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Abstract

Advances in embedded systems and low-cost gas sensors are enabling a new wave of
low cost air quality monitoring tools. Our team has been engaged in the development
of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-
Pods use commercially available metal oxide semiconductor (MOx) sensors to measure5

CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are
low in cost and show high sensitivity near ambient levels; however they display non-
linear output signals and have cross sensitivity effects. Thus, a quantification system
was developed to convert the MOx sensor signals into concentrations.

Two deployments were conducted at a regulatory monitoring station in Denver, Col-10

orado. M-Pod concentrations were determined using laboratory calibration techniques
and co-location calibrations, in which we place the M-Pods near regulatory monitors to
then derive calibration function coefficients using the regulatory monitors as the stan-
dard. The form of the calibration function was derived based on laboratory experiments.
We discuss various techniques used to estimate measurement uncertainties. A sepa-15

rate user study was also conducted to assess personal exposure and M-Pod reliability.
In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks
and sensor drift was analyzed with the result being a calibration function that included
drift.

We found that co-location calibrations perform better than laboratory calibrations.20

Lab calibrations suffer from bias and difficulty in covering the necessary parameter
space. During co-location calibrations, median standard errors ranged between 4.0–
6.1 ppb for O3, 6.4–8.4 ppb for NO2, 0.28–0.44 ppm for CO, and 16.8 ppm for CO2.
Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than
the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6;25

for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300–500.
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The user study provided trends and location-specific information on pollutants, and
affected change in user behavior. The study demonstrated the utility of the M-Pod as
a tool to assess personal exposure.

1 Introduction

1.1 Background and motivation5

Health effects such as asthma, cardio-pulmonary morbidity, cancer, and all-cause mor-
tality are directly related to personal exposure of air pollutants (EPA ISA Health Criteria,
2010, 2013a, b). To comply with the US Clean Air Act, state monitoring agencies make
ongoing measurements in centralized locations that are intended to be representative
of the conditions normally experienced by the majority of the population. Because these10

measurements require sophisticated, costly, and power-intensive equipment, they can
only be taken at a limited number of sites. Depending on the pollutant, individual, and
location, this limitation can lead to misleading personal exposure assessments (HEI,
2010). Low-cost, portable, and autonomous sensors have the potential to take equiv-
alent measurements while more effectively capturing spatial variability and personal15

exposure. Thus, we set out to survey such sensors, analyze their performance, and
understand the feasibility of using them. We describe the M-Pod hardware and quan-
tification system, and personal exposure results.

1.2 Low-cost portable air pollution measurement techniques

Quantitative measurements of pollutant concentrations generally require techniques to20

be sensitive at ambient concentrations and unique to that particular compound (i.e.
free from interference from other pollutants). Regulatory agencies use EPA-approved
methods and equipment to meet these criteria, and some examples are given below.
Rather than provide an exhaustive report of all available measurement techniques, we
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provide brief descriptions of the various techniques (along with their measurements,
costs, and potential).

1.2.1 Carbon monoxide

Federal Reference Method (FRM) measurements of CO are made using infrared ab-
sorption instruments, which use ∼ 200 W power, cost $15 000–20 000, and require fre-5

quent calibrations and quality control checks (EPA Quality Assurance Handbook Vol.
II, 2013). By comparison, metal oxide semiconductor (MOx) sensors cost $5–15 and
require less than 1 W of power. One example of this kind of device is the SGX 5525 sen-
sor used for CO measurements that uses approximately ∼ 80 mW power. MOx sensors
have fast responses, low detection limits, and require simple measurement circuitry.10

However, they can have high cross-sensitivities to other reducing gases, and can be
poisoned by certain gases or high doses of target gases. Daily or weekly calibrations
are recommended.

The typical reducing gas MOx sensor uses a heated tin-oxide n-type semi-conductor
surface, on which oxygen can react with reducing gases, thus freeing electrons in the15

semiconductor. This lowers the electrical resistance proportional to the concentration
of the reducing gas (Moseley, 1997). These sensors suffer from cross-sensitivities to
temperature, humidity, and other pollutants. Korotcenkov (2007) provides a compre-
hensive review of MOx materials and their characteristics for gas sensing, while Fine
et al. (2010) and Bourgeois et al. (2003) review the use of MOx sensors and arrays in20

environmental monitoring.
Electrochemical sensors are relatively low in cost, ∼$50–100, and have been used in

multiple studies that required low power sensors for measuring CO (Milton and Steed,
2007; Mead et al., 2013). They exhibit high sensitivity, low detection limit (sub-ppm
for some models), fast response, low cross-sensitivity, and consume power in the hun-25

dreds of µW range. However, they have more complicated and expensive measurement
circuitry, are susceptible to poisoning, have a shorter life span (generally 1–3 years),
are more expensive than MOx, and are generally larger in size than MOx.
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1.2.2 Ozone

FRM measurements of O3 are made using the principle of chemiluminescence (EPA
ISA, 2013a). Chemiluminescence instruments typically cost $10 000–20 000 and use
approximately 1 kW. A Federal Equivalence Method uses UV absorption to measure
an O3 concentration. Such instruments have prices in the low $1000 s.5

MOx O3 sensors have been commercialized and can cost anywhere from $5 to $100,
with power consumption as low as 90 mW. A tungsten oxide semiconductor sensor
board has been commercialized by Aeroqual, and costs ∼$250. Power consumption is
2–6 W, and this material is reported to have less cross-sensitivity and drift than other
MOx materials (Williams et al., 2009). Electrochemical sensors are also available with10

reported detection limits less than 5 ppb.

1.2.3 Nitrogen oxides (NOx)

FRM measurements of NOx are made using the chemiluminescence reaction of O3
with NO along with the catalytic reduction of NO2 to NO (EPA ISA, 2013b). These
instruments typically cost $10 000–20 000 and consume approximately 1 kW power.15

NO2 can also be measured with electrochemical sensors ($80–210) and MOx sensors
($4–54).

1.2.4 Carbon dioxide (CO2)

CO2 is the primary anthropogenic greenhouse gas, as well as a proxy for assessing
ventilation conditions in indoor environments. Elevated concentrations have also been20

found to affect decision-making and exam performance (Satish et al., 2012). Portable
non-dispersive infrared (NDIR) carbon dioxide sensors are precise, easy to calibrate,
easy to integrate into a mobile sensing system (Yasuda et al., 2012), and are avail-
able in the $40 range. The sensors operate by emitting a pulse of infrared radiation
across a chamber. A detector at the other end of the chamber measures light intensity.25
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Absorption of light by CO2 accounts for the difference between expected and mea-
sured intensity. Interference can occur due to absorption by water vapor and other
gasses and drift can occur due to changes in the light source (Zakaria, 2010). Electro-
chemical sensors are also available to measure CO2. They are inexpensive and have
low power requirements, but generally have slower response times, shorter lifespans,5

and are more susceptible to poisoning and drift, than NDIR type sensors.

1.3 Instruments for personal air quality monitoring

Personal exposure has been characterized extensively using filter samplers, particle
counters, and sorbent tubes. These methods can provide simple, accurate, and com-
prehensive speciation results, but the time series information is lost since each filter or10

adsorbent tube typically samples for durations of a day or more. Relatively recent sam-
pling techniques allow for higher time-resolution personal measurement of pollutants.

