1 SUPPLEMENT for

3	Chemical characterization of the main secondary organic
4	aerosol (SOA) products formed through aqueous-phase
5	photonitration of guaiacol
6	
7	Z. Kitanovski ^{1,*} , A. Čusak ² , I. Grgić ¹ , M. Claeys ³
8	¹ Laboratory for Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
9	² EN→FIST Center of Excellence, Ljubljana, Slovenia
10	³ Department of Pharmaceutical Sciences, University of Antwerp (Campus Drie Eiken),
11	Antwerp, Belgium
12	* now at: Laboratory for Food Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
13	Correspondence to: Z. Kitanovski (zoran.kitanovski@ki.si); I. Grgić (irena.grgic@ki.si)
14	
15	
16	
17	
18	This PDF file includes:
19	
20	Pages: 14
21	Text for the Experimental part: 6 pages (1174 words)
22	Figures: 6 (S1 – S6)
23	Tables: 1 (S1)

1 **EXPERIMENTAL**

2 S1. Chemicals

3 Acetonitrile (ACN) and methanol (Chromasolv gradient grade, for HPLC, \geq 99.9%),

4 tetrahydrofuran (THF, Chromasolv plus, for HPLC, \geq 99.9%, inhibitor-free), diethyl ether

5 (Puriss *p.a.*) and dichloromethane (DCM, Puriss *p.a.*) were purchased from Sigma-Aldrich

6 (St. Louis, MO, USA). 2-propanol (LiChrosolv gradient grade, for HPLC, \geq 99.9%), *n*-hexane

7 (LiChrosolv gradient grade, for HPLC), nitric acid 65% (Emsure, for analysis) and sulfuric

8 acid 98% (analysis grade) were purchased from Merck KGaA (Darmstadt, Germany). ACN

9 and methanol for LC-MS use (Chromasolv LC-MS grade, \geq 99.9%) were obtained from Fluka

10 (Buchs (SG), Switzerland). High-purity water (18 M Ω cm) was supplied by a Milli-Q water

11 purification system from Millipore (Bedford, MA, USA). Ammonia solution (25%, Suprapur)

12 (Merck), ammonium formate and formic acid (Puriss *p.a.*, eluent additive for LC/MS) (both

13 from Fluka), as well as ethylenediaminetetraacetic acid (EDTA, 99.995%) (Sigma-Aldrich),

14 were used for HPLC mobile phase buffer and sample preparation. 4-nitroguaiacol (4NG) and

15 2-methoxy-5-nitrophenol (5-nitroguaiacol, 5NG) were purchased from Sigma-Aldrich. The

standards had a purity higher than 95% and were used without further purification.

17 The following reagents were used for studying the aqueous phase reactivity of guaiacol:

18 guaiacol (purity \ge 98.0%), sodium nitrite (ACS reagent, \ge 97.0%), catalase (from bovine liver,

19 activity: 2000-5000 units/mg protein), sodium chloride (reagent grade, \geq 98.0% + 80 mesh

20 particle size) and magnesium sulfate (≥98.0%), and were all from Sigma-Aldrich. Hydrogen

21 peroxide 30% (Perhydrol, *for analysis*) and sodium sulfate (anhydrous *for synthesis*) were

obtained from Merck, while vitamin C (ascorbic acid, *puriss p.a.*, \geq 99.0%) was purchased

23 from Fluka.

24 Deuterated chloroform (CDCl₃, 99.8 atom% D stabilized with Ag, contains 0.03% v/v TMS)

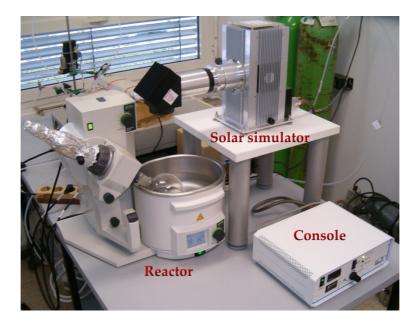
25 from Armar AG (Switzerland) was used as solvent for liquid-state NMR experiments.

