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Abstract

Traditional validation of atmospheric profiles is based on the intercomparison of two or
more datasets in predefined ranges or classes of a given observational characteristic
such as latitude or solar zenith angle. In this study we train a self organizing map (SOM)
with a full time series of relative difference profiles of SCIAMACHY limb v5.02 and lidar5

ozone profiles from seven observation sites. Each individual observation characteris-
tic is then mapped to the obtained SOM to investigate to which degree variation in
this characteristic is explanatory for the variation seen in the SOM map. For the stud-
ied datasets, altitude-dependent relations for the global dataset were found between
the difference profiles and studied variables. From the lowest altitude studied (18 km)10

ascending, the most influencing factors were found to be longitude, followed by solar
zenith angle and latitude, sensor age and again solar zenith angle together with the
day of the year at the highest altitudes studied here (up to 45 km). Clustering into three
classes showed that there are also some local dependencies, with for instance one
cluster having a much stronger correlation with the sensor age (days since launch)15

between 36 and 42 km.
It was shown that the proposed approach provides a powerful tool for the exploring

of differences between datasets without being limited to a-priori defined data subsets.

1 Introduction

Accurate knowledge on the quality and stability of long term measurements is required20

for time series trend analysis as well as for coupling multiple datasets (Nair, 2012).
Remote sensing products must therefore be compared and/or validated with indepen-
dent measurements of known quality (as determined by other data sources). In the
case of satellite-based atmospheric columns and profiles, this validation data source is
usually formed by acquisitions from other satellite sensors (e.g. Nazaryan et al., 2007;25

Boersma et al., 2008), ground-based and/or in-situ observers (e.g. Herman et al., 2009;
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van Gijsel et al., 2010; Takele Kenea et al., 2013), the combination of both (e.g. Adams
et al., 2012; Stiller et al., 2012; Wetzel et al., 2013) or with the additional inclusion of
model data (e.g. Lamsal et al., 2010; Zhang et al., 2010).

Traditionally, data validation and intercomparison are made for predefined classes or
ranges of possibly correlated variables which are then studied for inter-cluster differ-5

ences to determine limitations in the retrieval scheme. In atmospheric validation stud-
ies, this usually comes down to dividing the global dataset into various latitude ranges,
splitting observation characteristics such as solar or stellar zenith angle and viewing
angle into a few groups, studying secondary retrieval output (uncertainty estimates,
processing and cloud flags, goodness-of-fit measures) and occasionally adding other10

data (e.g. input used in the retrieval like temperature, difference in equivalent latitude).
Such a procedure has various limitations. To start with, it requires a-priori knowledge,
or a substantial amount of testing, on how to divide each variable (information source)
into classes. Moreover, the need to have a group of classes is a limitation by itself as
there might be a gradual transition from one extreme to the other and dependencies15

on multiple (correlated) variables further complicate the analysis procedure.
Here we will present an alternative approach to data intercomparison that traces

down possible explanatory variables and patterns associated with the differences found
in the datasets that are being compared and that does not require a-priori grouping
of variables. The approach is based on the usage of self-organising maps (SOMs;20

Kohonen, 2001), which are a type of unsupervised artificial neural network used to
perform data clustering, data-dimensionality reduction and data mining in a wide variety
of application domains (Demartines and Herault, 1997; Gevrey et al., 2006; Zurita-Milla
et al., 2013; Augustijn and Zurita-Milla, 2014).

In atmospheric sciences, SOMs have mostly been used to perform some kind of clas-25

sification. For instance, they have been used to detect changes in wind trends whilst
separating the contributions from ozone depletion and green house gas increases (Lee
and Feldstein, 2013), to study El Niño Southern Oscillation-induced variation in tropi-
cal convection (Sakai and Iseri, 2010), to perform a climatological analysis of Northern
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Atlantic mean sea level pressure (Reusch et al., 2007), to relate increased in predicted
precipitation in Greenland to changes in synoptic weather patterns (Schuenemann and
Cassano, 2010) and to classify ozone profiles obtained with balloon sondes at two trop-
ical sites (Jensen et al., 2012). However, to the best of our knowledge, SOMs have not
been used for the application proposed here despite the fact that they are likely more5

robust and effective than traditional methods. This is supported by Hsieh (2004) who
compared nonlinear methods (including SOMs and other neural networks) and more
traditional methods such as canonical correlation analysis, principal component anal-
ysis (PCA), rotated PCA, single spectrum analysis and Fourier spectrum analysis and
showed that traditional methods may be limited in their capacity to capture geophysical10

patterns properly, especially when the data is no longer in the linear domain. Thus,
SOMs might be better suited to point out weaknesses in retrieval algorithms caused
by non-linear effects (e.g. abrupt changes caused by sensor degradation during the
satellite’s lifetime).