Electrochemical sensors have been used to monitor CO in many works, including
Kaur et al. (2007), Mead et al. (2013), Honicky et al. (2008), and Milton et al. (2006).
Shum et al. (2011) developed a wearable CO, CO2, and O2 monitor. O3 and NOx have15

both been monitored by Mead et al. and Honicky et al., using electrochemical and MOx
sensors. Williams et al. (2009) developed and deployed a portable tungsten oxide-
based ozone sensor and NO2 sensor. Hasenfratz (2012) also monitored O3 in a train-
mounted instrument study using metal oxide semiconductor sensors. Hasenfratz’s work
tested collaborative calibration performance, in which sensor nodes were periodically20

co-located to check and improve calibrations.
Tsow et al. (2011) developed wearable monitors to measure benzene, toluene, ethyl-

benzene and xylene at ppb levels. The measurement is based on a MEMS tuning fork
design that provides good selectivity and low detection limits, but the device is not yet
commercially available. Electronic nose systems for sensing VOCs are commercially25

available, often designed to detect specific gas mixtures from processes. Such sys-
tems use a variety of sensing techniques, including those mentioned above, as well
as polymer coated sensors, mass spectrometry, ion mobility spectrometry, and gas
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chromatography, among others (Röck et al., 2008). These models and most real-time
personal exposure monitors are currently too expensive to be truly ubiquitous.

Advancements in technology and increasing concern about air quality in many re-
gions have produced a wave of low-cost personal exposure instruments. Reliable re-
sults are needed for users of these low cost monitors before they take action to reduce5

their exposure. We describe our novel quantification system that includes co-location
calibration, modeling of sensor responses with environmental parameters, and uncer-
tainty estimation for these measurements. We demonstrate the quantification system
by presenting results from a user study where six users wore monitors for 10–20 days.

2 Methods10

2.1 MAQS – Mobile Air Quality Sensing System

The requirements for our mobile sensing system included wearability, low-cost, multi-
pollutant (sensing of as many NAAQS criteria pollutants at typical ambient concen-
trations as possible), wireless communication, and enough battery life to wear for an
entire day. The result of our development effort is the M-Pod, shown in Fig. 1.15

The Mobile Air Quality Sensing (MAQS) system is designed to collect, analyze, and
share air quality data (Jiang et al., 2011). An Android mobile phone application, MAQS3
(Mobile Air Quality Sensing v.3, 2014) pairs with the M-Pod via Bluetooth, and the M-
Pod data is transmitted to the phone periodically. This data is then sent to a server
for analysis. A web-based analysis and GIS visualization platform can access new20

data from the server. Wi-Fi fingerprints can also be used to identify an M-Pod’s indoor
locations (Jiang et al., 2012).

The M-Pod has four metal oxide sensors, measuring CO, total VOCs, NO2, and O3
(SGX Corporation models MiCS-5525, MiCS-5121WP, MiCS-2710, and MiCS-2611).
Socket-mount MOx sensors were used because of the difficulty replacing the surface-25

mount sensors and possible poisoning of the surface-mount sensors due soldering
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(hot-air reflow). An NDIR sensor (ELT, S100) measures CO2 and a fan (Copal F16EA-
03LLC) provides steady flow through the device. Data is logged using an Arduino-
based platform. The M-Pod also has a light sensor, and a relative humidity and tem-
perature sensor (Sensirion, SHT21).

2.2 Calibration system5

MOx sensors represent the lowest cost sensing solution but hold significant quantifi-
cation challenges. MOx sensor responses are non-linear with respect to gas concen-
tration, and are affected by ambient temperature and, to a lesser degree, by humidity
(Sohn et al., 2008; Barsan and Weimar, 2001; Delpha et al., 1999). Baseline drift and
changes to sensitivity over time are also common. These are typically due to aging10

and irreversible changes to the sensing surface (Romain and Nicolas, 2009). As such,
using MOx sensors quantitatively requires that a model be developed which not only
characterizes the relationship between sensor resistance and gas concentration, but
also includes the impacts of these other parameters. Below we describe our calibration
system and strategies for overcoming these challenges.15

Our calibration system uses automated mass flow controllers (MFCs, Coastal Instru-
ments FC-2902V) and solenoidal valves to inject specific mixtures of gas standards
into a Teflon-coated aluminum chamber equipped with, temperature and relative hu-
midity control. Custom LabVIEW software and Labjack data acquisition devices are
used for instrument control and data logging. The CO and NO2 sensors were cali-20

brated for changes in temperature and humidity. The CO2 sensors were only calibrated
for temperature, as they show a small non-linear response to temperature. Humidity ef-
fects have been reported for NDIR sensors, but are not a significant issue in this case.
Temperature is controlled using a heat lamp and by performing calibrations inside a re-
frigerated chamber. Routing a portion of the airflow through deionized water controls25

relative humidity, using a 3-way valve. Conditions reach steady state in 90 s or less.
Calibrations are performed after sensors have operated continuously for at least

a week, to ensure adequate sensor warm-up and stabilization time. Each calibration
2432
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run consists of different gas concentrations, temperature and humidity set points. Sen-
sors are held at each state for periods of 15 min to allow them to reach steady state.
The last 30 s of each 15 min period are averaged, and these points are used for the
calibration. Initially, the sensors were calibrated by mounting them on large arrays, but
we found that the sensor response is highly dependent on the position in the array and5

air flow conditions. The convective cooling of the sensors is thus an important variable.
To ensure that calibration temperature and flow conditions about each sensor are the
same as during operating conditions, they are calibrated in their individual M-Pods.

2.3 Development of quantification models

To simplify the inter-comparison of MOx sensors (which are often highly heterogeneous10

from sensor to sensor), it is common practice to normalize a sensor’s resistance by
a reference resistance, Ro. The reference resistance is the sensor’s unique response
to a given environment, for example, clean air at 25 ◦C, standard atmospheric pressure,
and 20 % relative humidity. As such, a sensor quantification model relates Rs/Ro to
concentration, temperature and humidity. Previous works have used machine-learning15

techniques to determine concentration values (Kamionka et al., 2006) and identify pol-
lution sources (Gardner and Bartlett, 1994). However, to our knowledge, a parametric
regression based model has yet to be developed for these sensors. We believe this
type of model is preferable for ease of implementation.

Two sensor models were chosen for the majority of the analysis conducted thus far:20

the MiCS-5121WP CO/VOC sensor and MiCS-5525 CO sensor (both manufactured by
SGX Sensortech). The VOC sensor was chosen because of our strong initial interest in
indoor air pollution. The MiCS-5525 was the logical next step because it has the same
semiconductor sensor surface as the MiCS-5121, but with an activated charcoal pre-
filter. The models to convert sensor signal to concentration were developed using both25

lab data and ambient co-location data. In lab experiments, the sensors were calibrated
in the Teflon-coated chamber. The chamber and calibration system are described in
the Supplement. The model derived from this data was then applied to each M-Pod
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CO sensor used in the co-location. Our results show that the CO, NO2 and O3 MOx
sensors can detect ambient concentrations when frequently calibrated.

Figure 2 illustrates the MiCS-5525 CO sensor response to changing temperature
at various concentrations of CO. The absolute humidity has a lesser effect on sig-
nal response and was held constant so as to minimize the degrees of freedom within5

the model response. From experimental observation, the sensor response appears to
change linearly with respect to temperature for a given CO concentration between con-
centrations of 0–2.8 ppm. The slope and intercept of the linear temperature trends also
appear to decrease with increasing CO concentration. Equation (1) was chosen as the
best fit for the observed sensor response to CO concentration and temperature. A third10

term of the same form was added to the model to account for changes in absolute
humidity (H).

Rs

Ro
= f (C)(T −298)+g(C)+h(C)H (1)

In this model, f (C) describes the change in temperature slope with respect to pollu-15

tant concentration; g(C) describes the change in resistance in dry air at 298 K due
to concentration; and h(C) describes the change in absolute humidity slope with re-
spect to concentration. The terms f (C), g(C), and h(C) were chosen to be of the form
p1 exp(Cp2).

