique become feasible. Re-
sults from existing algorithms can be reproduced using the Bayesian technique, which
could potentially speed up and simplify the cloud masking of large amounts of data.5

With the Synergy cloud mask from Sect. 6 as example, this procedure is discussed in
the following Sect. 7.1. If the existing algorithm is reproduced reasonably well, one can
use this technique to further enhance the algorithm, which is discussed in Sect. 7.2.
A simple example where data classified by a human expert is used to set up a Bayesian
cloud mask is discussed in Sect. 7.3.10

7.1 Reproduction of existing algorithms

A Bayesian cloud mask can be used to approximate independent algorithms, but with
the advantage of possibly drastically decreased computation times. However, it is not
obvious that a particular algorithm is reproducible to a sufficient extent with this tech-
nique. Artificial truth data from the Synergy cloud mask, which was shortly discussed in15

Sect. 4, is used as a test case and a large number of Bayesian cloud masks with differ-
ent feature sets were created and ranked according to their skill score. The joint prob-
ability’s were estimated using globally equally distributed data from the year 2007 and
similarly distributed data from the year 2008 was used to compute the skill score, which
is used to asses the ability of the cloud mask to reproduce the Synergy cloud mask. The20

presented results don’t have to represent a global optimum since only a small fraction
of the search space was covered in the finite search time. Depending on the number
of features and the classical or naive Bayesian approach, a certain upper bound of
skill scores for any test case was not exceeded, but many feature sets with similar skill
score to that soft limit were found.25

Figures 5 and 6 show the global distribution of skill scores for two classical Bayesian
cloud masks based on sets of two and four features. The increase to four features
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improves the results, although not dramatically for the mean global skill score. The
two feature sets were the best candidates within the allowed search time for the full
Synergy set of channels. The results are best for ocean areas and worst for areas
with mountains (Nepal, west coast of northern America), deserts (Sahara, Arabian
peninsula), and ice and snow covered areas (poles, Siberia). These are actually the5

areas where one naturally would expect major difficulties in detecting clouds. The local
skill score in these areas were significantly improved by increasing the number of used
features to four.

The data that was used to produce Figs. 5 and 6 was sorted and used to generate
the overview shown in Fig. 7. Shown is the computed cloud probability from the two10

Bayesian cloud masks, but separated for the cloudy and non-cloudy group as classified
by the Synergy cloud mask. The threshold of 0.5 cloud probability is also shown and
was used as separation between the cloudy and non-cloudy class. This representation
shows the cause of non unity skill score. Here, the misses (number of red points before
crossing the blue line vs. those beyond) and the false alarms (number of green points15

after crossing the blue line vs. number of points before crossing) are quite similar. Fig-
ure 7 shows that the Bayesian cloud mask with four features exhibits a much smother
distribution of probabilities and an decreased rate of misses, while the improvement of
the false alarm rate is only minor. Also, the impact of changing the threshold value can
be nicely seen. The overall skill score seems to be almost unaffected when changing20

the threshold. The false alarm rate decreases when the threshold in increased, but as
the same time the rate of misses increases which would decrease the skill score.

Similar results can be achieved by using different combinations of feature functions
and channels. An overview about results for the Synergy data, MERIS, and AATSR
alone is given in Tables 1–3. Tables 1 and 2 show results for a classical Bayesian cloud25

masks with strongly independent feature sets for two and respectively four features.
Table 3 shows results for naive Bayesian cloud masks with five strongly independent
features. Classical Bayesian cloud masks based on two strongly independent features
show best results if the complete Synergy channel set or MERIS alone is used. The
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results for AATSR alone are significantly inferior. For the Synergy data set, the 11µm
channel in combination with a MERIS channel in the blue (412 and 442nm) is found
in all three top results. For MERIS alone, a combination of a channel in the blue and
an index of red and short wave infrared channels is found in the top results. It is quite
counter intuitive that the best results for MERIS are achieved with only three channels,5

while the algorithm had the freedom to select up to four channels. The best result for
the set of Synergy channels included four channels, which relates more to the naive in-
tuition that more channels carry more information and would therefore be better suited
for the application. However, since the search space was not fully covered, a better
solution for MERIS with four channels could still be found.10