The remainder of this article is organised as follows: Sect. 2 introduces the two15

datasets used to illustrate this study and explains the five steps of the proposed ap-
proach. Section 3 provides details on how the approach was applied to the SCIA-
MACHY vs. lidar ozone profile differences for each step and discusses the results.
Section 4 presents our conclusions.

2 Data and methods20

To illustrate the proposed SOM-based approach to intercompare data, we will use
ozone profiles derived from SCIAMACHY limb measurements as well as from ground-
based lidar stations. The next two subsections first describe these two datasets and
the following section will detail the five steps of the proposed approach.
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2.1 SCIAMACHY version 5.02 ozone profile data

SCIAMACHY stands for SCanning Imaging Absorption spectroMeter for Atmospheric
CHartographY. This instrument was launched on board ENVISAT, which was op-
erational between March 2002 and April 2012, with first SCIAMACHY data from
August 2002. SCIAMACHY is a passive remote sensing spectrometer observing5

backscattered, reflected, transmitted or emitted radiation from the Earth’s surface and
atmosphere, in the wavelength range between 240 and 2380 nm and in three measure-
ment modes: occultation, nadir and limb geometry (Burrows et al., 1995; Bovensmann
et al., 1999). In limb viewing mode, scans are made in steps of 3.3 km from (close to)
the surface to an altitude of 92 km. The vertical resolution of the retrieved ozone pro-10

file product is typically ranging between 3 and 4 km. Here SCIAMACHY ozone number
density data is extracted from the ozone profile product of the operational algorithm
(level 2 version 5.02). The data retrieved in this version are most useful for altitudes be-
tween about 15 and 40 km because there is a reduced sensitivity to ozone above 40 km
and below 20 km, leading to substantially increased retrieval errors at those altitudes15

(European Space Agency, 2011, 2013). The data are accompanied by quality flags indi-
cating the validity and quality of the retrieved product (European Space Agency, 2013).
Initial validation results for version 5.01 (which is for ozone profiles equivalent to version
5.02) showed a positive bias in the tropics, especially below 20 km, a good agreement
(within 5 %) in the mid-latitudes and a variable bias was observed for the polar regions,20

with larger deviations above 35 km (European Space Agency, 2011, 2013).

2.2 Ground-based NDACC lidar data

In this study we have used ozone profiles obtained by ground-based lidars that are
part of the Network for the Detection of Atmospheric Composition Change (NDACC;
http://www.ndacc.org; Kurylo and Solomon, 1990). To become associated with NDACC,25

it is obligatory to have a good description of the data quality through intercomparison of
at least the retrieval software, followed by intercomparison with other instruments. The
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latter can be done with other instruments such as sondes, or with the NDACC travelling
standard, the NASA GSFC (Goddard Space Flight Center) lidar. Ozone profiles are re-
trieved using differential absorption in sets of two wavelengths in the ultraviolet domain,
where ozone is in each set only strongly absorbed at one of the two wavelengths. The
difference of the slope of the logarithm of the retrieved lidar signals as a function of5

altitude is used to determine the ozone number density profile. The retrieval is as such
self-calibrating. All of the lidars used operate under night-time conditions. The altitude
range with the highest data quality is mostly ranging between 20 and 35 km (Keckhut
et al., 2004), depending on laser power, optics and local atmospheric conditions. As
the signal-to-noise ratio decreases with altitude, the retrieval error correspondingly in-10

creases, which can be partially compensated by increasing the vertical resolution. Typ-
ically the vertical resolution increases from several hundreds of meters in the lower
stratosphere to several kilometres in the upper stratosphere (Godin et al., 1999).

In this study we used the following seven lidar sites (see Table 1 for their
coordinates): Alomar (Norway), Hohenpeissenberg (Germany), Observatoire Haute15

Provence (France), Table Mountain (California), Mauna Loa (Hawaii), Lauder (New
Zealand) and Dumont d’Urville (Antarctica). Four of the sites are located in the mid-
latitudes, two in the polar regions and one in the tropics.

2.3 Methodology

The flowchart in Fig. 1 summarizes the SOM-based approach as a series of five steps.20

In the first step, the data are prepared as input for the neural network. This involves the
data selection (quality and collocation criteria), a calculation of the differences between
the datasets and includes a data normalisation to set the variance to unity.