S2. Extraction and concentration of products from guaiacol photonitration

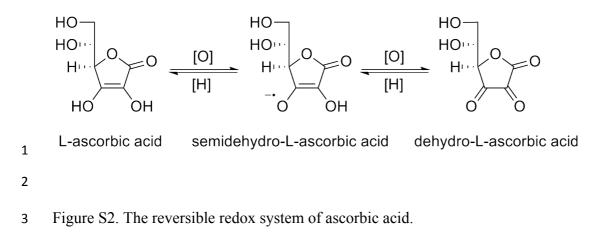
2	Th	e extraction and concentration of the products formed by photonitration of guaiacol were
3	do	ne only from the reaction mixtures with higer initial concentrations of reagents (see Section
4	2.1	.2). The extraction of the products from the aqueous final reaction mixture was done using
5	sol	lid-phase extraction (SPE) on Oasis HLB (Hydrophilic Lipophilic Balanced) SPE cartridges
6	(12	2 cm^3 barrel size, 500 mg polymeric RP-sorbent with 60 μ m particles and pH range 0 - 14;
7	W	aters). The washing/conditioning solvents and solutions as well as the final reaction mixture
8	we	ere loaded on the cartridge using a positive pressure, at an approximate flow rate of 5 mL
9	mi	n^{-1} . The complete procedure of product extraction using HLB cartridge is as follows:
10	1.	Washing of the HLB sorbent with 15 mL of ACN/methanol mixture $(8/2, v/v)$;
11	2.	Short drying of the sorbent by passing air through it;
12	3.	Conditioning of the sorbent with 15 mL of Milli-Q water;
13	4.	Loading of the final reaction mixture. The unretained material exiting the cartridge was
14		directly loaded on another conditioned HLB cartridge, in order to test sample
15		breakthrough. Significant sample breakthrough was detected after loading of cca. 100 mL
16		of the final reaction mixture on the first HLB cartridge;
17	5.	Washing of the sorbent with 15 mL 1% aqueous formic acid. If Milli-Q water is used
18		instead, elution of the retained (colored) reaction products was observed;
19	6.	Drying of the sorbent by sucking air through it for 15 min (employing negative pressure
20		on the cartridge by using a water vacuum pump); and
21	7.	Elution of the retained material on the sorbent with 15 mL of ACN/methanol mixture (8/2,
22		v/v). The composition of the elution solvent was optimized for the highest product
23		recoveries. After product elution using the ACN/methanol mixture, several other solvents
24		were individually passed through the cartridge to test for highly retained compounds, such

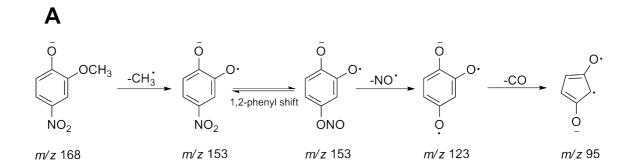
- as: 1% ammonia solution in methanol, 2-propanol, *n*-hexane and DCM. No highly
 retained material was observed after elution with the ACN/methanol mixture.
- 3

After SPE of the entire reaction mixture (250 mL), around 50 mL of reaction product extract
in ACN/methanol (8/2, v/v) was obtained. The extract had a dark red to black color and was
further concentrated to volume of cca. 5 mL with a rotary evaporator (bath temperature: 35 40 °C, vacuum pressure: 100 mbar). As the concentrated extract was opalescent, small
aliquots of ACN were further added to it until a clear extract was obtained. The final extract
(cca. 10 mL) was filtered through a PTFE membrane filter (Iso-Disc, 25 mm, pore size: 0.2
μm; Supelco), and thus ready for semi-preparative HPLC purification.


S3. Product isolation after semi-preparative HPLC purification

2	The pooled peak fractions (cca. 100 mL) were subjected to SPE to replace the organic solvent
3	depleted aqueous buffer matrix with pure organic solvents. For that purpose, Oasis HLB
4	cartridges (12 cm ³ barrel size, 500 mg polymeric RP-sorbent) and an extraction procedure
5	described above (Section S2) were used. The final product isolates were dissolved in a
6	ACN/methanol mixture ($8/2$, v/v) and were subjected to rotary vacuum evaporation until
7	complete removal of the organic solvents. After this step, a small amount of residual water in
8	the isolates was observed in several cases, which could result in difficulties with the
9	preparation of the compound for NMR analysis (drying, crystallization). An additional
10	purification procedure with the following steps was employed in such cases:
11	1. The wet isolate (compound) was first dissolved in cca. 10 mL of saturated aqueous NaCl
12	solution and then 5 mL of 92 mM sulfuric acid was added;
13	2. It was transferred into a 50 mL separatory funnel and extracted three times with 10 mL of
14	dichloromethane (DCM);
15	3. The DCM extracts were combined and dried with 1 g anhydrous sodium sulfate and 1 g of
16	magnesium sulfate, for 10 min;
17	4. The dried DCM total extract was filtered through a sintered glass Büchner funnel, for salt
18	removal;
19	5. The dried extract was transferred into a 50 mL conical-bottom flask and subjected to
20	rotary vacuum evaporation (bath temperature: 40 °C and vacuum pressure: 500 mbar).
21	After evaporation of DCM the solid residue (compound) was further dried by gradually
22	increasing the vacuum from 500 down to cca. 15 mbar, in a period of 30 min;
23	6. The isolated compound was dissolved in 2 mL of DCM and quantitatively transferred into
24	a clean, dry and weighted round-bottom flask (10 or 25 mL); and