Table 2 shows similar results, but for classical Bayesian cloud masks based on a set
of four features. Again, Synergy and MERIS results are significantly better than those
for AATSR, while the Synergy results are only slightly better then those for MERIS
alone. All possible feature functions are used within the results, but of course not all
the time for any result.15

Similar studies were also performed for higher numbers of features, but no results
with significantly higher skill scores were found. The skill score results for using three
features are positioned right in the middle of the two discussed results, such that four
features seems to be the best choice to reproduce the Synergy cloud mask with a clas-
sical Bayesian cloud mask based on strongly independent features.20

Similar searches for naive Bayesian cloud masks with strongly independent features
were performed for five and 15 features and results for five features are shown in
Table 3. The search with 15 features did not show significantly better result than the
ones shown. In general, these results are not as successful in reproducing the Synergy
cloud mask as the approaches with the classical Bayesian cloud mask. Skill scores for25

AATSR alone are smaller than for MERIS and Synergy and also generally smaller than
for the classical approach with four features.

Concluding this aspect, it is possible to find feature sets that reproduce the Synergy
cloud mask reasonably well even without covering the complete search space. For
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a soft upper limit of the skill score, different feature sets with similar skill score can be
found. This is actually not surprising and represents the fact that the same classification
results in terms of skill score can be achieved with many different feature sets. From
a technical point, it is then sufficient to choose one of those results with best skill scores,
even if this might not be the absolute global maximum.5

Next, the impact of the number of bins nB, Gaussian smoothing value, and sample
size of the artificial truth data set is discussed. The sensitivity of the Bayesian cloud
mask in terms of skill score with respect to a certain feature set is shown in Figs. 8
and 9. Both Figures show skill scores for Synergy cloud mask artificial truth data with
respect to number of bins, Gaussian smoothing factor, and sample size of the artificial10

truth data. Figure 8 shows an extreme case where only 100 randomly selected globally
distributed cases were used as artificial truth. Again, the year 2007 was used as pool
for the artificial truth and the year 2008 to compute the skill score. The skill scores of
the cloud mask which is based on such a small sample size clearly depends on the
sample itself. The procedure was repeated ten times and the achieved mean skill score15

is shown. The SD in the last digit is shown in parenthesis.
With no Gaussian smoothing applied, the skill score clearly decreases with increas-

ing number of bins since the sample size is much to small for this resolution. Also, the
impact of the sample is largest since the SD is highest. The skill score increases with
increasing number of bins and Gaussian smoothing until a maximum is reached. With20

then increasing bin number and smoothing, the skill score decreases, but only slightly.
In this case, an optimal set of bin size and smoothing can be found. If smaller vales
are used, the skill scores are drastically reduced, but if larger values are used, the skill
score decreases only slightly.

A similar sensitivity study is shown in Fig. 9, but here a much larger sample size of25

artificial truth data was used. Again, without Gaussian smoothing, the smallest number
of bins shows the best results while with increasing number of bins the skill score
decreased since the total number of bins grows with the fourth potential of the number
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of bins. A large plateau of consistently stable and high skill score values is found for
numbers of bins above 25 and Gaussian smoothing of above 0.9.

In both cases, for small and very large sample sizes of artificial truth data, the skill
score decreases with increasing Gaussian smoothing for small numbers of bins. This
clearly shows that too strong Gaussian smoothing can destroy information in an accu-5

rately estimated histogram, but distributes information in incomplete histograms such
that it better represents the true probability density.

In general, one can not perform such studies to assess the optimal number of bins
and value of Gaussian smoothing parameter, since only an insufficient number of arti-
ficial truth data might be available. The presented results from numerical experiments10

indicate that for four features and a sufficiently large sample of artificial truth data, a bin
size of 40 with a Gaussian smoothing of 1.5 is a good choice. This result holds not only
for the presented feature set, but also for many other sets which have been assessed
during this research.