The normalised differences are used to train the self-organising map in the second
step. The result of the training is a self-organised map where each neuron now has25

a normalised difference for each altitude that is similar to, but distinct from its neigh-
bours, and is representative of one or multiple input vectors, but not necessarily identi-
cal to it (i.e. the vector of normalised differences is likely a weighted average of multiple
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input vectors) as also the neighbourhood affects the values assigned to one neuron.
This set of representative normalised difference vectors are called the codebook vec-
tors, which is a three-dimensional matrix (composed by the two dimensions of the SOM
together with the altitude vector). For each altitude we can visualise these codebook
vectors as a map, which will be called a component plane. In addition, we can also5

derive which neuron has the most similar normalised differences as the input data, so
it is known for each input data vector to which neuron it maps. This information is called
the mapping index.

In the third step, the mapping indices are used to create maps of each explana-
tory variable (EV) with the same dimensions as the SOM. When multiple input vectors10

(IDs) map to the same neuron, it is necessary to calculate a mode, mean or median
(depending on the type of variable) of the EV values of those IDs to associate to that
neuron.

The codebook vectors can be clustered to help identify patterns that are present over
the entire range of altitudes in the fourth step. Such a clustering is exemplified by the15

three colours in cluster block in Fig. 1.
The fifth and final part of the analysis is to study the relations between the compo-

nent planes (the codebook vectors) and the explanatory variables, both on a global
scale (entire dataset) and on a more detailed (local) level inside the clusters. This is
done using visual inspection of the patterns in the codebook vectors and EVs and by20

correlation analysis.

3 Practical implementation and discussion of results

To illustrate the analytical methods described in the previous section, in this section we
present a detailed example following the five steps. Note that the third and fourth step
can be executed in parallel (i.e. their relative order is arbitrary).25
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3.1 Data selection, collocation and preprocessing

We selected all SCIAMACHY and lidar ozone number density data from the period
2002–2012 having a reported error of 30 % or less and having valid processing flags.
Collocations of SCIAMACHY and ground-based lidar ozone profiles were sought within
20 h and 800 km. The profiles are interpolated to a common altitude grid with a 1 km5

resolution using a nearly linear spline, followed by the calculation of the relative differ-
ences with respect to the lidar as follows: SCIAMACHY-lidar

lidar ×100%. The resulting dataset
consists of over 25 000 difference profiles between the collocated pairs, together with
metadata (i.e. EVs) providing information on the observation characteristics. Here we
further filtered the data to remove partial profiles; that is, where not at all altitudes10

between 18 and 45 km data were available for both the lidar and SCIAMACHY ob-
servations (see Fig. 2 where the fraction of not available data is indicated for each
altitude).

This filtered dataset consists of 13 746 difference profiles with the matching meta-
data, which corresponds to 54 % of the input data having information for all selected15

altitudes. The histograms of the differences per altitude show close to Gaussian dis-
tributions, except for the lowest altitudes where the distribution is somewhat skewed,
which is also visualised in the box plots shown in Fig. 3.

The differences are normalised to set the variance to unity. As the transformation
is linear, the distribution shapes are preserved. Figure 4 shows the correlation of the20

normalised relative differences between the 28 altitude bins. The correlation ranges
between −0.09 and 0.95 (off-diagonal). It can be seen that differences at low altitudes
are hardly correlated to those at higher altitudes and that at higher altitudes similar
differences are found over a larger range of nearby altitudes.

3.2 Training of the SOM25

The normalised data were used to train a SOM. Here we used the SOM toolbox for
MATLAB version 2.0 beta by Alhoniemi, Himberg, Parhankangas and Vesanto available
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at http://www.cis.hut.fi/projects/somtoolbox. The self-organising map was set up as
a lattice grid of 46 by 75 hexagonal neurons. The dimensions were chosen to the-
oretically allow an average of four input vectors to map onto a single neuron, which
was chosen as a trade-off between complexity and over-simplification. Different ratios
determine the level of detail that can be studied, but the principles remain the same.5

In the case of a greatly extended geographical input space, one could additionally go
for a high-resolution representation with more neurons than input vectors (Skupin and
Esperbé, 2011).

