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Abstract

Laboratory oxidation studies have identified a large number of oxygenated organic
compounds that can be used as tracers to understand sources and oxidation chem-
istry of atmospheric particulate matter. Quantification of these compounds in ambient
environments has traditionally relied on low time-resolution collection of filter samples5

followed by offline sample treatment with a derivatizing agent to allow analysis by gas
chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We
present here an automated in situ instrument for the measurement of highly polar or-
ganic semi-volatile and low-volatility compounds in both the gas- and particle-phase
with hourly time-resolution. The dual-cell Semi-Volatile Thermal desorption Aerosol10

Gas chromatograph (SV-TAG) with derivatization collects particle-only and combined
particle-plus-vapor samples on two parallel sampling cells that are analyzed in se-
ries by thermal desorption into helium saturated with derivatizing agent. Introduction of
MSTFA, a silylating agent, yields complete derivatization of all tested compounds, in-
cluding alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In lab-15

oratory tests, derivatization is found to be highly reproducible (<3 % variability). During
field deployment, a regularly injected internal standard is used to correct for variability
in detector response, derivatization efficiency, desorption efficiency, and transfer effi-
ciency. Error in quantification from instrument fluctuations is found to be less than 10 %
for hydrocarbons and less than 15 % for all oxygenates for which a functionally simi-20

lar internal standard is available. After internal standard corrections, calibration curves
are found to be linear for all compounds over the span of one month with comparable
response on both of the parallel sampling cells.

1 Introduction

In both urban and rural environments, a majority of submicron particulate matter is or-25

ganic (Jimenez et al., 2009; Zhang et al., 2007), mostly formed through the oxidative
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conversion of gas-phase anthropogenic and biogenic emissions into Secondary Or-
ganic Aerosols (SOA) (Goldstein and Galbally, 2007; Hallquist et al., 2009; Kroll and
Seinfeld, 2008). One of the primary tools to understand oxidation pathways and source
apportionment is the measurement of organic tracers: compounds known to come
from specific emission sources and/or form through oxidation under specific conditions.5

Tracers are typically quantified using samples collected on traps or filters and extracted
with solvents or thermally desorbed to be analyzed by gas or liquid chromatography
(GC, LC) coupled to a mass spectrometer (MS) (Cass, 1998; Mazurek, 2002; Schauer
et al., 1996; Simoneit, 2005). These tracers include non-polar compounds such as hy-
drocarbons that are conducive to analysis by GC/MS without extensive sample prepa-10

ration, as well as polar compounds that require analysis by LC/MS or treatment with
a derivatizing agent prior to GC analysis.

For GC analysis, filter samples are typically reacted with a derivatizing agent fol-
lowing solvent extraction to form esters and ethers from hydroxyl groups, which suffer
from poor transfer through GC columns due to hydrogen bonding interactions. Dia-15

zomethane, a common derivatizing agent, selectively converts acid groups into methyl
esters and has been used to quantify acids and diacids in petroleum sources (Fraser
et al., 1998; Schauer et al., 1999b, 2002), meat-cooking (Schauer et al., 1999a), and
biological processes (Simoneit, 2005). Source profiles containing these derivatized
acids in combination with hydrocarbons (including alkanes, hopanes, steranes, and20

polycyclic aromatic hydrocarbons), and biomass-burning tracers (Fraser and Laksh-
manan, 2000; Ramdahl, 1983) have been used extensively in the analysis of particle
matter in urban environments (Fraser et al., 1999; Hildemann et al., 1991; Kubátová
et al., 2002; Lough et al., 2006). Alternately, derivatization can be performed using
silylating agents, which exhibit broader reactivity, converting all OH groups into silyl25

esters and ethers. A large number of such reagents are available with minor varia-
tions in volatility and reactivity (Fluka Chemie AG, 1995), but the most commonly used
in atmospheric applications is BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide), which
yields trimethylsilyl (TMS) protecting groups as a derivatized product. Using BSTFA
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derivatization, many compounds have been identified in the laboratory controlled ox-
idation of common biogenically emitted compounds, including isoprene (Chan et al.,
2010; Claeys et al., 2004; Kleindienst et al., 2009; Szmigielski et al., 2007), some
monoterpenes (Claeys et al., 2007, 2009; Jaoui et al., 2005), and some sesquiter-
penes (β-caryophyllene: Jaoui et al., 2007); these tracers are regularly used for source5

apportionment in rural environments (i.e. Edney et al., 2003; Kleindienst et al., 2007,
2010; Kourtchev et al., 2005; Lewandowski et al., 2007; Offenberg et al., 2011; Zhang
et al., 2009). Analysis by LC/MS allows measurement without prior derivatization of
these and similar tracers, including compounds not observable by GC/MS (i.e. Gao
et al., 2006; Surratt et al., 2008), but this technique is typically less comprehensive than10

derivatized GC/MS. LC analyses rely on careful selection of an elution solvent and, in
most cases, quantification using electrospray ionization (ESI) MS, which is highly struc-
turally dependent (Oss et al., 2010). Consequently the technique has focused primarily
on high-molecular weight compounds and oligomerization processes (Hallquist et al.,
2009), which cannot be well-studied using GC/MS.15

Derivatization can be performed in situ without the need for solvent extraction and
offline reaction. Docherty and Ziemann (Docherty and Ziemann, 2001) demonstrated
that co-injecting BSTFA into a hot GC inlet alongside the sample efficiently derivatizes
organic acids, which is thought to proceed by fast reactions occurring in the gas-phase
after volatilization of the derivatizing agent and the analytes. Desorption of filters into20

a stream of derivatizing agent has been used in the analysis of atmospheric samples
and laboratory oxidation experiments using both diazomethane (Sheesley et al., 2010)
and silylating agents (Orasche et al., 2011; Ruehl et al., 2013; Zhang et al., 2013), but
it is not yet a widely used technique.