7.2 Enhancements of existing algorithms15

It was shown so far that Bayesian cloud masks can be used to reproduce at least one
existing cloud mask up to a certain extent. It is unclear however, what the limiting factors
are in global skill score with respect to this particular cloud mask. A major contributor
to this upper limit can be inconsistencies in the artificial truth data set. Examples are
shown in panel a and b of Figs. 10 and 11, which actually show the surroundings of20

the scenes shown in Figs. 1 and 2. Both figures show some classification errors of
the Synergy cloud mask. The top part of Fig. 10 shows a partly cloudy scene over
a large ice or snow covered area, which is completely masked as cloudy (white areas
in panel b). In addition, the arrow shaped land area in the lower part of the Figure
(Brodeur peninsula on Baffin island) is clearly not cloudy, but is classified as cloudy.25

Similarly in Fig. 11, the complete dust storm east of the Korean peninsula is marked as
cloudy. Such classification errors introduce inconsistencies which affect the produced
histograms and are in general difficult to reproduce with an independent system.
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The appearance of such errors does not mean that the algorithm should be aban-
doned and with it all the work that has been invested into developing it. Panels c and d in
Figs. 10 and 11 show how the Bayesian cloud mask technique can be used to enhance
this existing algorithm, when errors in the artificial truth data are manually corrected by
an human expert. Synergy cloud mask results from these two orbits were corrected5

by hand and used as artificial truth to produce a classical Bayesian cloud mask based
on four strongly independent features. The two orbits were then reprocessed and the
resulting cloud masks and cloud probabilities are shown. Some artifacts at land and ice
boundaries are still present, but the major classification errors were strongly reduced.

This result is merely shown as proof of concept for the enhancement of existing algo-10

rithms. The shown case was limited to only two scenes which were manually corrected
and used as artificial truth for the Bayesian cloud mask, which is therefore only strictly
applicable to these two scenes. In a realistic approach, one would need some knowl-
edge on where the existing algorithm performs below the requirements. This poses no
real limitation and will always be the case, otherwise one would have no incentive to im-15

prove the existing algorithm. These cases, e.g. limited to certain areas, known weather
conditions, or certain periods of time could be excluded from the artificial truth data set,
while other correctly classified results are still included. These introduced data gaps,
or better representativity gaps, can then be filled with artificial truth data from manual
classification. Such an approach can be used to focus the attention of the human ex-20

perts to areas where their expertise is most strongly needed and to use their available
labor in the most efficient way.

As it was discussed in Sect. 7.1, possibly many different feature sets can be used
to recreate the algorithms which was used to produce the artificial truth data. This
property can be used to produce much more robust cloud masking algorithms. If the25

seeding algorithm can not cope with missing data, if e.g. a certain needed channel is
flagged as unusable or saturated, one can simply switch to a different Bayesian cloud
mask which does not depend on that channel. The operational version of the cloud
mask for the Cloud CCI project contains several ranked Bayesian cloud masks and if
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the top mask fails to produce a result, a mask of lower rank is used until the last mask
was used or the algorithm produced a result. This approach can greatly reduce the
number of unprocessed measurements for a cloud masking scheme.

7.3 Cloud masks from manually classified data

Human experts can produce artificial truth data of high quality by careful manual classi-5

fication of MERIS, AATSR, or Synergy images. It is of great advantage that the spatial
resolution of MERIS and AATSR images is high enough such that spatial and spectral
patterns together can be used to classify data points. Cloud shadows for instance, can
be used to clearly distinguish clouds from snow and ice surfaces. In that respect, the
algorithm itself is not based on spatial information, but it was surely used to create10

the artificial truth data. It is beyond the scope of this paper to produce a cloud mask
with global applicability, but it should be demonstrated how straightforward such a pro-
cedure would be. The here presented results are then clearly applicable to OLCI and
SLSTR onboard the upcoming Sentinel-3 satellite.