This model form performed well for all MOx sensors used, but is computationally20

challenging to work with because it is not algebraically invertible. Instead, we used
a 2nd order Taylor approximation for this model. However, an even simpler model in
temperature, absolute humidity, and concentration (Eq. 2) was found to perform sim-
ilarly in many cases. The comparable performance of the models is likely due to the
low variation in CO concentration observed throughout the field experiments. Though25

we did not perform the same lab calibration tests with the NO2 and O3 sensors, we
found that in co-location calibrations, Eqs. (2) and (3) also fit the data comparably to
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the model in Eq. (1).

Rs

Ro
= p1 +p2C+p3T +p4H (2)

In cases with longer time series and multiple calibrations, a time term, p5t, was added
to correct for temporal drift.5

Rs

Ro
= p1 +p2C+p3T +p4H +p5t (3)

Equation (3) was used throughout the results unless otherwise noted.
We determined concentration uncertainty by propagating the error in the calibration

model through the inverted calibration function (NIST Engineering Statistics Handbook10

2.3.6.7.1). The calculation included co-variance terms, but did not include the propa-
gated uncertainty of the temperature, humidity, nor voltage measurements, as those
are expected to be insignificant relative to the other sources of error. The calculated
uncertainty does not directly account for sources of error such as convection heat loss
or cross sensitivities that may be seen in field measurements but not during calibration.15

However, co-location calibration should account for some cross-sensitivity effects since
there is simultaneous exposure to various measured pollutants.

To explore the validity of this uncertainty propagation, we employed duplicate M-
Pods during a user study. For this user study data, when there were duplicate M-Pod
measurements but no reference monitors, we used two additional methods to explore20

uncertainty, the average relative percent difference (ARPD), and the pooled pairwise
standard deviation of the differences (SDdiff) (Table 4). These formulas are defined as
follows:

SDdiff =

√√√√ 1
2n

n∑
i=1

(
Cprimary
i −Cduplicate

i

)2
(4)

25
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ARPD =
2
n

n∑
i=1

∣∣∣Cprimary
i −Cduplicate

i

∣∣∣(
Cprimary
i +Cduplicate

i

) ×100% (5)

This approach, outlined in Dutton et al. (2009), provides an additional assessment of
measurement uncertainty, and can be compared to the uncertainties calculated using5

propagation of error to understand if the propagation has captured most real sources of
error. To calculate the ARPD, negative data were removed. In the future, zero replace-
ment, or detection limit replacement for data with negative values will be considered.
The ARPD was then multiplied by the average pooled concentration measurements
to get units of concentration that could be directly compared with the uncertainty esti-10

mates derived through propagation.

2.4 Validation and user study

From 3–12 December 2012, and later from 17–22 January 2013, nine M-Pods were
co-located with reference instruments at a Colorado Department of Public Health and
Environment (CDPHE) air monitoring station in downtown Denver. Total system perfor-15

mance was assessed by comparing laboratory-generated calibrations with calibrations
based on “real-world” ambient data, referred to as co-location calibrations. The 2nd
co-location was performed with a fresh set of sensors and yielded slightly better re-
sults (Supplement). Reference instruments for calibration and validation were provided
by CDPHE and the National Center for Atmospheric Research (NCAR). CO was mea-20

sured using a Thermo Electron 48c monitor, CO2 and H2O were measured with a LI-
COR LI-6262, NO2 was measured using a Teledyne 200E, and O3 was measured with
a Teledyne 400E. The CO2 instrument was calibrated before the deployment, while the
others were span and zero checked daily as per CDPHE protocol. The M-Pods were
positioned 8 feet from the sampling inlets. They operated continuously in a ventilated25

shelter on the roof of the facility.
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In the user-study portion of the validation, nine M-Pods were carried for over two
weeks, with three users each carrying two M-Pods. The objective of the user study was
to demonstrate the use of the M-Pods for assessing personal exposure. Specifically,
we were interested in M-Pod inter-comparisons and how they drift over time during
personal usage. The M-Pods were calibrated before and after the deployment using co-5

location calibrations. They were worn on the user’s upper arm or attached to backpacks
or bags, and were placed as close as possible to the breathing area when users were
sitting or sleeping.

Measurement values were given as minute medians of the 1/10 Hz raw data. The
raw data was filtered beforehand for electronic noise. Sensor-specific thresholds of two10

standard deviations on the differences between sequential values were used to identify
and remove noise spikes. An upper bound threshold on sequential differences provided
another layer of filtering for the noisiest data. To ensure that sensors were warmed up,
10 min of data were removed after power-on. Additional noise filtering was applied for
the co-location tests due to a bad USB power supply. This data was filtered for noise15

by applying the Grubbs test for outliers to the differences between all the M-Pods and
a “reference” M-Pod that displayed less electronic noise.

3 Results

3.1 Lab vs. co-location calibration results

A summary of the results from the 3–12 December co-location and lab-calibrated data20

are presented in Tables 1 and 2. Table 1 shows summary statistics for the first co-
location calibration, while Table 2 shows the performance for the different calibration
methods and models.
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3.1.1 MOx sensor results

The MiCS-5525 CO sensor was found to have substantially higher error using lab-
calibrations vs. co-location calibrations. As shown in Table 1, the median standard error
for co-location calibration was 0.45 ppm (range 0.38–0.52 ppm), while the median lab
calibration standard error was 3.56 ppm (range 2.85–5.33 ppm). Adding a linear time5

correction, as in Eq. (3), was found to improve the fit in most MOx sensor data sets.
In this case, it improved the fit of the co-location calibrations slightly, giving a median
standard error of 0.44 ppm (range 0.38–0.51 ppm). The median standard error for the
exponential-based model from Eq. (1) was 0.39 ppm (range 0.34–1.78 ppm), but it ac-
tually provided a worse fit in some cases. The linear form of the equation, Eq. (2),10

is a good approximation of the exponential form shown in Eq. (1), likely because of
the small parameter space spanned by the observed data. We have included residual
plots (Fig. 3) to demonstrate model performance. Note the absence of a trend in these
residual plots.

The relationship between co-location calibrated sensor readings and reference data15

showed a slight negative bias at the higher end of observed concentration levels, but
this appears to be driven by a small number of data points.

Inter-sensor variability is of interest if these sensors are to be widely deployed. Low
variability could allow us to calibrate fewer sensors and apply those calibrations to
other sensors in a large network. Inter-sensor variability for CO was generally low, with20

median correlation coefficients among the M-Pods 0.70 (range 0.62–0.78). The median
signal to noise (S/N) ratio, defined as the median observed value over the standard
error, was 1.13 (range 1.00–1.26). This compares with the reference instrument S/N of
10.0, calculated using the median standard error from multiple days of zero and span-
check data as noise. The S/N ratio provides straightforward comparison of instruments,25

and shows us how often the measurements are above the noise.
For the O3 and NO2 sensors, the model in Eq. (2) fit well, with evenly distributed

residuals and median standard errors of 6.1 ppb (range 4.2–15.4 ppb), and 8.4 ppb
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(range 6.9–9.5 ppb), respectively. As shown in Table 2, the linear model from Eq. (2)
was found to fit the data nearly as well for NO2 as the non-linear model from Eq. (1),
and is much less computationally intensive to use. An NO2 example time series using
the linear model from Eq. (2) is shown in Fig. 3. The non-linear model was not able
to fit the O3 data with any success, also shown in Table 2. The reason for this was5

not determined despite repeated testing. Lab calibrations were not performed for O3
and NO2. Median inter-sensor correlation for O3 was 0.83 (range 0.46–0.99), and 0.96
(range 0.94–0.99) for NO2. The median NO2 S/N was 3.6 (range 3.3–4.4), compared
with the median reference instrument S/N of 23.4. For O3, the median S/N ratio for
the M-Pods was 1.4 (range 0.5–2.0), while the reference instrument had S/N of 1.6.10

Figure 3 NO2 data from M-Pod 23 from the December co-location.