Since most previous particle phase tracer measurements have relied upon offline25

analysis, the time resolution of sample collection has typically been on the order of
several hours to several days. Through development of the Thermal desorption Aerosol
Gas chromatograph (TAG), Williams and co-workers (Kreisberg et al., 2009; Williams
et al., 2006) were able to measure non-polar and low-polarity tracers with hourly
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time-resolution, resulting in insights into particle formation pathways and source ap-
portionment (Williams et al., 2010a, b; Worton et al., 2011). A newer version of this in-
strument uses a high-surface area filter to collect gas- and particle-phase low-volatility
and semi-volatile compounds, considered here as any compounds expected to partition
between the gas- and particle-phase under typical atmospheric conditions. (SV-TAG,5

described by Zhao et al., 2013b). This has expanded the utility of this instrument into
measurements of gas-to-particle conversion pathways (Zhao et al., 2013a). However,
while this instrument provides the highest available time-resolution for the measure-
ment of organic tracer compounds, it has thus far been limited to hydrocarbons and
less-polar oxygenates (O : C lower than 0.3 in most cases). Most known tracers for10

the oxidation of biogenic compounds are too polar to be measured by previous TAG
instruments, often with an O : C between 0.5 and 1.

Here we describe modifications to SV-TAG to enable measurements of highly polar
oxygenates with hourly time resolution through the inclusion of in situ derivatization. To
validate the implementation, we demonstrate here that derivatization occurs to com-15

pletion, has linear calibrations, and is reproducible, including a quantification of error.

2 Methods

2.1 Instrument description

The instrument described in this work is shown in Fig. 1. Briefly, it is a modified
Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom in20

situ instrument for quantifying gas- and particle-phase semi- and low-volatility organic
compounds in the atmosphere (Kreisberg et al., 2009; Williams et al., 2006; Zhao
et al., 2013b). Improvements over previous SV-TAG systems include a parallel dual-
cell sampling system (described in Sect. 2.1.2) and in situ derivatization (described in
Sect. 2.1.3).25
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2.1.1 SV-TAG overview

Typical SV-TAG operation is described in detail by Zhao and co-workers (Zhao et al.,
2013b), so only an overview is provided here. Air is sampled at 10 L min−1 into a cus-
tom Collection and Thermal Desorption cell (CTD), which contains a high surface area
metal fiber filter in a housing that can be cooled through forced air cooling, or heated.5

This filter CTD (F-CTD) has been shown to quantitatively collect gas-phase compounds
with a volatility as high as tetradecane, which is found almost entirely (>99 %) in the
gas phase under ambient conditions (Zhao et al., 2013b). In sampling or analysis sce-
narios not requiring gas-phase collection, the original impactor CTD (I-CTD) can be
installed, which can be more easily cleaned of nonvolatile contaminants such as black10

carbon. For field measurements, this work uses an F-CTD to collect gas-phase com-
pounds. As noted, some lab experiments reported in this work utilized the I-CTD. Sam-
ples can be collected directly or by first passing through a 500-channel activated car-
bon denuder (30 mm OD×40.6 cm; MAST Carbon), shown to efficiently remove gas-
phase species (Zhao et al., 2013b). Comparison between undenuded (“total”, gas plus15

particle) samples and denuded (“particle”) samples provides a direct measurement of
gas-particle partitioning of semivolatile compounds, an area of active research. The
original SV-TAG instrument included only one CTD, not a parallel sampling system as
is shown in Fig. 1 and required interpolation between consecutive samples to quantify
gas-particle partitioning. The implementation and discussion of this dual-cell system is20

presented below.
Calibration and correction for run-to-run variability is performed through regular in-

jection of liquid standards using an automatic injection system (“AutoInject”) that uses
a 4 µL sample loop that draws from any one of multiple chilled reservoirs holding the
standards (details in Isaacman et al., 2011). Approximately 25 isotopically labeled25

(mostly perdeuterated) standards representing most atmospherically relevant func-
tional groups are introduced into every sample to correct for changes in instrument
sensitivity and transfer efficiency. Calibrations are performed using more than 100
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authentic standards spanning a broad range of functional groups and known tracer
compounds. All chemical standards used were purchased at >98 % purity from Sigma-
Aldrich or C/D/N Isotopes.