The same two orbits which were discussed in Sects. 4 and 7.2 are used for the pro-15

cedure. Both orbits contain scenes which are in general difficult to classify accurately,
such as clouds over a snow and ice covered region, cloud free snow and ice covered
surfaces, or a pronounced dust storm. The manual classification setup was designed,
such that no special computational knowledge is needed to perform the cloud clas-
sification. For each test orbit, image files containing several layers were created. The20

various image layers include an RGB image, contrast stretched gray-scale images from
Synergy channels, and several feature functions which were found to be of good per-
formance in the Bayesian framework. To classify actual pixels, the human expert has
to color areas (e.g. blue color for cloud free and red color for cloudy) in a blank image
layer. By adjusting the transparency of the single layers, each scene can be carefully25

inspected before a decision is made. The actual shape of the colored areas is of lower
importance as well as the actual amount of classified areas. However, the total vari-
ability of possible cases and scenes should be included in the classification.

11065

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/11045/2014/amtd-7-11045-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/11045/2014/amtd-7-11045-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
7, 11045–11085, 2014

Bayesian cloud
detection for MERIS,

AATSR, and their
combination

A. Hollstein et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Results of this procedure are shown in Fig. 12. The leftmost two panels show an
RGB view of the scene and with blue and red color the areas which were classified by
the human expert. The actual amount of the classified area is small compared to the
total size of the scene. Then, this dataset was used as artificial truth and a classical
Bayesian cloud mask with four strongly independent features was set up to to process5

the two orbits. The resulting cloud masks are shown in the middle two panels, while
the actual cloud probability is shown in the two rightmost panels.

The Bayesian cloud mask is clearly able to separate the clouds from the snow and
ice underground, does not misclassify the land area (see Sect. 7.2), and is able to
mostly separate clouds from the dust storm. Most importantly, the human expert does10

not need to be an expert on how to implement this mask, or how to design hierarchies
of thresholds, but simply translates classification decisions into cloud mask results.
These images can be stored for future enhancements of the artificial truth data set and
as self describing documentation of the algorithm.

This approach is most straightforward when the spatial resolution of the instrument15

in question is high enough, such that the human expert can use the spatial pattern
information to correctly classify cloudy from non-cloudy areas. For global applicability,
a higher number of orbits with representative spatial and seasonal sampling should be
included in the set of considered artificial truth data. Especially, complex cases such as
scenes with ice, snow, sun glint, mountains, or dust storms should be included in the20

classification effort.

8 Conclusions

The application of the classical and naive Bayesian cloud masking technique to MERIS,
AATSR, and their Synergy was discussed in detail. Bayesian cloud masks based on
independent features are numerically highly efficient and are very well suited for the25

fast processing of large amounts of data. Within ESA’s Cloud CCI project, it is intended
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to apply this technique to a reprocessing of the 9.5 year time series of MERIS and
AATSR measurements.

Sufficient amounts of artificial truth data and the frequentistic approach can be used
to estimate multidimensional histograms for the estimation of background joint proba-
bilities. Gaussian smoothing of appropriate width can be used to drastically reduce the5

actual amounts of truth data needed to compute histograms for the classical Bayesian
approach. This post processing step greatly simplifies our ability to further explore the
classical Bayesian approach.

Due to restrictions of modern computer hardware, the practical limit for the classical
Bayesian approach is reached with six to seven features. This does not actually restrict10

its applicability, since trivial feature functions can be used which combine any number
of measurements into a single feature.

It was found that classical Bayesian cloud masks with four strongly independent
features are the best choice for the cloud masking of MERIS, AATSR, and their Synergy
measurements when the Synergy cloud mask is used as benchmark. The classical15

approach gave significantly better results then the naive approach. MERIS and the
MERIS-AATSR Synergy give very similar results in terms of cloud classification, while
AATSR alone shows significantly smaller skill scores. The MERIS Oxygen-A absorption
channel was found to be present in the best results when the set of selected feature
functions and channels was numerically optimized.20

The broad spectral range and the number of available channels within the Synergy
data set can be used to set up Bayesian cloud masks with very similar classification
skill, but based on different combinations of channels. This can be used to design cloud
masking schemes which are robust against partially missing data.

It was shown how Bayesian cloud masks can be used to reproduce the results of25

existing algorithms, improve existing algorithms, and how to set up new classification
schemes based on manual classification by human experts. Reproducing existing al-
gorithms offers the perspective of increased numerical efficiency and processing ro-
bustness. The approach based on manual image classification is straightforward for
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the human expert. Classified scenes can be stored and revisited if the produced cloud
masks show misclassifications in certain areas or weather conditions. If errors are not
traceable to errors in the manual classification, then additional scenes can be added to
the set of artificial truth data to increase the chance of correct classification.