3.1.2 NDIR CO2 sensor results

CO2 values quantified with lab calibrations showed bias in some M-Pods (see Table 2),
while others showed a high degree of accuracy. With co-location calibration, we also
found a previously unseen temperature effect, described by15

v = p1 +p2C+p3(T −p4)2, (6)

where v is the raw sensor signal. This model fit better than a linear model in concen-
tration, and an example is shown in Fig. 4.

As shown in Table 2, using linear models in concentration only, the median standard20

error for M-Pod CO2 measurements using the lab calibrations was 68.4 ppm (range
15.2–138.7 ppm), and was 16.8 ppm (range 10.1–48.8 ppm) using the co-location cal-
ibration. Median standard error was 10.9 ppm (range 7.2–24.8 ppm) using the co-
location calibration model from Eq. (6), and adding a linear time correction to this model
further improved the fit, dropping the median standard error to 6.9 ppm. This drift term25

was statistically significant. The improvement in fit with the more complex model may
be due to a temperature effect of the semiconductor infrared sensor, or an unidenti-
fied confounding variable. Adding humidity as a variable was not found to improve the
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fit significantly. Using the co-location calibration approach, the median correlation be-
tween CO2 sensors in different M-Pods was 0.88 (range 0.58–0.98). The median signal
to noise ratio was 42.2 (range 18.5–63.4), as compared with a reported 300–500 from
the reference instrument used (LICOR, 1996).

3.2 User-study results5

Based on initial lab and co-location calibration results, calibrations for the user-study
were performed only with co-location calibrations. Co-location calibrations were carried
out before and after the 3-week measurement period. Calibration fits were comparable
to the prior co-location calibrations for CO (median standard error of 0.3 ppm), NO2
(median standard error of 8.8 ppb), and O3 (median standard error of 9.7 ppb). For10

CO2, the median standard error was high (36.9 ppm), likely because we were unable
to co-locate a reference monitor with the M-Pods at these times. Instead, a calibration
curve was generated using data from a nearby ambient monitor operated by NCAR
and a lab calibration. Correlations among paired M-Pods during the user study ranged
between 0.88–0.90 for NO2, 0.48–0.76 for CO, 0.33–0.92 for CO2, and 0.04–0.35 for15

O3. The range of correlations for CO2 was due to power supply issues, which will be
discussed later. We expect reliable CO2 sensor performance to be easily achievable in
future work. Despite the low standard error from O3 sensor calibrations, we found low
correlations among the paired M-Pods during the user study, which is also likely due to
a power supply issue.20

Personal exposure measurements using the M-Pods were generally low for all users,
but clear trends and effects of behavior were seen. Table 3 shows summary statistics.
Median CO and CO2 exposure were 0.58 ppm and 949.0 ppm, respectively. Median O3
exposure was 14.0 ppb, and Fig. 5 has an example probability density plot and time of
day trend plot for a user’s O3 exposure.25

Measurement uncertainty calculated with the method of propagation and the dupli-
cate M-Pod statistics, ARPD and SDdiff, defined in Eqs. (4) and (5), are compared in
Table 4. The results show moderate agreement among the methods for most pollutants.
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For CO and O3, the propagated uncertainty is lower than the SDdiff and ARPD, roughly
50–75 % of it, confirming that there are sources of error that are not accounted for in
the uncertainty propagation. For NO2, the propagated measurement uncertainty seems
to capture most of the uncertainty observed in the pairs. The RMSE values from the
sensor calibrations were found to account for the majority of the propagated error. Fig-5

ure 6 compares the CO measurements from M-Pods 23 and 25, along with their 95 %
confidence interval, the ARPD, and SDdiff.

Drift was seen to affect the measurement results, as described in detail in the Sup-
plement. We compensated for drift using multiple co-location calibrations with linear
time corrections (Haugen et al., 2000), and observed improved calibration fits. Average10

daily drift during the user study is shown in Table 3. For CO, all M-Pods experienced
drift under −0.05 ppmday−1, apart from M-Pod 15, which showed behavior we cannot
explain. O3 sensors experienced between −2.6 ppbday−1 and 2.0 ppbday−1 drift. CO2

drift ranged from −4.2 ppmday−1 to 3.1 ppmday−1, excluding the bad results from M-
Pod 9. NO2 generally showed a slight positive drift over time, with a range of −1.56 to15

0.51 ppbday−1.

4 Discussion

The M-Pods performed well given the relatively low ambient concentration environ-
ments encountered in the region. For CO, NO2, and CO2, the reference instruments
exhibited S/N ratios 8–10 times higher than the M-Pod measurements. For O3, the20

reference monitor S/N ratio was only slightly higher than the median M-Pod value. The
user study demonstrated the utility of the M-Pod in real time continuous monitoring
applications, in terms of user behavior changes. For example, one user experienced
elevated nighttime CO2 and NO2. CO2 levels often increase at night in rooms with little
ventilation, and can lead to restlessness. NO2 levels increase due to combustion, and25

in this case the use of the furnace on these cold nights appears to have increased
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personal NO2 exposure substantially. With this kind of readily available concentration
data, users can then adjust their behavior to reduce night time exposures.

4.1 Lab calibration

Lab calibrations had higher measurement error than co-location calibrations, likely be-
cause the field data covered a wider range of environmental parameter space than5

the lab calibration. The poor performance of lab calibrations may also be due to the
difference between zero-grade air cylinders and ambient air. Conducting co-location
calibrations in the region of interest helps to account for confounding factors and me-
teorological variability.

CO2 lab-calibration results showed accurate results in some cases, while in other M-10

Pods we found significant bias. Some CO2 sensors consistently showed worse perfor-
mance than others. Strangely, the worse performing ones were usually in good agree-
ment with each other. We have no explanation for this behavior, apart from a potential
power supply issue.

4.2 Co-location calibration15

The time and resources required for lab calibration, and the difficulty reconciling the
lab and ambient results, led us to rely more on co-location calibration. Co-location cal-
ibration performed well during two wintertime tests. However, during later co-location
calibrations in warmer periods with rapidly changing weather, we found more interfer-
ence from either reducing gases or humidity swings than we had previously seen. This20

effect, coupled with generally lower CO levels in the warmer months due to better atmo-
spheric mixing and improved motor vehicle combustion (Neff et al., 1997), resulted in
flatter and noisier calibration curves than previously seen. To minimize this effect, some
portions of the calibration data set were removed for April and May user study calibra-
tions. O3 and NO2 had slightly worse calibration fits than during the winter calibrations,25

likely also due to larger swings in atmospheric humidity.
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4.3 User study discussion

The user study provided valuable insight and promoted changes in behavior of some
participants. Users reported being more aware of “stuffiness”, and acted based on
their data by opening windows to increase air exchange rates in their homes. They
also noted increases in CO2, CO, and NO2 during driving, leading them to experiment5

with the best way to reduce exposures. S/N ratios during the user study were gener-
ally higher than during the co-locations. This suggests that during personal exposure
measurement, when concentration peaks are often higher than background measure-
ments, the M-Pod is able to detect those peaks above the noise. Analysis based on
the propagated uncertainty, ARPD, and SDdiff suggests that propagated uncertainty10

is capturing most sources of error, but it does require more testing to further validate
uncertainty estimation approaches.