Samples are transferred from the CTD to the GC/MS in a two-step thermal desorp-
tion process ramping between 30 ◦C and 315 ◦C. First, compounds are desorbed from5

the cell at relatively high helium flow rates (20–150 sccm two-stage desorption flow
as described by Zhao et al., 2013b), and re-concentrated onto a focusing trap held at
30 ◦C through forced air cooling. This focusing trap, consisting of approximately 100 cm
of metal, thick phase column (MXT-5, 1 m x 0.53 mm×5 µm; Restek), is then heated
to 315 ◦C and back-flushed (∼2 sccm) through a custom valveless interface (Kreisberg10

et al., 2014) onto the head of the GC column for analysis by mass spectrometry. For
this work a non-polar column (Rtx-5Sil MS, 20 m×0.18 mm×0.18 µm; Restek) was
installed in a gas chromatograph (7890A; Agilent Technologies), modified to accom-
modate SV-TAG hardware, coupled to a commercially available mass spectrometer
(5975C; Agilent Technologies). Analysis is performed with custom software written in15

Igor Pro 6.3 (Wavemetrics).

2.1.2 Implementation of dual-cell system

Outfitting SV-TAG with a parallel dual-cell system provides flexibility for improved mea-
surements and detailed method comparisons. Parallel cells are sampled simultane-
ously then analyzed in series; samples can be collected or analyzed in two differ-20

ent ways. In a typical field deployment, one cell collects an undenuded sample (gas
plus particle), while the other collects a denuded sample (particle only, all gas-phase
species removed). The roles of the cells are swapped with each sample to avoid cell-to-
cell bias. The dual-cell SV-TAG instrument can therefore directly measure gas-particle
partitioning without any need for interpolation between points, a source of error in previ-25

ous measurements of partitioning with TAG (Williams et al., 2010a; Worton et al., 2011;
Zhao et al., 2013a). Alternately, when comparing methods of derivatization, each cell
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can be subjected to different treatments (i.e. derivatized and non-derivatized), allowing
direct comparison between methods on ambient samples.

Several hardware modifications were necessary to achieve dual-cell capability. To
ensure identical sample size of each cell, sample flow is regulated independently
through two matching mass flow controllers (e.g. MFCS2 shown for cell 2). For thermal5

desorption, the cells are joined to the valveless interface via a custom “tee-box” mani-
fold (Fig. 1) consisting of three 1/16′′ passivated VICI tees in a housing maintained at
300 ◦C, which allows desorption of one cell at a time. Using desorption of CTD2 as an
example, helium through purge valve VP2, purges one cell during thermal desorption
while the purge valve on CTD1, VP1 (not labeled), is closed to prevent accidental trans-10

fer of volatiles. Simultaneously, helium flows through auxiliary flow valve VAux1, which
introduces flow downstream of CTD1 to prevent any desorption flow from CTD2 reach-
ing CTD1. Using restrictive capillaries, a passive 1 : 7 split between the flow paths of
VP2 and VAux1 ensures that 13 % of total purge flow goes through the auxiliary channel
to prevent cell-to-cell contamination with >97 % efficacy (Kreisberg et al., 2014).15

Sampling and analysis of both cells occurs with hourly time resolution. A typical
duty cycle consists of 22 min of sampling on both cells, injection of standards (2 min),
two-step desorption (12 min) and chromatographic analysis (14 min) of CTD1, then
desorption and analysis of CTD2 while collection of the subsequent sample begins
after exactly 60 min. The valveless interface decouples the collection cells from the GC,20

allowing hourly time resolution by performing GC/MS analysis during CTD desorption
and sampling.

The AutoInject system was modified to allow injection into both cells, as automatic
injection of internal standards onto every run is an important part of system calibration.
In a single-cell system, the AutoInject consists of a 6-port selector used to select be-25

tween standard reservoirs, and a 6-port valve used to fill a standard loop and inject it
into the cell (Isaacman et al., 2011). Adapting the AutoInject to a dual-cell system was
achieved by replacing the 6-port standard loop valve with a 10-port valve containing two
standard loops of the same volume (4 µL), one for each cell. Both standard loops are
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loaded simultaneously with the same standard then injected at the same time into their
respective cells immediately following sampling so that the samples and the internal
standards are subjected to the same conditions.

2.1.3 Implementation of in situ derivatization

Derivatization is implemented by saturating helium with derivatizing agent, and using5

that saturated helium as a portion of the total CTD purge flow during thermal desorp-
tion. Total desorption flow is controlled as the sum of helium flow through two mass flow
controllers, MFCdvz, which passes through the derivatizing agent reservoir (Fig. 1 in-
set), and MFCprg, which does not. The reservoir consists of a standard 10 mm×75 mm
glass test tube with a custom modified compression fitting cap (Swagelok) with two10

1/16′′ OD tubes inserted and soldered. Helium is introduced at the bottom of the reser-
voir and bubbled through the derivatizing agent, ensuring saturation. This reservoir is
the same as those used for liquid-flow of standards in the AutoInject, connected in re-
verse to provide gas-flow. A constant stream of derivatizing agent is thus introduced so
that all compounds are volatilized from the CTD into an environment rich in reagent.15

Excess reagent passes through the focusing trap (Fig. 1) during desorption, minimizing
the amount of unreacted derivatizing agent reaching the GC column. Due to this purge
method, only species more volatile than the derivatizing agent can be analyzed.