The training was done in two phases. The initial phase consisted of 200 iterations
where a rough training was carried out with an initial neighbourhood covering a ra-10

dius of 10 neurons which gradually decreased to cover a radius of 2.5 neurons at the
end of this phase. The second, fine-tuning phase was then run for 400 iterations with
a neighbourhood covering a radius of 2.5 neurons gradually decreasing to a radius of a
single neuron at the end of the training. In both cases we have used the batch training
algorithm.15

Most of the neurons (nearly 75 %) get organised with inputs from one to two sites,
about 18 % with inputs from three sites and very few (less than 5 % in total) can be
related to four or five sites. Assignation of six or all seven sites to the same neuron does
not occur. Overall, this indicates that the relative differences between SCIAMACHY and
the lidar ozone profiles appear to be (indirectly) location dependent to some extent. No20

input data get mapped onto 81 neurons (∼ 2 %), which indicates that some difference
values in the SOM space do not occur.

Component planes

Figure 5 presents the component planes for the 28 altitudes (18 km in the upper left cor-
ner, 45 km in the lower right corner). The codebook vectors have been de-normalised,25

so that the units correspond to the original relative differences. We can observe that
at the lowest altitudes (18 and 19 km) most neurons have values for the relative differ-
ences that are close to zero, but some spots with higher deviations stand out like the
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upper right corner with the most extreme outliers and multiple regions (cyan-coloured)
with a similar positive deviation. With ascending altitude, we can see that although at
low altitudes these differences were similar, higher-up they are clearly distinct. For in-
stance, the blob with positive differences at the bottom of the 18 km panel is associated
with negative deviations around 20–21 km and higher up with relatively small deviations5

from zero whereas the blob at the upper right corner remains a positive bias for many
kilometres.

The organisation of the differences has also led to a small increase of the correla-
tion between near altitudes as less representative samples get to play a smaller role.
Overall patterns (as visible in Fig. 4 and its discussion) are nevertheless preserved.10

3.3 Mapping the explanatory variable (EV) planes

Using the mapping indices and the IDs of each data sample, we can link the explana-
tory variables to the neuron where the corresponding set of relative differences for the
28 altitudes mapped. In this way, the information is summarised and organised fol-
lowing the spatial structure defined during the training of the SOM using the relative15

differences. This allows us to visually identify patterns and the relative importance of
the selected EVs. Here we have considered eleven variables which are also often used
in traditional validation studies (see Table 2).

When more than one input data sample maps onto the same neuron, a represen-
tative EV value was calculated considering the data type of the EV. For the scan di-20

rection, the location and the day of the year, we used the mode function. For the rest
of the EVs, the mean function was used. The difference in time between the lidar and
SCIAMACHY observation was taken as an absolute difference, disregarding whether
the lidar or SCIAMACHY observation was acquired first. Using other statistics such as
the median instead of the mean, did not affect the patterns much, indicating that the25

organisation is consistent.
Figure 6 shows the eleven EVs mapped onto the SOM. The white dots represent

empty neurons (no data mapped onto them). Some variables like the scan direction
4383
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and difference in time or distance between the observations appear to lack any or-
ganisation. In other words, they exhibit a random distribution in the SOM space. Other
EVs, like the latitude of the SCIAMACHY observation, show a clear organisation and
thus are significant to explain the organisation of the relative differences. We can also
see that some of the EV patterns are similar (for example location and longitude). This5

evidences a relationship between the different EVs. A third group of EVs is composed
by those variables that appear to be quite randomly distributed except for some spots
where they get grouped consistently. Days since launch and difference in equivalent lat-
itude belong to this third EV group, which points at secondary dependences or perhaps
indicates a behaviour that is local rather than global.10

The downward pointing triangular area that can be seen in the solar azimuth angle
(low angles; dark blue) and the coordinates of the SCIAMACHY observation (latitude of
about 50◦, red; mean longitude of around 0◦, green) mapped onto the SOM appears to
be linked with a similarly shaped area in the component planes of altitudes of 30±5 km
showing a small to negligible underestimation of the ozone profiles by SCIAMACHY.15

3.4 Correlation hunting

The patterns in the codebook vectors and the mapped EVs can be directly compared
by calculating the correlation coefficient between each EV and the codebook vector
for a given altitude. This provides a convenient way to visualise the dependence of the
differences dataset on a given variable at a specific altitude. However, it is not the same20

as using the original input data to calculate such correlations, as the data have been
summarised and approximated by the codebook vectors when they were organised.
The mapped EVs represent a synopsis of the original data in a similar manner.