Temporal trends generally showed higher concentrations in the morning and evening
for CO and NO2, coinciding with commute-time increases in ambient concentrations.
O3 trends followed expected outdoor patterns, peaking in the afternoon in most cases.15

CO2 trends generally showed nighttime increases. The distributions had a distinct
“fresh air” mode, near ambient concentrations, and an indoor mode with a heavy tail.
For other pollutants, exposure probability density function distributions varied substan-
tially, likely due to exposure variability based on individual user behavior. One user’s
overnight use of a wood-fired stove is evident with increased nighttime CO exposure20

and a wider distribution than that of other users. Most other CO distributions were
quite narrow, though slightly right-skewed. The NO2 distributions varied between right-
skewed distributions for four M-Pods, and bi-modal distributions for the other five M-
Pods. These modes appear to be driven by daily differences in NO2 exposure rather
than indoor/outdoor differences.25

Some users did not carry and charge their M-Pods as fastidiously as others. This may
have contributed to episodes of strange sensor behavior due to low power operation.
Generally, the air quality encountered was very good, and this may have diminished
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the perceived value of the M-Pod. Unfortunately, one M-Pod from each of two of the
M-Pod pairs appears to have had persistent power issues, which would explain the low
number of samples relative to their respective pairs, and worse sensor behavior during
calibration.

A study shortcoming was the inability to wear reference monitors in addition to the M-5

Pods. This was illustrated with curiously high NO2 concentrations, indicating that there
may be problems we are not accounting for. Despite such potential issues, concentra-
tion changes near busy roadways are often apparent, showing the sensitivity and fast
response of the sensors, valuable for source and trend identification.

5 Conclusions10

Co-location and collaborative calibration will be a valuable tool in the next generation
of air quality monitoring. With help from monitoring agencies and citizen scientists,
detailed ground-level pollutant maps will one day help track sources, reduce the pop-
ulation’s exposure, and improve our knowledge of emissions as well as fate for each
species. In this work, we have demonstrated a quantification system that can provide15

personal exposure measurements and uncertainties for CO2, O3, NO2, and CO. This
type of quantification approach provides access to air quality monitoring to a wider audi-
ence of scientists and citizens. It requires moderate investment to develop a calibration
infrastructure, whether in a laboratory or near a monitoring station, but we believe it
is worthwhile in applications like health and exposure, source identification, and leak20

detection.

Supplementary material related to this article is available online at
http://www.atmos-meas-tech-discuss.net/7/2425/2014/
amtd-7-2425-2014-supplement.pdf.
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Table 1. Co-location calibration summary statistics for December co-location using the linear
model from Eq. (3).

CO (ppm) O3 (ppb)

N mean std med 5th % 95 % drift S/N N mean std med 5th % 95 % drift S/N
(ppbday−1) (ppmday−1)

M-Pod 1 14 157 0.59 0.69 0.47 −0.18 1.87 0.02 1.22 12 919 11.8 18.4 9.7 −9.2 41.1 −0.6 0.7
M-Pod 13 13 835 0.60 0.71 0.47 −0.23 1.92 −0.01 1.14 13 987 13.1 12.8 9.9 −2.8 36.0 −0.4 1.8
M-Pod 15 13 769 0.60 0.76 0.47 −0.26 2.00 0.03 1.00 11 749 10.5 18.3 7.9 −9.1 37.5 −0.4 0.5
M-Pod 17 14 006 0.60 0.74 0.49 −0.29 1.91 −0.01 1.11 13 365 12.2 12.9 9.0 −3.9 35.2 −0.3 1.4
M-Pod 18 13 976 0.60 0.69 0.47 −0.16 1.90 −0.03 1.26 14 090 13.0 15.0 9.9 −4.6 38.2 −0.3 1.0
M-Pod 19 14 097 0.60 0.78 0.52 −0.39 1.98 −0.02 1.03 13 451 12.2 12.8 8.3 −3.2 35.6 −0.1 1.4
M-Pod 21 14 007 0.60 0.75 0.51 −0.32 1.90 −0.05 1.09 13 365 12.2 12.2 8.2 −2.0 32.5 −0.1 2.0
M-Pod 23 14 013 0.60 0.74 0.50 −0.30 1.95 −0.03 1.14 13 368 12.2 12.2 8.3 −2.1 33.2 −0.2 1.9

Median 14 007 0.60 0.74 0.48 −0.27 1.92 −0.01 1.13 13 366.5 12.2 12.9 8.7 −3.6 35.8 −0.3 1.4

NO2 (ppb) CO2 (ppm)

N mean std med 5th % 95 % drift S/N N mean std med 5th % 95 % drift S/N
(ppbday−1) (ppmday−1)

M-Pod 1 14 157 29.3 16.3 30.4 3.1 52.3 −0.3 3.7 14 318 466.8 45.0 453.7 426.6 558.5 −1.5 53.9
M-Pod 13 14 311 466.8 46.7 455.1 418.1 562.4 −2.8 27.2
M-Pod 15 14 188 466.4 44.8 454.0 423.7 555.6 −1.6 47.6
M-Pod 17 13 997 29.4 17.0 30.3 0.4 53.0 0.3 3.2 14 295 466.9 44.8 454.2 426.0 557.0 −0.7 63.4
M-Pod 18 14 079 29.4 16.8 29.6 1.8 53.9 −0.9 3.4 14 080 466.7 44.9 453.6 427.2 561.2 −1.2 57.7
M-Pod 19 14 096 29.4 16.6 30.6 1.8 53.0 0.0 3.5 14 309 466.8 45.5 453.3 424.4 557.9 −2.3 36.9
M-Pod 21 13 883 29.3 16.2 30.5 3.1 51.7 −0.4 3.8 14 311 466.8 48.1 456.8 411.9 558.5 0.3 24.7
M-Pod 23 14 013 29.2 15.8 30.3 4.4 51.9 −0.5 4.4 14 311 467.3 50.4 457.1 410.9 573.4 −1.5 18.5

Median 14 046 29.3 16.5 30.4 2.5 52.6 −0.34 3.6 14 310 466.8 45.3 454.1 424.1 558.5 −1.5 42.2
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Table 2. Standard errors for the various calibration models tested with the December co-
location data set. Equation (1), the exponential model, was not able to fit O3 satisfactorily for
some unknown reason.

CO2 (ppm) CO (ppm) O3 (ppb) NO2 (ppb)

Calibration Co- Co- Co- Lab Co- Co- Co- Lab Co- Co- Co- Co- Co- Co-
type Model location location location location location location location location location location location location

Eq. (6) Eq. (6) w/time Linear Linear Eq. (1) Eq. (2) Eq. (3) Eq. (1) Eq. (1) Eq. (2) Eq. (3) Eq. (1) Eq. (2) Eq. (3)

M-Pod 1 8.4 7.3 11.0 138.7 0.38 0.38 0.38 3.69 68 413.9 15.4 14.9 7.2 8.2 8.2
M-Pod 13 16.8 14.4 18.2 29.1 0.39 0.42 0.41 3.54 37 558.7 5.6 5.4
M-Pod 15 9.5 8.4 10.1 43.3 0.42 0.46 0.46 2.85 249.771 15.3 14.9
M-Pod 17 7.2 6.9 15.5 15.2 0.35 0.44 0.44 3.22 60 671.4 6.4 6.2 7.5 9.5 9.5
M-Pod 18 7.9 7.1 10.5 30.0 0.34 0.38 0.37 3.58 3952.56 9.8 9.6 7.9 9.0 8.8
M-Pod 19 12.3 10.4 31.4 125.3 1.78 0.52 0.51 4.49 82 843.3 5.8 5.8 7.0 8.6 8.6
M-Pod 21 18.5 18.6 22.4 105.0 0.73 0.49 0.47 3.42 215.551 4.2 4.1 6.9 8.0 7.9
M-Pod 23 24.8 23.9 48.8 93.5 0.39 0.45 0.44 5.33 8569.4 4.4 4.4 6.0 6.9 6.8

Median 10.9 9.4 16.8 68.4 0.39 0.45 0.44 3.56 23 064.1 6.1 6.0 7.1 8.4 8.4
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Table 3. Personal exposure summary statistics using the model in Eq. (3). Rows in italic/bold
indicate paired M-Pods.