- 1 7. The flask content was evaporated under the same conditions as described in *step 5* and the
- 2 crystalized compound was further dried under high vacuum. Its mass was then determined
- 3 by weighting.
- 4


S4. Preparation of the standard solutions

Standard stock solutions of 6NG and 4.6DNG with concentrations of 150 and 180 mg L^{-1} , 2 respectively, were prepared in methanol. In addition, 100 mg L^{-1} standards of 4NG and 5NG 3 were also prepared in methanol. Individual methanolic standard solutions were prepared by 4 dilution of the stock standards (7.5 mg L^{-1} for 4NG and 5NG; 11.3 mg L^{-1} for 6NG and 13.5 5 mg L^{-1} for 4.6DNG). These individual standards were finally diluted in methanol/water 6 mixture 3/7 (v/v) containing 5 mM ammonium formate buffer pH 3 and 200 µM EDTA, to 7 give injection standards (150 μ g L⁻¹ for 4NG and 5NG; 1130 μ g L⁻¹ for 6NG, and 270 μ g L⁻¹ 8 for 4.6DNG). The injection standards were used for the HPLC-ESI-MS/MS (SRM) 9 identification of nitroguaiacols in ambient aerosols. 10

- 3 Figure S1. Experimental setup for studying aqueous phase reactions of guaiacol.

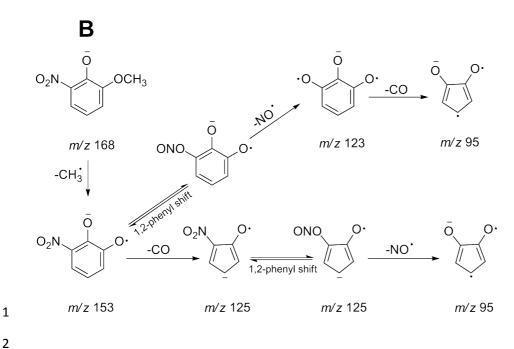


Figure S3. Proposed fragmentation pathways for 4NG (A) and 6NG (B).

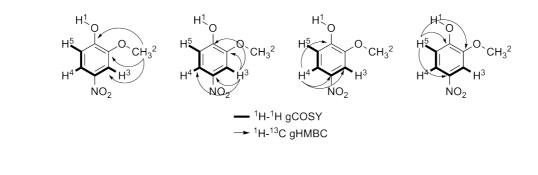
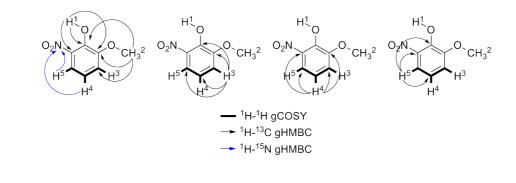
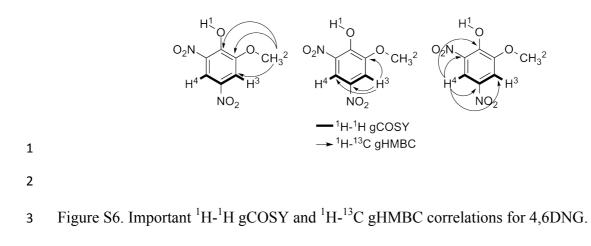




Figure S4. Important ${}^{1}H{}^{-1}H$ gCOSY and ${}^{1}H{}^{-13}C$ gHMBC correlations for 4NG.

- 3 Figure S5. Important ¹H-¹H gCOSY, ¹H-¹³C gHMBC and ¹H-¹⁵N gHMBC correlations for
- 4 6NG.

1 Table S1. Gradient elution program used for the semi-preparative method.

Time (min)	Solvent A (%)	Solvent B (%)	Solvent C (%)
0	30	4	66
12	30	4	66
13	70	4	26
14	80	4	16
21	80	4	16
22	30	4	66

Solvent A: Acetonitrile (ACN)

Solvent B: Tetrahydrofuran (THF)

Solvent C: aqueous ammonium formate buffer, pH = 3 (final mobile phase

buffer concentration: 5 mM)

* additional column re-equilibration time: 14 min