The quantity of derivatizing agent introduced to the sample can be optimized by
controlling the fraction of total purge flow that is routed through the reagent reservoir,20

fdvz =MFCdvz/(MFCdvz +MFCprg). However, we describe here some limitations to this
control. To prevent the derivatization of the cell that is not being desorbed, it is neces-
sary to ensure that VAux does not receive any derivatizing agent, so, due to the 1 : 7
passive split, greater than 15 % of total flow must be purge flow at all times. Maximum
derivatization is therefore fdvz =0.85. To make certain that VAux gets flow from MFCprg25

and because surface tension in the MSTFA reservoir prevents bubbling of <∼ 2sccm,
neither purge nor derivatization flow are ever regulated to be between 0 and 4 sccm.
The fraction of desorption flow that is derivatized at low total flows is limited by these
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constraints. For example, at 20 sccm, fdvz cannot be less than 0.25 or greater than 0.75.
Despite these limitations, independent control of derivatized and non-derivatized flow
provides a useful tool for optimizing amount of reagent used and probing derivatization
efficiency (demonstrated in Sect. 3.1).

2.1.4 Selection of derivatization agent5

Dozens of derivatizing agents exist in the literature to improve GC analysis for a wide
variety of functional classes (Blau and Halket, 1993), but the most commonly used
reagents for atmospheric organic tracer analysis are silylating agents, primarily BSTFA,
due to their efficiency and broad reactivity (all OH groups). As previous research
(Docherty and Ziemann, 2001) has demonstrated the utility of this agent for efficient,10

fast, gas-phase derivatization, silylating agents in the chemical family of BSTFA are
used in this work. MSTFA (N-methyl-N-(trimethylsilyl) trifluoroacetamide) has been
used for the dual-cell SV-TAG presented here due its similar reactivity but higher
reagent and byproduct volatility than BSTFA (Fluka Chemie AG, 1995), allowing all
non-analytes to be efficiently purged across the focusing trap. MSTFA has an esti-15

mated vapor pressure approximately equal to decane (C10 alkane) so is sufficiently
volatile to not impede the analysis any species targeted by SV-TAG, which is limited
in its sample collection to species no more volatile a C14 alkane (Sect. 2.1.1). The im-
plementation of in situ derivatization presented in this work allows complete flexibility
of derivatizing agent and an effective means for measuring derivatization efficiency, so20

use of derivatizing agents targeting specific volatilities or functional groups is an area
for future exploration. Derivatizing reagents were purchased through Sigma-Aldrich
(>98 % purity, synthesis grade).
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2.2 Laboratory evaluation methods

2.2.1 Derivatization efficiency

Derivatization efficiency was tested through repeated automatic injection of a complex
mixture of polar and non-polar compounds containing most functional groups present
in known atmospheric tracer compounds and spanning a wide-range of volatilities.5

Response of 43 oxygenated compounds introduced by an automated liquid standard
injector is examined under varying derivatization conditions. To provide a conserva-
tive test, injected quantities of most constituents were larger than expected from at-
mospheric sampling. Total injected mass was 2.0 µg per analysis with approximately
half the mass comprised of compounds containing functional groups expected to be10

derivatized (hydroxyl groups). For each compound, detector response relative to detec-
tor response under maximum derivatization conditions was measured for 8–10 repli-
cate injections at 9 levels of MSTFA, from 1 % to maximum derivatized flow, taking
into consideration the flow limitations discussed in Sect. 2.1.3. In considering deriva-
tization efficiency, responses of all oxygenated compounds were normalized to the15

nearest n-alkane in volatility to correct for any fluctuations in detector sensitivity and
matrix-dependent transfer. A complete list of compounds injected and their relative re-
tention times is provided in the Supplementary Information, including 5 oxygenated
compounds with no OH groups such as ketones, 25 compounds with 1 OH groups, 8
compounds with 2 OH groups, and 5 compounds with 3 or 4 OH groups (which have20

been combined to improve statistics), spanning a volatility of tridecane (C13 alkane) to
tetratriacontane (C34 alkane). While these compounds span the functionalities of most
known tracers, the fate of some compound classes – i.e. hydroperoxides, organoni-
trates, and organosulfates – upon reaction with silylating agents is generally not well-
understood. Further study is necessary to understand measurement of these atmo-25

spherically relevant compounds by thermal desorption GC/MS.
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2.2.2 Derivatization reproducibility

Under laboratory conditions, reproducibility was measured through repeated injection
of an atmospheric aerosol sample: a filter extraction of a high-volume (67 m3 h−1)
quartz fiber filter collected in the Sierra Nevada Mountains of California as part of the
Biosphere Effects on Aerosols and Photochemistry Experiment (Worton et al., 2011).5

The filter was collected during the day of 1 October 2009 for approximately 11 h (total
726 m3 of air sampled). One-half of the filter was extracted into 50 mL of methanol with
1 h of sonication, blown dry under a gentle flow of nitrogen gas, and diluted to 10 mL.
BSTFA was introduced as a derivatizing agent for 50 consecutive injections of one Au-
toInject loop (4 µL) into an I-CTD. In each injection, over 1400 peaks were identified10

above detection limits, most of which are expected to be polar compounds due to the
extraction into a polar solvent. To measure reproducibility, each injection was compared
to the average of all injections in the series.