CO (ppm) O3 (ppb)

N mean std med 5 % 95 % R2 Drift S/N N mean std med 5 % 95 % R2 Drift S/N
ppmday−1 ppmday−1

M-Pod 4 17 107 0.52 0.62 0.37 −0.14 1.76 1.63 1.63 17 107 32.7 12.5 33.4 14.4 53.6 1.4 0.9
M-Pod 6 10 595 0.47 1.30 0.48 −0.66 2.18 0.48 1.52 1.52 10 595 14.6 13.7 12.3 −2.1 44.2 0.35 0.0 3.1
M-Pod 9 7214 1.26 0.68 1.27 0.11 2.17 7.18 7.18 7214 32.8 15.6 31.3 11.7 55.2 −0.5 3.0
M-Pod 15 8710 8.83 1.27 8.90 6.47 10.59 0.50 6.09 6.09 8710 15.4 18.3 17.5 −11.2 43.2 0.04 2.0 0.7
M-Pod 16 10 308 1.54 0.60 1.54 0.51 2.48 4.58 4.58 10 308 31.8 5.5 31.6 23.7 43.4 −0.5 3.7
M-Pod 17 11 816 −0.15 0.53 −0.14 −0.97 0.74 −0.36 −0.36 11 816 10.2 6.0 9.7 3.0 21.0 0.2 2.0
M-Pod 20 6265 −48.4 28.2 −53.7 −79.6 11.3 −2.6 −1.3
M-Pod 23 16 322 0.77 0.57 0.68 0.04 1.78 0.76 2.71 2.71 16 322 17.9 9.4 14.0 6.5 34.2 0.24 0.2 3.6
M-Pod 25 15 097 0.34 0.78 0.21 −0.59 1.78 1.22 1.22 15 097 −14.1 35.2 −8.1 −77.6 43.8 −1.3 −0.3

Median 11 205.5 0.64 0.65 0.58 −0.05 1.98 0.50 1.63 1.63 10 595 15.4 13.7 14.0 3.0 43.4 0.24 0.0 2.0

NO2 (ppb) CO2 (ppm)

N mean std med 5 % 95 % R2 Drift S/N N mean std med 5 % 95 % R2 Drift S/N
ppmday−1 ppmday−1

M-Pod 4 17 107 69.0 9.5 68.7 54.2 83.3 −0.1 6.3 17 783 1108.6 367.2 1123.7 492.0 1772.2 −0.3 41.3
M-Pod 6 10 595 48.7 29.2 45.5 −12.3 86.0 0.88 0.2 4.0 10 910 902.3 544.5 807.8 374.9 1893.3 0.45 −2.1 37.6
M-Pod 9 7214 58.7 37.0 60.1 2.8 112.0 −1.6 11.1 6986 965.6 863.0 1059.9 −447.6 2364.2 74.5 8.5
M-Pod 15 8710 84.6 16.1 81.2 68.7 112.9 0.90 0.5 9.1 8764 365.2 767.3 267.8 −355.0 1364.0 0.33 0.2 2.2
M-Pod 16 10 308 84.2 14.5 81.7 68.8 107.6 0.2 9.5 10 325 644.2 211.9 591.8 450.5 1139.3 3.1 10.7
M-Pod 17 11 816 63.4 13.7 61.9 47.7 88.1 0.4 6.0 12 135 1048.6 437.7 1047.4 444.9 1795.9 −4.2 65.6
M-Pod 20 6283 30.1 17.7 33.3 0.6 51.9 2.3 4.6 6344 2047.3 1765.8 1589.0 509.2 6172.5 1.4 50.6
M-Pod 23 16 322 50.4 14.2 54.3 25.6 69.7 0.90 0.0 6.3 15 774 572.1 512.2 444.3 63.5 1874.2 0.92 0.4 17.2
M-Pod 25 15 097 50.6 11.4 54.1 30.5 62.9 0.3 6.1 15 787 949.0 587.9 771.0 417.5 2503.3 −0.8 21.1

Median 10 595 58.7 14.5 60.1 30.5 86.0 0.90 0.2 6.3 10 910 949.0 544.5 807.8 417.5 1874.2 0.45 0.2 21.1
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Table 4. Average pooled uncertainty calculations for user study duplicate measurements.

CO (ppm) O3 (ppb) NO2 (ppb)

Propagated SDdiff ARPD Propagated SDdiff ARPD Propagated SDdiff ARPD
Uncertainty Uncertainty Uncertainty

M-Pod 6, 9 0.24 0.58 0.63 (66.9 %) 7.9 15.5 20.6 (59.8 %) 8.7 11.8 18.4 (38.6 %)
M-Pod 15, 16 0.92 3.8 4.57 (133 %) 14.6 17.1 18 (80.8 %) 8.8 7.4 12.0 (24.2 %)
M-Pod 23, 25 0.28 0.36 0.36 (55.5 %) 11.2 25.7 12.8 (53.3 %) 8.8 4.4 7.4 (19.9 %)
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6 
 

           1 

 2 
Figure 1 The M-Pod and the accompanying MAQS3 phone application 3 

The Mobile Air Quality Sensing (MAQS) system is designed to collect, analyze, 4 
and share air quality data (Jiang et al., 2011).  An Android mobile phone application, 5 
MAQS3 (Mobile Air Quality Sensing v.3) pairs with the M-Pod via Bluetooth, and the M-6 
Pod data is transmitted to the phone periodically.  This data is then sent to a server for 7 
analysis.  A web-based analysis and GIS visualization platform can access new data 8 
from the server.  Wi-Fi fingerprints can also be used to identify an M-Pod's indoor 9 
locations (Jiang et al., 2012).  10 

The M-Pod has four metal oxide sensors, measuring CO, total VOCs, NO2, and 11 
O3 (SGX Corporation models MiCS-5525, MiCS-5121WP, MiCS-2710, and MiCS-2611).  12 
Socket-mount MOx sensors were used because of the difficulty replacing the surface-13 
mount sensors and possible poisoning of the surface-mount sensors due soldering (hot-14 
air reflow).  An NDIR sensor (ELT, S100) measures CO2 and a fan (Copal F16EA-15 
03LLC) provides steady flow through the device.  Data is logged using an Arduino-based 16 
platform.  The M-Pod also has a light sensor, and a relative humidity and temperature 17 
sensor (Sensirion, SHT21).   18 

2.2. Calibration System 19 
MOx sensors represent the lowest cost sensing solution but hold significant 20 

quantification challenges. MOx sensor responses are non-linear with respect to gas 21 
concentration, and are affected by ambient temperature and, to a lesser degree, by 22 
humidity (Sohn et al., 2008; Barsan and Weimar, 2001; Delpha et al., 1999).  Baseline 23 
drift and changes to sensitivity over time are also common.  These are typically due to 24 
aging and irreversible changes to the sensing surface (Romain and Nicolas, 2009).  As 25 
such, using MOx sensors quantitatively requires that a model be developed which not 26 
only characterizes the relationship between sensor resistance and gas concentration, 27 
but also includes the impacts of these other parameters.  Below we describe our 28 
calibration system and strategies for overcoming these challenges. 29 

Fig. 1. The M-Pod and the accompanying MAQS3 phone application.
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8 
 

applied to each M-Pod CO sensor used in the co-location. Our results show that the CO, 1 
NO2 and O3 MOx sensors can detect ambient concentrations when frequently calibrated. 2 