Figure 7 presents the correlations between the component planes and the EVs for
the global dataset. We can see that at the lowest altitudes studied here, the relative25

differences seem to be most dependent on the longitude of the SCIAMACHY obser-
vations. Continuing upwards, the most dominant, but relatively weak, factor becomes
the solar zenith angle, followed by the latitude of the SCIAMACHY observation at the
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ozone maximum. We can see that the solar azimuth angle is strongly coupled to the
latitude of the observation and the solar zenith angle to a lesser extent as well. Then
above 36 km, the differences are in some part organised according to the age of the
sensor (days since launch). At the highest altitudes, we see again the solar zenith angle
having the largest correlation with the organised differences, but also some seasonal5

effect through the day of the year. The data selection procedure is also shown to be
quite adequate, as no dependence is observed on the difference in time or space be-
tween the lidar and SCIAMACHY observations. There is however a small contribution
to the distribution of differences by the difference in equivalent latitude, mostly around
the ozone maximum and around 20 km. The effect of the scan angle on the distribu-10

tion of the differences on a global basis seems to be marginal and is only somewhat
influencing around 22 km.

Naturally, there will be more factors involved in the distribution of differences be-
tween the lidar and SCIAMACHY ozone profiles, for instance influences from the level
1 processing (calibration errors) or the sensor’s sensitivity. Our intention here is to15

demonstrate the possibilities of the proposed approach and we have thus limited the
explanatory variables to those commonly selected in validation studies. We do note
that when additional information becomes available during the course of a study, the
approach allows to very simply and quickly extend the analysis with those new vari-
ables.20

3.5 Clustering

We have clustered the codebook vectors using simple k-means. Different numbers of
clusters were tested for consistency and the experiment was repeated 100 times to see
the stability of the obtained solutions as the clustering may be sensitive to the initiali-
sation/seeding values and get trapped in a local optimum (Tzortzis and Likas, 2014).25

Various algorithms exist that try to optimise the number of clusters, based on the prin-
ciple that similarity is indicated by the inter- and/or intra-cluster distances in the data
space (e.g. Davies and Bouldin, 1979; Tibshirani et al., 2001; Caliński and Harabasz,
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1974). However, no clear optimum might be found if the clusters present gradual tran-
sitions. A further limitation is that patterns visible to the eye at a single altitude may not
be identified by the clustering algorithm run on the entire set of codebook vectors as
one altitude has a relatively low weight on the total dataset.

Four indices were chosen to examine the clustering efficiency: the Davies–Bouldin5

index (considers the ratio of the intra-cluster scatter to the inter-cluster separation),
the weighted inter-intra index (the ratio of weighted average inter-cluster to weighted
average intra-cluster similarity), the silhouette index (measure of how close each point
in one cluster is to points in the neighbouring clusters) and the Caliński–Harabasz
index (considers the ratio of the inter-cluster variance to the intra-cluster variance).10

The Davies–Bouldin index has to be minimised whereas the other three indices have
to be maximised. Figure 8 shows the values for the four indices when running a k-
means classification of the codebook vectors for two to 80 clusters. All four indices
indicate that the optimal number of clusters is equal to three.

The codebook vectors were grouped into three clusters following the optimum num-15

ber of clusters indicated by the indices. Figure 9 shows the resulting clustering obtained
in 80 % of the runs. Two small “islands” of other clusters can be seen inside the first
cluster. This could be due to the clustering not being totally successful (for instance,
due to gradual transitions of the data) or an imperfect organisation by the SOM.

Alternatively, one could argue that visually more than three clusters can be identified20

given the patterns in the component planes where clearly small groups can be seen at
certain altitudes. The choice is therefore depending on the level of detail required by
the user. For the purpose of illustration and comparison between clusters, visualisa-
tion of three clusters is assumed to be sufficiently adequate besides this choice being
supported by the cluster validity indices.25

Additionally, clustering could also be done based on an EV when the differences
have been shown to be dependent on this variable. Such a sub-selection is then to be
defined by the user.
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Cluster-wise correlation hunting

Section 3.4 has presented the correlations for the full set of explanatory variables and
the SOM’s component planes, providing a global overview. More complex relations
might be obtained when examining the relations inside clusters. It is possible that some
parts of the dataset respond to different variables (local relations) or behave in an5

opposite manner, which then do not show up as a significant correlation in the global
analysis.

We have repeated the correlation analysis for the three clusters created from the
codebook vectors in the previous section.