Responses of internal standards over one month of field data during two separate
field campaigns are used to estimate error in correcting for run-to-run variability and re-15

producibility in real-world data. Dual-cell SV-TAG with derivatization was first deployed
as part of the Southern Oxidant and Aerosol Study (SOAS) in the summer of 2013 in
rural Alabama (32.903◦ N, 87.250◦ W, near Brent, AL) in the Southeast US. The period
of measurement was 1 June 2013 through 15 July 2013. Data presented here consist
of calibrations and injections of internal standards from the period 4 June 2013–2 July20

2013 (“Study 1”). Samples were collected with 1.5 h time resolution through 18 June
2013, then hourly time resolution for the remainder of the field campaign. Following
SOAS, minor instrument modifications were made to avoid exposing non-derivatized
flow paths to derivatizing agent through the introduction of parallel flow paths and an
additional valve (shown in Fig. 1 in gray). Reproducibility and stability of the modified25

instrument was tested using internal standards injected on top of ambient samples col-
lected in rural Brazil in a rainforest region from 14 February 2014 to 13 March 2014 (re-
ferred to hereafter as “Study 2”). The internal standard used during this period was an
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order of magnitude more dilute than that used during Study 1. MSTFA was used as the
derivatizing agent during both campaigns. To accommodate long-term drifts in detec-
tor sensitivity and significantly changing sample matrices, reproducibility in field data is
quantified using ratios of internal standards, not simply response, the reasons and im-
plications of which are discussed in Sect. 3.2. The internal standards used for correct-5

ing run-to-run variability in these deployments were: perdeuterated C14-C32 n-alkanes
(even carbon numbers only), decanoic acid-d19, tetradecanoic acid-d27, hexadecanoic
acid-d31, octadecanoic acid-d35, pentadecanol-d31, cholesterol-d6 (Study 1 only), hex-
anedioic acid-d4, 3-hydroxy pentanedioic acid-d5, glucose-13C6 (Study 2 only), and
pentaerythritol-d5.10

3 Results and discussion

Effective, quantitative derivatization must be shown to be complete and reproducible,
with linear or predictable response. Dual-cell SV-TAG with derivatization was shown to
meet these requirements through a series of laboratory tests, as well as field deploy-
ment to the Southeastern US.15

3.1 Derivatization efficiency

Derivatization is shown in Fig. 2 as a function of quantity of derivatization agent in-
troduced, and is found to occur to completion during normal instrument operation. In
a scenario of incomplete derivatization, a small reduction in reagent would be expected
to reduce the response of all derivatized compounds in proportion to the number of OH20

groups on each compound. For a large number of oxygenated compounds injected
into dual-cell SV-TAG, a reduction in signal is not observed when fraction of deriva-
tizing agent, fdvz, is reduced significantly from its maximum (here set at 0.80). For all
43 compounds shown, detector response leveled off by fdvz =0.50 (50 % derivatized
purge flow) suggesting maximum possible derivatization, and in most cases fdvz =0.3025
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was a sufficient fraction of derivatization flow to maximize signal. Increased derivatiza-
tion flow also decreased variability in detector response, suggesting more reproducible
derivatization.

With severely reduced quantities of derivatizing agent, detector response was greatly
diminished due to incomplete reaction because these compounds cannot be measured5

by traditional gas chromatography in the absence of derivatization. Compounds con-
taining more hydroxyl groups are more sensitive to a dramatic reduction in fdvz, as is
expected from stoichiometric limitations caused by consumption of the reagent. The in-
jected mixture contained ketones with no hydroxyl groups to test for possible formation
of a silylated enol. However, the analysis of these compounds (Fig. 2, black triangles),10

as well as hydrocarbons, was not found to be adversely affected by the introduction
of derivatizating agent. Previous work (Orasche et al., 2011) has shown improved re-
covery of polycyclic aromatic hydrocarbons using derivatization, but that was neither
observed nor specifically tested here.

3.2 Reproducibility of derivatization15

Derivatization was found to be highly reproducible in a laboratory setting through the
repeated injection of a complex mixture. A methanol extraction of a filter collected in
the Sierra Nevada Mountains of California in the summer of 2009 was injected 50
consecutive times into an I-CTD to quantify the reproducibility of derivatization of an
atmospherically relevant complex mixture (Fig. 3). Figure 3a shows a comparison of all20

peaks in one of these injections to the average areas, which is found to deviate from
unity by less than 1 %, with a nearly perfect correlation coefficient, across approxi-
mately four orders of magnitude in peak area. These correlation metrics are consistent
across all 50 injections (Fig. 3b), with a slope almost always within 2 % of unity and
very high correlation coefficients (r2 > 0.994). Given a 1–3 % reproducibility error of25

the AutoInject (Isaacman et al., 2011), repeated derivatization of an identical mixture
has nearly perfect reproducibility.
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Satisfied with near-perfect reproducibility under ideal laboratory conditions, repro-
ducibility under more difficult field conditions was assessed using approximately one
month of internal standard injections on top of ambient samples during two periods of
data collection – Study 1 in the southeastern US and Study 2 in a rural Brazil rainforest
region. Direct reproducibility is difficult to accomplish due to non-ideal working condi-5