 3 
Figure 2.  MiCS-5525 CO sensor response to various CO concentrations while held 4 
at different ambient temperatures. 5 

Fig. 2 illustrates the MiCS-5525 CO sensor response to changing temperature at 6 
various concentrations of CO.  The absolute humidity has a lesser effect on signal 7 
response and was held constant so as to minimize the degrees of freedom within the 8 
model response.  From experimental observation, the sensor response appears to 9 
change linearly with respect to temperature for a given CO concentration between 10 
concentrations of 0-2.8ppm.  The slope and intercept of the linear temperature trends 11 
also appear to decrease with increasing CO concentration. Eq. 1 was chosen as the 12 
best fit for the observed sensor response to CO concentration and temperature. A third 13 
term of the same form was added to the model to account for changes in absolute 14 
humidity (H). 15 

𝑅𝑠
𝑅𝑜
=   𝑓(𝐶)(𝑇 − 298) + 𝑔(𝐶) + ℎ(𝐶)𝐻           [1] 16 

In this model, f(C) describes the change in temperature slope with respect to 17 
pollutant concentration; g(C) describes the change in resistance in dry air at 298 K due 18 
to concentration; and h(C) describes the change in absolute humidity slope with respect 19 
to concentration.  The terms f(C), g(C), and h(C) were chosen to be of the 20 
form  𝑝!𝑒𝑥𝑝(𝐶𝑝!). 21 
 This model form performed well for all MOx sensors used, but is computationally 22 
challenging to work with because it is not algebraically invertible.  Instead, we used a 2nd 23 
order Taylor approximation for this model.  However, an even simpler model in 24 
temperature, absolute humidity, and concentration (Eq. 2) was found to perform similarly 25 
in many cases.  The comparable performance of the models is likely due to the low 26 
variation in CO concentration observed throughout the field experiments.  Though we did 27 
not perform the same lab calibration tests with the NO2 and O3 sensors, we found that in 28 
co-location calibrations, Eqs. 2 and 3 also fit the data comparably to the model in Eq. 1.  29 

𝑅𝑠
𝑅𝑜
=   𝑝! + 𝑝!𝐶 + 𝑝!𝑇 + 𝑝!𝐻          [2] 30 

Fig. 2. MiCS-5525 CO sensor response to various CO concentrations while held at different
ambient temperatures.
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 1 
Figure 3 NO2 data from M-Pod 23 from the December co-location. 2 
 3 

 CO2 (ppm) CO (ppm) O3 (ppb) NO2 (ppb) 
Calibration 
type 

Co-
location 

Co-
location 

Co-
location Lab 

Co-
location 

Co-
location 

Co-
location Lab 

Co-
location 

Co-
location 

Co-
location 

Co-
location 

Co-
location 

Co-
location 

Model Eq. 6 
Eq. 6 w/ 
time Linear Linear Eq. 1 Eq. 2 Eq. 3 Eq.1 Eq. 1 Eq. 2 Eq. 3 Eq. 1 Eq. 2 Eq. 3 

M-Pod 1 8.4 7.3 11.0 138.7 0.38 0.38 0.38 3.69 68413.9 15.4 14.9 7.2 8.2 8.2 
M-Pod 13 16.8 14.4 18.2 29.1 0.39 0.42 0.41 3.54 37558.7 5.6 5.4    
M-Pod 15 9.5 8.4 10.1 43.3 0.42 0.46 0.46 2.85 249.771 15.3 14.9    
M-Pod 17 7.2 6.9 15.5 15.2 0.35 0.44 0.44 3.22 60671.4 6.4 6.2 7.5 9.5 9.5 
M-Pod 18 7.9 7.1 10.5 30.0 0.34 0.38 0.37 3.58 3952.56 9.8 9.6 7.9 9.0 8.8 
M-Pod 19 12.3 10.4 31.4 125.3 1.78 0.52 0.51 4.49 82843.3 5.8 5.8 7.0 8.6 8.6 
M-Pod 21 18.5 18.6 22.4 105.0 0.73 0.49 0.47 3.42 215.551 4.2 4.1 6.9 8.0 7.9 
M-Pod 23 24.8 23.9 48.8 93.5 0.39 0.45 0.44 5.33 8569.4 4.4 4.4 6.0 6.9 6.8 
Median 10.9 9.4 16.8 68.4 0.39 0.45 0.44 3.56 23064.1 6.1 6.0 7.1 8.4 8.4 

Table 2.  Standard errors for the various calibration models tested with the December 4 
co-location data set.  Eq. 1, the exponential model, was not able to fit O3 satisfactorily for 5 
some unknown reason. 6 
 7 

3.1.2. NDIR CO2 sensor results 8 
CO2 values quantified with lab calibrations showed bias in some M-Pods (see 9 

Table 2), while others showed a high degree of accuracy.  With co-location calibration, 10 
we also found a previously unseen temperature effect, described by 11 

𝑣   =   𝑝! + 𝑝!𝐶 + 𝑝!(𝑇 − 𝑝!)
!                      [6], 12 

where v is the raw sensor signal.  This model fit better than a linear model in 13 
concentration, and an example is shown in Fig. 4.   14 

Fig. 3. NO2 data from M-Pod 23 from the December colocation.
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 1 
Figure 4. Calibration surface (using Eq. 4) for a CO2 co-location calibration 2 
performed from December 3rd-12th using M-Pod 1.   3 

As shown in Table 2, using linear models in concentration only, the median 4 
standard error for M-Pod CO2 measurements using the lab calibrations was 68.4 ppm 5 
(range 15.2-138.7 ppm), and was 16.8 ppm (range 10.1-48.8 ppm) using the co-location 6 
calibration.  Median standard error was 10.9 ppm (range 7.2-24.8 ppm) using the co-7 
location calibration model from Eq. 6, and adding a linear time correction to this model 8 
further improved the fit, dropping the median standard error to 6.9 ppm.  This drift term 9 
was statistically significant.  The improvement in fit with the more complex model may be 10 
due to a temperature effect of the semiconductor infrared sensor, or an unidentified 11 
confounding variable.  Adding humidity as a variable was not found to improve the fit 12 
significantly.  Using the co-location calibration approach, the median correlation between 13 
CO2 sensors in different M-Pods was 0.88 (range 0.58-0.98).  The median signal to 14 
noise ratio was 42.2 (range 18.5-63.4), as compared with a reported 300-500 from the 15 
reference instrument used (LICOR, 1996).   16 

3.2. User-study results 17 
 Based on initial lab and co-location calibration results, calibrations for the user-18 
study were performed only with co-location calibrations.  Co-location calibrations were 19 
carried out before and after the 3-week measurement period.  Calibration fits were 20 
comparable to the prior co-location calibrations for CO (median standard error of 0.3 21 
ppm), NO2 (median standard error of 8.8 ppb), and O3 (median standard error of 9.7 22 
ppb).  For CO2, the median standard error was high (36.9 ppm), likely because we were 23 
unable to co-locate a reference monitor with the M-Pods at these times.  Instead, a 24 
calibration curve was generated using data from a nearby ambient monitor operated by 25 
NCAR and a lab calibration.  Correlations among paired M-Pods during the user study 26 

Fig. 4. Calibration surface (using Eq. 4) for a CO2 co-location calibration performed from 3–
12 December using M-Pod 1.
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ranged between 0.88-0.90 for NO2, 0.48-0.76 for CO, 0.33-0.92 for CO2, and 0.04-0.35 1 
for O3.  The range of correlations for CO2 was due to power supply issues, which will be 2 
discussed later.  We expect reliable CO2 sensor performance to be easily achievable in 3 
future work.  Despite the low standard error from O3 sensor calibrations, we found low 4 
correlations among the paired M-Pods during the user study, which is also likely due to a 5 
power supply issue. 6 