Figure 10 shows the correlations between the codebook vectors and the mapped10

EVs for the three clusters. We can see that some details are very distinct for the dif-
ferent clusters. For instance, the dependence on latitude at higher altitudes appears
to be much lower for the third cluster in comparison to the first two clusters. The third
cluster mostly contains data originating from the northern mid-latitudes, yet this limited
latitudinal coverage does not affect the correlation for altitudes between 24–34 km sub-15

stantially and another process must be responsible for this. In contrast, a substantial
correlation with the days since launch between 36 and 42 km has appeared for this
third cluster. Also the dependence on the scan direction is stronger for the different
clusters than for the global dataset. For the second cluster some correlation with the
distance between the SCIAMACHY and lidar observations has appeared for the middle20

part of the selected altitude range, coincident with a stronger correlation with longitude
and with the scan angle for those altitudes. This should be studied in more detail. An-
other observation is that for all altitudes the strongest dependence on latitude (highest
negative correlation) and solar zenith angle (highest positive correlation) is found for
the second cluster, which also contains the largest variation in latitudes covered by the25

input data. The solar zenith angle has a greater negative correlation for the third cluster.
Observations such as these made here should be of interest for the teams working on
the retrieval algorithms, as they can focus on studying why these parameters/variables
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have such an impact on the observed differences between SCIAMACHY and the lidar
ozone profiles.

4 Conclusions

In this article we have presented an alternative and novel approach to intercompare
datasets and explore (dis)similarity patterns and their possible causes. The approach5

is based on the use of self-organising maps (SOMs) and was applied to atmospheric
ozone profiles (satellite and ground-based). More precisely, the proposed approach
was illustrated using SCIAMACHY limb ozone profile data (level 2 version 5.02 of the
operational product) and ground-based lidar ozone profiles around seven observation
sites.10

Following profile collocation and data quality filtering, relative differences between
the two instruments were calculated for altitudes between 18 to 45 km, and subse-
quently normalised using the variance (preserving the distribution). A SOM was batch-
trained in two phases using these normalised relative differences.

After that the role of eleven selected explanatory variables (EVs, related to loca-15

tion, data collocation criteria and observational characteristics) was studied by map-
ping these onto the trained SOM. For this, we relied on the ID that links each set of
ozone profile differences to the explanatory variables. Through visual inspection of the
patterns formed on the two-dimensional SOM and through correlation analysis, rela-
tions between the self-organised differences and the various of explanatory variables20

became apparent, directly linking the differences between the SCIAMACHY and lidar
profiles with these EVs without having to a priori specify certain conditions or ranges of
values for the explanatory variables (current common practice in data intercomparison
exercises).

At the lowest altitudes studied here, the largest influencing factor determining the25

patterns of relative differences seemed to be the longitude of the SCIAMACHY ob-
servations. Higher up, the most dominant, but relatively weak, factor became the solar
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zenith angle, followed by the latitude of the SCIAMACHY observation at the ozone max-
imum. The solar azimuth angle was strongly coupled to the latitude of the observation
and the solar zenith angle to a lesser extent as well. Above 36 km, the differences were
in some part organised according to the age of the sensor (days since launch). At the
highest altitudes, the solar zenith angle again had the largest correlation with the or-5

ganised differences, but also some seasonal effect appeared to play a role visualised
by the day of the year. The data selection procedure was also shown to be quite ad-
equate, as no dependence was observed on the difference in time or space between
the lidar and SCIAMACHY observations. There was however a small contribution to the
distribution of differences in the ozone profiles by the difference in equivalent latitude10

between the two observations, mostly around the ozone maximum and around 20 km.
The effect of the scan angle on the distribution of the differences on a global basis
seemed to be marginal and is only somewhat influencing around 22 km.

Further details were obtained by clustering the SOM component planes (i.e. the
values of the self-organised differences at multiple heights) into three clusters and in-15

vestigating the differences between the clusters in terms of the explanatory variables.
Although the general patterns were similar, some of the details were very distinct for
the different clusters. For example, in the third cluster the dependence on latitude at
higher altitudes appeared to be much lower in comparison to the other clusters. The
third cluster mostly contained data originating from the northern mid-latitudes, yet this20

limited latitudinal coverage did not substantially affect the correlation for altitudes be-
tween 24–34 km and it is postulated that another process must be responsible for this.
In contrast, a substantial correlation with the days since launch between 36 and 42 km
appeared for this cluster. Also the dependence on the scan direction was stronger for
the different clusters than for the global dataset. For the second cluster some correla-25

tion with the distance between the SCIAMACHY and lidar observations showed up for
the middle part of the selected altitude range, coincident with a stronger correlation with
longitude and with the scan angle for those altitudes, which should be further studied.
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Summarising, the approach has shown the potential to study relations between ob-
served differences between two datasets and possible underlying factors without mak-
ing prior assumptions on which factors are of interest. It is simple to add EVs to the
analysis and no a-priori division into ranges of values for the variables is required. The
level of detail can be optimised by adjusting the SOM size and by looking at clusters5

inside the SOM, local relations may be studied. The proposed approach is thus offering
a fresh and unbiased look at differences between datasets and is very useful to point
out where further focus should be laid to investigate the origins of the differences and
to enhance the underlying algorithms and/or models.
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Table 1. Locations of the used lidar stations.