tions in the field (i.e. temperature fluctuations, power outages, high humidity, drifts in
detector sensitivity) and significant changes in sample loading due to atmospheric vari-
ability, which is known to affect transfer efficiency. Reproducibility is instead achieved by
correcting changes in derivatization and sample transfer efficiency by using isotopically
labeled internal standards injected into each sample. The extent to which derivatization10

is reproducible and these errors can be corrected is quantified by comparing internal
standards to each other, e.g. in a perfect correction scenario all compounds suffer
the same changes in efficiency, so the ratio of any two compounds is unchanging and
derivatization can be said to be reproducible, or at least predictable and therefore quan-
tifiable. In a non-ideal correction scenario, some fluctuation of this ratio is expected, so15

correction/reproducibility error is quantified as the relative standard deviation (σ) from
the average of a ratio of two internal standards. The error from various possible correc-
tion scenarios is presented in Fig. 4 and Table 1 using response of internal standards
injected on top of a wide range of organic loadings.

Figure 4 highlights the correction scenarios that apply to operational conditions typ-20

ically used in deployment of SV-TAG with derivatization. Given the wide range of alka-
nes present in the internal standard, perdeuterated alkanes that are close in volatility
can be used to correct variability in response to hydrocarbon analytes. The ratio of
one perdeuterated alkane (representing a hydrocarbon analyte) to the next closest
in volatility has a relative standard deviation of 8.4 % (Fig. 4a) during Study 1 and25

11.2 % during Study 2. More than 80 % of all points fall within these standard de-
viations. Transfer efficiency can change dramatically between 2 carbon numbers for
species of high molecular weight, so a large fraction of this error is due to real dif-
ferences in response caused by variations in sample loading; when considering only
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hydrocarbons not affected strongly by transfer efficiency changes (smaller than C28),
such as sesquiterpenes, standard deviation of error for Study 2 is reduced to 6.1 %.

Error in correction for run-to-run changes in derivatization efficiency depends
strongly on available internal standards due to its dependence on functionality. In typ-
ical field deployment of TAG, most atmospherically relevant oxygenated compound5

classes that can be detected by thermal desorption, derivatized GC are represented
by at least one internal (isotopically labelled) standard: mono-carboxylic acids, di-
carboxylic acids, polyols, sugars, and hydroxy acids. Most of these compound classes
are limited to only one internal standard due to cost and availability of isotopically la-
belled standards, but several perdeuterated n-alkanoic acids are present. The ratio of10

one n-alkanoic acid to another with no regard to volatility therefore serves as a rea-
sonable model for error in correction of run-to-run variability of identified compounds
and therefore applies broadly to most oxygenated compounds measured in typical SV-
TAG operation. Figure 4b is the result of assigning each of 4 perdeuterated n-acids
randomly to each other 10 times. Based on this representative scenario, the measure-15

ment precision is found to have a standard deviation of 13 % for any compound for
which a reasonably chemically similar internal standard is used under normal operat-
ing conditions. This is higher than the error inherent in hydrocarbon correction as it
includes variability in derivatization efficiency, an additional source of error. To reduce
error, compounds may be targeted with specific internal standards (i.e. pentaerythritol-20

d5 to accurately quantify methyl tetrols, a common biogenic oxidation product). Error for
such a targeted compound is best modeled by correcting n-acids using the next near-
est n-acid in volatility (Fig. 4c) to represent correction using an internal standard that
is both chemically and structurally similar. This scenario has an error of approximately
10 % in correction for run-to-run variability. In both scenarios shown for correction of25

oxygenates, standard deviations encompass nearly 80 % of the error (dotted lines in
Fig. 4).

The scenarios for error in Fig. 4 are those that apply to most compounds under typ-
ical operation of TAG. However, error depends on the availability of chemically similar
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standards, so estimates of error have been provided in Table 1 for various scenarios
representing possible selections of internal standards (scenarios highlighted in Fig. 4
are shown in bold).

In the absence of a wide array of internal standards, a small range of oxygenates can
be used with similar functionality (scenario 4) or volatility (scenarios 3, 5) with an error5

of 20–30 %. Note that based on scenario 3, an oxygenated compound can be mea-
sured with a precision of ∼20 % even in the absence of definitive identification, provid-
ing an estimate of error in cases where absolute concentrations are unnecessary such
as comparison between parallel sampling cells. If necessary, a single oxygenate can be
used to correct simply for overall changes in derivatization efficiency (scenario 6), with10

a corresponding increase in error (30–40 %). However, correction of oxygenates using
hydrocarbon internal standards (scenarios 7, 8) results in a significantly non-Gaussian
distribution of errors and very high-error (see Supplement for cumulative error distribu-
tion), indicating that there are some relevant changes in derivatization efficiency that
must be corrected for with oxygenated internal standards. For scenarios involving cor-15

rection using relatively similar internal standards, error is found to be similar across
both instrument deployments despite varying environmental conditions owing to the
use of a large suite of internal standards. However, error estimates diverge under sce-
narios modeling the use of less similar internal standards, with some reduction in error
following instrument modifications between campaigns. This highlights the importance20

of careful internal standard selection and the benefits of employing atmospherically
relevant internal standards.