 7 
Figure 5.  Probability density function and time of day trend for O3 from M-Pod 23. 8 

Personal exposure measurements using the M-Pods were generally low for all 9 
users, but clear trends and effects of behavior were seen. Table 3 shows summary 10 
statistics.  Median CO and CO2 exposure were 0.58 ppm and 949.0 ppm, respectively.  11 
Median O3 exposure was 14.0 ppb, and Fig. 5 has an example probability density plot 12 
and time of day trend plot for a user’s O3 exposure.  13 

 CO (ppm)  O3 (ppb) 

  N mean std med 5% 95% R2 
Drift 

ppm/day S/N   N mean std med 5% 95% R2 
Drift 

ppm/day S/N 
M-Pod 4 17107 0.52 0.62 0.37 -0.14 1.76   1.63 1.63   17107 32.7 12.5 33.4 14.4 53.6   1.4 0.9 
M-Pod 6 10595 0.47 1.30 0.48 -0.66 2.18 0.48 1.52 1.52   10595 14.6 13.7 12.3 -2.1 44.2 0.35 0.0 3.1 
M-Pod 9 7214 1.26 0.68 1.27 0.11 2.17 7.18 7.18   7214 32.8 15.6 31.3 11.7 55.2 -0.5 3.0 
M-Pod 15 8710 8.83 1.27 8.90 6.47 10.59 0.50 6.09 6.09   8710 15.4 18.3 17.5 -11.2 43.2 0.04 2.0 0.7 
M-Pod 16 10308 1.54 0.60 1.54 0.51 2.48 4.58 4.58   10308 31.8 5.5 31.6 23.7 43.4 -0.5 3.7 
M-Pod 17 11816 -0.15 0.53 -0.14 -0.97 0.74   -0.36 -0.36   11816 10.2 6.0 9.7 3.0 21.0   0.2 2.0 
M-Pod 20                     6265 -48.4 28.2 -53.7 -79.6 11.3   -2.6 -1.3 
M-Pod 23 16322 0.77 0.57 0.68 0.04 1.78 0.76 2.71 2.71   16322 17.9 9.4 14.0 6.5 34.2 0.24 0.2 3.6 
M-Pod 25 15097 0.34 0.78 0.21 -0.59 1.78 1.22 1.22   15097 -14.1 35.2 -8.1 -77.6 43.8 -1.3 -0.3 
Median 11205.5 0.64 0.65 0.58 -0.05 1.98 0.50 1.63 1.63   10595 15.4 13.7 14.0 3.0 43.4 0.24 0.0 2.0 
  NO2 (ppb)   CO2 (ppm) 

  N mean std med 5% 95% R2 
Drift 

ppm/day S/N   N mean std med 5% 95% R2 
Drift 

ppm/day S/N 
M-Pod 4 17107 69.0 9.5 68.7 54.2 83.3   -0.1 6.3   17783 1108.6 367.2 1123.7 492.0 1772.2   -0.3 41.3 
M-Pod 6 10595 48.7 29.2 45.5 -12.3 86.0 0.88 0.2 4.0   10910 902.3 544.5 807.8 374.9 1893.3 0.45 -2.1 37.6 
M-Pod 9 7214 58.7 37.0 60.1 2.8 112.0 -1.6 11.1   6986 965.6 863.0 1059.9 -447.6 2364.2   74.5 8.5 
M-Pod 15 8710 84.6 16.1 81.2 68.7 112.9 0.90 0.5 9.1   8764 365.2 767.3 267.8 -355.0 1364.0 0.33 0.2 2.2 
M-Pod 16 10308 84.2 14.5 81.7 68.8 107.6 0.2 9.5   10325 644.2 211.9 591.8 450.5 1139.3   3.1 10.7 
M-Pod 17 11816 63.4 13.7 61.9 47.7 88.1   0.4 6.0   12135 1048.6 437.7 1047.4 444.9 1795.9   -4.2 65.6 
M-Pod 20 6283 30.1 17.7 33.3 0.6 51.9   2.3 4.6   6344 2047.3 1765.8 1589.0 509.2 6172.5   1.4 50.6 
M-Pod 23 16322 50.4 14.2 54.3 25.6 69.7 0.90 0.0 6.3   15774 572.1 512.2 444.3 63.5 1874.2 0.92 0.4 17.2 
M-Pod 25 15097 50.6 11.4 54.1 30.5 62.9 0.3 6.1   15787 949.0 587.9 771.0 417.5 2503.3   -0.8 21.1 
Median 10595 58.7 14.5 60.1 30.5 86.0 0.90 0.2 6.3  10910 949.0 544.5 807.8 417.5 1874.2 0.45 0.2 21.1 

Table 3. Personal exposure summary statistics using the model in Eq. 3.  Similarly 14 
shaded rows indicate paired M-Pods. 15 

Fig. 5. Probability density function and time of day trend for O3 from M-Pod 23.
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 Measurement uncertainty calculated with the method of propagation and the 1 
duplicate M-Pod statistics, ARPD and SDdiff, defined in Eqs. 4 and 5, are compared in 2 
Table 4.  The results show moderate agreement among the methods for most pollutants.  3 
For CO and O3, the propagated uncertainty is lower than the SDdiff and ARPD, roughly 4 
50-75% of it, confirming that there are sources of error that are not accounted for in the 5 
uncertainty propagation.  For NO2, the propagated measurement uncertainty seems to 6 
capture most of the uncertainty observed in the pairs.  The RMSE values from the 7 
sensor calibrations were found to account for the majority of the propagated error.  Fig. 6 8 
compares the CO measurements from M-Pods 23 and 25, along with their 95% 9 
confidence interval, the ARPD, and SDdiff. 10 

 11 
Figure 6.  Personal CO measurement comparison between M-Pods 23 and 25, 12 
including 95% confidence intervals in light and dark gray, respectively 13 

   CO (ppm)  O3 (ppb)   NO2 (ppb) 

 
Propagated 
Uncertainty SDdiff ARPD 

Propagated 
Uncertainty SDdiff ARPD 

Propagated 
Uncertainty Sddiff ARPD 

M-Pod 6, 9 0.24 0.58 
0.63 
(66.9%) 7.9 15.5 

20.6 
(59.8%) 8.7 11.8 

18.4 
(38.6%) 

M-Pod 15, 
16 0.92 3.8 4.57 (133%) 14.6 17.1 18 (80.8%) 8.8 7.4 

12.0 
(24.2%) 

M-Pod 23, 
25 0.28 0.36 

0.36 
(55.5%) 11.2 25.7 

12.8 
(53.3%) 8.8 4.4 7.4 (19.9%) 

Table 4.  Average pooled uncertainty calculations for user study duplicate 14 
measurements. 15 
 Drift was seen to affect the measurement results, as described in detail in the 16 
Supplementary Information.  We compensated for drift using multiple co-location 17 
calibrations with linear time corrections (Haugen et al., 2000), and observed improved 18 
calibration fits.  Average daily drift during the user study is shown in Table 3.  For CO, all 19 
M-Pods experienced drift under -0.05 ppm/day, apart from M-Pod 15, which showed 20 
behavior we cannot explain.  O3 sensors experienced between -2.6 ppb/day and 2.0 21 
ppb/day drift.  CO2 drift ranged from -4.2 ppm/day to 3.1 ppm/day, excluding the bad 22 
results from M-Pod 9.  NO2 generally showed a slight positive drift over time, with a 23 
range of -1.56 to 0.51 ppb/day. 24 
 25 
4. Discussion  26 

Fig. 6. Personal CO measurement comparison between M-Pods 23 and 25, including 95 %
confidence intervals in light and dark gray, respectively.
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