The presented results for MERIS and AATSR can be used to implement an accurate5

and highly efficient cloud masking scheme for OLCI and SLSTR onboard the upcom-
ing Sentinel 3 satellite. Especially, the additional oxygen absorption channels from the
OLCI instrument might be used within an improved and numerically efficient cloud clas-
sification algorithm.

Although this paper is focused on strongly independent Bayesian cloud masks, there10

is no apparent reason which prevents the application of the introduced techniques to
the case of dependent Bayesian cloud masks. It is straightforward to include external
information such as clear sky radiance estimators or NWP fields in the proposed opti-
mization strategy for the construction of features. The application of Gaussian smooth-
ing to derived histogram fields is then independent from external information and can15

be used to reduce the amounts of needed truth data.
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Table 1. Best found results for feature sets of classical Bayesian cloud masks with two strongly
independent features which recreate Synergy cloud mask results best. The results are sep-
arated for the Synergy of MERIS and AATSR and MERIS and AATSR alone. Channels are
referenced by their central wavelength. MERIS channels carry the unit of nm while for AATSR
channels µm is used.

nF instrument skill score feature set

2 Synergy 0.781 620–900nm,412–11µm
2 Synergy 0.780 442–11µm,778–708nm
2 Synergy 0.776 885–620nm,dx(11µm,442nm)

2 MERIS 0.781 412nm,dx(885nm,865nm)
2 MERIS 0.774 412nm,dx(900nm,681nm)
2 MERIS 0.773 442nm,dx(900nm,708nm)

2 AATSR 0.707 12µm/0.55µm,3.7µm/11µm
2 AATSR 0.706 0.55µm/3.7µm,dx(3.7µm,12µm)
2 AATSR 0.706 0.55µm/12µm,dx(12µm,3.7µm)
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Table 2. Similar as Table 1, but results for classical Bayesian cloud masks based on four
strongly independent features are shown.

nF instrument skill score feature set

4 Synergy 0.826 1.6µm,681nm/778nm,dx(0.55µm,760nm),dx(11µm,412nm)
4 Synergy 0.821 412nm,12µm,753nm×1.6µm,dx(11µm,12µm)
4 Synergy 0.820 442nm,3.7–11µm,3.7µm×12µm,dx(665nm,753nm)

4 MERIS 0.822 412nm,900nm×510nm,dx(760nm,620nm),dx(885nm,865nm)
4 MERIS 0.821 753nm/510nm,442nm×412nm,dx(865nm,753nm),dx(885nm,760nm)
4 MERIS 0.818 442nm,665nm/900nm,dx(560nm,510nm),dx(865nm,885nm)

4 AATSR 0.765 12µm,0.55µm,12µm/3.7µm,0.55µm/0.87µm
4 AATSR 0.757 0.67µm,12µm/3.7µm,0.87µm/0.55µm,11µm/0.67µm
4 AATSR 0.757 0.55µm/0.87µm,12µm×3.7µm,dx(0.55µm,3.7µm),dx(12µm,11µm)
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Table 3. Similar as Table 3, but results for naive Bayesian cloud masks based on five strongly
independent features are shown.

nF instrument skill score feature set

5 Synergy 0.756 12µm,760nm,412nm,560nm×490nm,dx(0.87µm,865nm)
5 Synergy 0.751 681–900nm,11–412nm,0.87µm/865nm,560nm×3.7µm,dx(708nm,490nm)
5 Synergy 0.750 778nm,560nm,11–412nm,900–620nm,dx(1.6µm,442nm)

5 MERIS 0.753 412nm,442nm,865nm,560nm/490nm,dx(681nm,900nm)
5 MERIS 0.750 412nm,510–708nm,dx(885nm,760nm),dx(665nm,900nm),dx(620nm,412nm)
5 MERIS 0.749 760nm,412nm,865–490nm,dx(900nm,708nm),dx(681nm,778nm)