3.3 Quantitation

Linear response of derivatized compounds within the range of expected analyte abun-
dances is necessary for accurate quantification of oxygenated tracer compounds.25

A suite of over 100 authentic standards was injected at various levels approximately
twice per day throughout Study 1 during the SOAS field campaign. Daily schedules typ-
ically included injection of a single AutoInject loop of “concentrated” standard (12–32 ng
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of each compound) and one injection of 1 to 3 loops of “dilute” standard (1.2–3.2 ng
of each compound per loop), with occasional injections of 2 loops of concentrated
standard. Once corrected for variability using internal standards (per Sect. 3.2), cal-
ibration curves were found to be linear in nearly all cases. Examples of 4 calibra-
tion curves spanning several atmospherically relevant functional classes are shown in5

Fig. 5, with quantities injected that are approximately in the range expected in the atmo-
sphere for typical sample sizes, and instrument response normalized to the response
of one loop of concentrated standard. Several correction scenarios shown in Fig. 4
are represented: correction of a hydrocarbon using a hydrocarbon of similar volatil-
ity (Fig. 5a: hexadecane corrected using hexadecane-d34), correction of an oxygenate10

using an oxygenate of similar functionality (Fig. 5b: ketopinic acid, a mono-carboxylic
acid, biogenic oxidation product, corrected using tetradecanoic acid-d27) and correc-
tion of an oxygenate (alkanoic acid) using a nearly identical oxygenate (Fig. 5c: tride-
canoic acid corrected using tetradecanoic acid-d27, Fig. 5d: erythritol corrected using
pentaerythritol-d5).15

Calibrations are in all cases linear and spread in the data is typically limited to 10–
20 %, within the precision error for run-to-run variability correction estimated by detailed
error analysis in Sect. 3.2. Following correction by internal standards, both cells fall on
the same calibration curves because any difference in sensitivity to a compound be-
tween the cells is mirrored in the sensitivity to a chemically similar internal standard.20

Sensitivity to compounds is dependent on functionality, such that limits of detection
and quantitation are compound specific. Calibrations shown in Fig. 5 extend down to
approximately 1–2 ng injected mass, though in most cases analyte signal at this level
is still 10–100 times chromatographic background signals. As an example, erythritol
as shown in Fig. 5d during Study 1 is 20 times larger than background at 1.6 ng and25

during Period 2 is 10 times background at 0.6 ng. Consequently, though limits of de-
tection must be calculated individually for each analyte of interest, a reasonable av-
erage estimate is on the order of tenths of a nanogram, though in some cases it is
lower than 0.1 ng. When operating with hourly time resolution, sample is collected for
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approximately 20 min at 10 lpm, yielding conservative limits of detection of 1–2 ng m−3

(∼0.1 ppt), which is below measured concentrations for most analytes of interest. How-
ever, detection limits can be arbitrarily scaled through increasing or sacrificing sampling
time and therefore time-resolution. Though sample and injected standards sit on Cell 2
throughout desorption of Cell 1, there is no indication of a loss of volatile compounds.5

Carryover of sample from one cell into the other cell or subsequent sample occurs
independent of volatility at less than 3 % (Kreisberg et al., 2014).

3.4 Sample field data

A sample of the data available using dual-cell SV-TAG with derivatization is shown in
Fig. 6, a short sample timeline from the SOAS field campaign. Three days of hourly10

concentrations of gas- and particle-phase pinic acid, a product of the atmospheric oxi-
dation of α-pinene, demonstrates clear diurnal variation, as well as many short spikes
in concentration. These features are indicative of atmospheric and biological processes
that are occurring with higher time-resolution than is available using traditional mea-
surement techniques.15

4 Conclusions

We present here an instrument for hourly measurement of both gas- and particle-phase
oxygenated organic compounds in the ambient atmosphere. Though quantification of
organic tracers has provided significant insight into atmospheric oxidation chemistry
and aerosol formation pathways, traditional measurement techniques require sample20

times of several hours to several days, as well as offline sample processing. By mod-
ifying SV-TAG, a field deployable instrument, to include on-line derivatization, known
and novel organic tracers can be quantified hourly in situ. Inclusion of a dual-cell, par-
allel sampling system allows simultaneous measurement of both gas- and particle-
phase components through a denuder difference method. Automation of the dual-cell25
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SV-TAG with derivatization provides improved time-resolution over traditional measure-
ment techniques with decreased operator interaction and offline sample preparation,
minimizing exposure to derivatizing agent and solvents.

Derivatization is found to be reproducible, complete, and linear in all laboratory and
field tests performed. Field-deployable, in situ derivatization of polar compounds is5

found to be robustly quantifiable within approximately 10–20 % by using internal stan-
dards to correct for variability in detector sensitivity and derivatization efficiency (range
represents similarity of internal standard to analyte). Non-polar compounds can also
be measured by this instrument with an error of <10 %. This quantification of error
is based on real-world data with significantly changing background matrixes (polluted10

days, clean days, denuded samples, etc.) and is robust across two different field cam-
paigns. Absolute error in concentrations for a given compound depends strongly on
available standards. For compounds with authentic or nearly identical chemical cali-
bration standards, error is expected to be limited to correction for derivatization and
transfer efficiency as discussed in this work (i.e. 15 %), while error will increase as15

chemical similarity decreases between the analyte of interest and the chemical surro-
gate used for quantification. Quantification by chemical surrogates is estimated to yield
errors between 33 % and 50 % (Jaoui et al., 2005) and is therefore expected to be the
main source of error for this instrument, as is the case for traditional offline methods.