Site name Latitude Longitude

Alomar 69.3◦ N 16.0◦ E
Dumont d’Urville 66.6◦ S 140.0◦ E
Hohenpeißenberg 47.8◦ N 11.0◦ E
Lauder 45.0◦ S 169.7◦ E
Mauna Loa 19.5◦ N 155.6◦ W
Observatoire Haute Provence 43.9◦ N 5.7◦ E
Table Mountain 34.4◦ N 117.7◦ W
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Table 2. Used explanatory variables with corresponding range of values.

Variable name Minimum value Maximum value

SCIAMACHY scan direction (4 profiles retrieved E–W) West East
latitude of the SCIAMACHY observation 74◦ S 76◦ N
longitude of the SCIAMACHY observation 163◦ W 180◦ E
difference in time between collocations −17.8 h +18.5 h
difference in horizontal direction between collocations 4 km 800 km
difference in equivalent latitude between collocations 0◦ 15◦

solar zenith angle during the SCIAMACHY observation 21.9◦ 89.8◦

solar azimuth angle during the SCIAMACHY observation 17.3◦ 164.3◦

station’s name of the collocated lidar ozone profile – –
number of days since the launch of ENVISAT 154 d 3583 d
day of the year 0 364
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Fig. 1. Flowchart of the proposed five-step methodology to explore origins of differences be-
tween ozone profiles. The self-organising map (SOM) is trained used a set of normalised differ-
ences (number of samples×number of altitudes). The SOM consists of grid formed by a num-
ber of rows by columns that is defined by the user. In this example, hexagonal-shaped neurons
are used resulting in six direct neighbours instead of four direct neighbours in a regular rectan-
gular grid (as indicated with the darker grey hexagons in the upper right corner of the figure;
the marked part corresponds to a radius of one neuron around the central neuron). The output
of the training are the organised differences, called codebook vectors, which can be shown as
a map (called component plane) for each altitude bin (variation in the relative differences at
one altitude visualised by different grey-tones). Each data sample with associated explanatory
variables (EVs) can be linked to a neuron on the SOM by the mapping indices. Using these
mapping indices, the EVs can be projected onto the SOM (gradient in EV visualised by dif-
ferent grey-shades). The codebook vectors can be clustered to study sub-groups (here, three
clusters are created and shown with different colours).
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Figure 2. Fraction of not available difference data as a function of altitude. 3 

4 

Fig. 2. Fraction of not available difference data as a function of altitude.

4398

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/4373/2014/amtd-7-4373-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/4373/2014/amtd-7-4373-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
7, 4373–4406, 2014

SCIAMACHY limb
compared to

ground-based lidar
observations

J. A. E. van Gijsel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 25

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
−100

−50

0

50

100

200

400

600
R

el
at

iv
e 

di
ffe

re
nc

e 
[%

]

Altitude [km]
 1 

 2 

Figure 3. Box plot of the relative differences at a given altitude. The lower and upper 3 

boundaries of the boxes indicate the lower and upper quartiles. The lines between these 4 

boundaries corresponds to the median. The dashed lines extending from the boxes show the 5 

range 1.5 times the interquartile range from the ends of each box. Outlier values outside this 6 

range are indicated with a +. The horizontal grey line indicates 0% difference. 7 

8 

Fig. 3. Box plot of the relative differences at a given altitude. The lower and upper boundaries
of the boxes indicate the lower and upper quartiles. The lines between these boundaries corre-
sponds to the median. The dashed lines extending from the boxes show the range 1.5 times the
interquartile range from the ends of each box. Outlier values outside this range are indicated
with a +. The horizontal grey line indicates 0 % difference.
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Figure 4. Correlation of the normalised relative differences between altitudes. 3 