5 AATSR 0.695 11µm,12µm,11–0.87µm,3.7µm/11µm,12µm×0.55µm
5 AATSR 0.692 0.55µm,11µm,3.7–12µm,11–0.87µm,dx(11µm,12µm)
5 AATSR 0.691 11µm,12–3.7µm,11µm×3.7µm,dx(0.87µm,11µm),dx(0.55µm,12µm)
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Figure 1. Several views of a scene over Greenland from the 17 July 2007 with the image
centered at 59◦31′12′′W and 79◦0′0′′ N. Single panels include a pseudo RGB view, results
of the non Bayesian Synergy cloud mask (with white indicating clouds, see Sect. 6), as well
as single channels and simple functions operating on two channels. The function dx denotes
the index function and is defined as: dx(a,b) = (a−b)/(a+b). Units are not shown and the
color-scales are stretched to maximize the visible contrast.
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Figure 2. Similar as Fig. 1, but for a scene near the Korean peninsula. The center of the images
is located at 125◦52′12′′ E and 37◦45′36′′ N.
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Figure 3. Difference of the two dimensional histograms for P (F ,C) and P (F ,C). The left panel
show a direct results using 990 000 globally distributed measurements, while for the right panel
only 1000 measurements were used. The histograms on the right side were post-processed
using Gaussian smoothing with a width parameter of 1.84.
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Figure 4. Similar as Fig. 3, but for a different set of Features and a different Gaussian smoothing
factor of 2.15. This set of Features includes the MERIS Oxygen A band absorption channel.
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Figure 5. Global distribution of skill scores for a classical Bayesian cloud mask using only two
strongly independent features. Data is shown for the year 2008 and the joint probabilities of the
mask were estimated with data from the year 2007. The global skill score is 0.78 and the used
features are shown in the title of the figure.
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Figure 6. Similar as Fig. 5, but for a different classical Bayesian cloud mask based on four
strongly independent features. The global skill score is 0.83.
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Figure 7. Cloud probability from the two classical Bayesian cloud masks from Fig. 5 (dashed
line, P (C,F A)) and Fig. 6 (solid line, P (C,F B)) separated by cases which were labeled as cloudy
(red) and non-cloudy (green) by the Synergy cloud mask. Same data as in Figs. 5 and 6 was
used and the results were sorted for a better overview. The threshold of 0.5 cloud probability is
marked with a blue line.
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Figure 8. Skill score of a classical Bayesian cloud mask with four strongly independent features
with respect to number of bins for each dimension of the underlying histograms and the applied
Gaussian smoothing. Artificial truth data is taken from 2007 and skill scores were computed
for the year 2008. Only 100 randomly selected and globally distributed spectra were used to
compute the histograms. This selection was repeated ten times and mean values for the skill
score are shown. The SD on the last significant digit is shown in parenthesis.
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Figure 9. Similar as Fig. 8, but the sample size of the artificial truth was 1000 times larger with
all in all 100 k cases.
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Figure 10. Panel (a) shows an RGB view of a larger area of the scene which is shown in Fig. 1.
Panel (b) shows results of the non Bayesian Synergy cloud mask with some classification errors
over the top snow and ice region and the arrow shaped land area in the bottom of the figure.
Panel (c) shows results of a Bayesian cloud mask which is based on corrected artificial truth
from this scene and the one shown in Fig. 11. Panel (c) shows the cloud probability results of
this Bayesian cloud mask.
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Figure 11. Similar as Fig. 10, but a larger area corresponding to Fig. 2 is shown. Panel (b)
shows results of the non Bayesian Synergy cloud mask where the strong dust storm is com-
pletely classified as cloud. Panel (c) shows results of a Bayesian cloud mask which is based
on corrected artificial truth from this scene and the one shown in Fig. 10. Panel (c) shows the
cloud probability results of this Bayesian cloud mask.
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Figure 12. Manual classification of the scenes shown in Figs. 1 and 2. Shown are the cloudy
and non-cloudy classification together with an RGB view for two scenes (two leftmost panels,
blue=non-cloudy, red= cloudy), the resulting cloud mask (two middle panels), and the cloud
probability (rightmost two panels).
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