Atmospheric phenomenon often occur on the scale of hours (i.e. break-up of inver-20

sion layers, rain events, etc.), so the time resolution provided by dual-cell SV-TAG with
derivatization will enable a far more detailed analysis of atmospheric chemical path-
ways with similar accuracy as lower-time-resolution techniques. Furthermore, direct,
hourly measurement of gas-particle partitioning will provide observational constraints
to assess the relative importance of a wide variety of partitioning pathways that have25

been studied in great detail in laboratory experiments. Future exploration of alternative
derivatization agents is also expected to expand the utility of this instrument.
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The Supplement related to this article is available online at
doi:10.5194/amtd-7-7495-2014-supplement.
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Table 1. Standard deviation in error for correction of run-to-run variability of oxygenates using
a variety of possible scenarios for pairing analytes to internal standards. Full distribution of error
for scenarios in bold are shown in Fig. 4. In all cases, “nearest” refers to closest in volatility.

# Internal standard used Standard deviation
oxygenate-to-oxygenate

Study 1 Study 2

1 Random n-acid (n-acids only) 13.5 % 12.5 %
2 Nearest n-acid (n-acids only) 10.0 % 8.6 %
3 Nearest n-acid1 32.5 % 21.1 %
4 Similar number of OH groups2 36.7 % 20.4 %
5 Nearest oxygenate 38.0 % 24.0 %
6 Octadecanoic acid1 36.0 % 27.3 %

oxygenate-to-hydrocarbon

7 Octadecane 61.5 %3 36.7 %3

8 Nearest alkane1 61.1 %3 32.5 %3

1 Cumulative distribution of error shown in Supplemental information.
2 Nearest oxygenate with same number or ±1 OH group.
3 Strongly non-Gaussian error, error poorly represented by standard
deviation.
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Figure 1. Schematic of dual-cell SV-TAG with in situ derivatization. Two parallel Collection
and Thermal Desorption cells (CTD) simultaneously sample, one directly collecting gas plus
particle phase compounds and one through a denuder that removes all gas phase compounds
thus collecting only particles. Each sample is transferred in series to the GC/MS through a two-
stage purge-and-trap thermal desorption process. Purge helium is saturated with derivatization
agent by passing through a reagent reservoir (inset). Derivatized and underivatized desorption
flows are controlled independently using MFCdvz and MFCprg, respectively. Liquid standards are
regularly introduced by the AutoInject. After SOAS, derivatized flow paths were decoupled from
non-derivatized flow paths (modification shown in light gray – solid added, dashed removed).
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Figure 2. Response of 43 oxygenated compounds dependent on quantity of MSTFA intro-
duced, normalized to the average response of each compound at fdvz > 0.5. Solid lines and
symbols are the median relative response of all injections at each derivatization level with the
interquartile range shown as the shaded area. Compounds used are listed in Supplementary
Information. Average response of each compound at each derivatization level is shown as
a small dot of the appropriate color (slightly offset to the left) to show spread of the data.
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Figure 3. Comparison of reproducibility of injection and derivatization of 50 consecutive in-
jections of a methanol extraction of a filter collected in the Sierra Mountains of California. Re-
sponses of 1410 peaks in each injection were compared to the average response of each peak.
This comparison is shown for (A) the injection in the middle of the series, where pink circles
show all peaks compared and red squares show peaks binned by size into 10 equal bins (140
peaks each). (B) The slope (red circles) and correlation coefficient (blue squares) is shown for
all comparisons in the series. Perfect correlation (slope =1, r2 =1) is shown as a dashed line.
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Figure 4. The ratio of two internal standards relative to their average ratio, with relative stan-
dard deviations shown. Distributions of error from two periods of field data collection (dashed:
Study 1, solid: Study 2) are shown for scenarios most closely representing operating conditions
of TAG: (A) correction of alkanes using alkanes with similar volatilities to quantify precision in
hydrocarbon measurement, (B) correction of alkanoic acids using randomly assigned alkanoic
acids to quantify precision in most oxygenate measurements, and (C) correction of alkanoic
acids using the alkanoic acid closest in volatility to quantify precision in analytes for which
a very similar internal standard is present. In all cases, approximately 80 % of all samples fall
within the standard deviation of the average (exact percentage in each scenario shown as
dotted line).
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Figure 5. One month of multi-point calibrations of sample compounds during Study 1 (both cells
shown as circles and squares). Response is corrected using a structurally similar deuterated
internal standard injected into every run, as is standard operating procedure to correct for run-
to-run variability (line color represents the scenario of correction from Fig. 4). The average
response of the instrument to one loop of concentrated standard is used to normalize all data
to demonstrate 1 : 1 linearity.
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Figure 6. Sample final data of pinic acid, a known tracer for the oxidation of α-pinene, a com-
mon biogenically emitted monoterpene. Gas-phase concentration (light purple) is measured as
the difference between total concentration (black line) and particle-phase concentration (dark
purple).
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