4 

Fig. 4. Correlation of the normalised relative differences between altitudes.
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Figure 5. De-normalised codebook vectors for the 28 altitudes ascending from left to right 2 

row wise. Note that the range of colours is optimised for each panel; the associated relative 3 

differences are indicated by the colour legend on top of each panel. The component planes are 4 

interpolated to avoid empty (non-used) neurons and bridge the gap in the input space. The 5 

maps are stretched in the vertical direction for a better visualisation. 6 

7 

Fig. 5. De-normalised codebook vectors for the 28 altitudes ascending from left to right row
wise. Note that the range of colours is optimised for each panel; the associated relative dif-
ferences are indicated by the colour legend on top of each panel. The component planes are
interpolated to avoid empty (non-used) neurons and bridge the gap in the input space. The
maps are stretched in the vertical direction for a better visualisation.
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Figure 6. Explanatory variables mapped on the SOM. From left to right: top row:  3 

SCIAMACHY scan direction, SCIAMACHY latitude, SCIAMACHY longitude; second row: 4 

difference in time between collocations, difference in distance between collocations, 5 

difference in equivalent latitude between collocations; third row: solar zenith angle during 6 

SCIAMACHY observation, solar azimuth angle during SCIAMACHY observation, lidar 7 

station name; lower row: days since launch of ENVISAT, day of the year. White pixels 8 

indicate neurons that are not used. 9 

10 

Fig. 6. Explanatory variables mapped on the SOM. From left to right: top row: SCIAMACHY
scan direction, SCIAMACHY latitude, SCIAMACHY longitude; second row: difference in time
between collocations, difference in distance between collocations, difference in equivalent lat-
itude between collocations; third row: solar zenith angle during SCIAMACHY observation, so-
lar azimuth angle during SCIAMACHY observation, lidar station name; lower row: days since
launch of ENVISAT, day of the year. White pixels indicate neurons that are not used.
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Figure 7. Correlation between the codebook vectors at a given altitude and the mapped 3 

explanatory variables (EVs). EVs from left to right: scan direction, latitude of the 4 

SCIAMACHY observation, longitude of the SCIAMACHY observation, difference in time 5 

between collocations, difference in distance between collocations, difference in equivalent 6 

latitude between collocations, solar zenith angle during SCIAMACHY observation, solar 7 

azimuth angle during SCIAMACHY observation, days since the launch of ENVISAT and the 8 

day of the year. 9 

10 

Fig. 7. Correlation between the codebook vectors at a given altitude and the mapped explana-
tory variables (EVs). EVs from left to right: scan direction, latitude of the SCIAMACHY observa-
tion, longitude of the SCIAMACHY observation, difference in time between collocations, differ-
ence in distance between collocations, difference in equivalent latitude between collocations,
solar zenith angle during SCIAMACHY observation, solar azimuth angle during SCIAMACHY
observation, days since the launch of ENVISAT and the day of the year.
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Figure 8. Internal validity indices for k-means clustering of the codebook vectors into 2 to 80 3 

clusters. Left to right and top downward: weighted inter-intra index, silhouette index, Davies-4 

Bouldin index and the Caliński-Harabasz index. The optimum number of classes specified by 5 

a given index is indicated with a black square and data point. 6 

7 

Fig. 8. Internal validity indices for k-means clustering of the codebook vectors into 2 to 80
clusters. Left to right and top downward: weighted inter-intra index, silhouette index, Davies–
Bouldin index and the Caliński–Harabasz index. The optimum number of classes specified by
a given index is indicated with a black square and data point.
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Figure 9. K-means classification of the codebook vectors into three classes. 3 

4 

Fig. 9. k-means classification of the codebook vectors into three classes.
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Figure 10. Correlation between the codebook vectors at a given altitude and the mapped 3 

explanatory variables (EVs) for the three clusters shown in Fig. 9 (first cluster on top, etc.) as 4 

indicated in the lower right corner of each subplot. EVs from left to right: scan direction, 5 

latitude of the SCIAMACHY observation, longitude of the SCIAMACHY observation, 6 

difference in time between collocations, difference in distance between collocations, 7 

difference in equivalent latitude between collocations, solar zenith angle during 8 

SCIAMACHY observation, solar azimuth angle during SCIAMACHY observation, days 9 

since the launch of ENVISAT and the day of the year. 10 

Fig. 10. Correlation between the codebook vectors at a given altitude and the mapped ex-
planatory variables (EVs) for the three clusters shown in Fig. 9 (first cluster on top, etc.) as
indicated in the lower right corner of each subplot. EVs from left to right: scan direction, latitude
of the SCIAMACHY observation, longitude of the SCIAMACHY observation, difference in time
between collocations, difference in distance between collocations, difference in equivalent lat-
itude between collocations, solar zenith angle during SCIAMACHY observation, solar azimuth
angle during SCIAMACHY observation, days since the launch of ENVISAT and the day of the
year.
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