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Abstract

A thermal/optical carbon analyzer equipped with seven-wavelength light source/
detector (405–980 nm) for monitoring spectral reflectance (R) and transmittance (T) of
filter samples allows “thermal spectral analysis (TSA)” and wavelength (λ)-dependent
organic carbon (OC)-elemental carbon (EC) measurements. Optical sensing is cali-5

brated with transfer standards traceable to absolute R and T measurements and ad-
justed for loading effects to determine spectral light absorption (as absorption optical
depth [τa,λ]) using diesel exhaust samples as a reference. Tests on ambient and source
samples show OC and EC concentrations equivalent to those from conventional car-
bon analysis when based on the same wavelength (∼635 nm) for pyrolysis adjustment.10

TSA provides additional information that evaluates black carbon (BC) and brown car-
bon (BrC) contributions and their optical properties in the near-IR to the near-UV parts
of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol
monitoring programs and provide insight into more accurate OC and EC measurements
for climate, visibility, or health studies.15

1 Introduction

Thermal/optical analysis (TOA) quantifies particulate matter (PM) organic carbon (OC)
and element carbon (EC) collected on quartz-fiber filters (Watson et al., 2005; Cao
et al., 2007; Bougiatioti et al., 2013). TOA based on the IMPROVE_A protocol (Chow
et al., 2007a, 2011) has determined OC and EC concentrations in tens of thousands20

of samples each year from long-term chemical speciation networks operated in the
US (IMPROVE, 2014; USEPA, 2014), Canada (Dabek-Zlotorzynska et al., 2011), and
China (Zhang et al., 2012). IMPROVE_A specifies stepped heating up to 580 ◦C in an
inert helium (He) atmosphere (>99.99 % purity), where most organic compounds are
either evaporated or decomposed (Chow et al., 1993), followed by a second stage of25

stepped heating to 840 ◦C in 98 % He/2 % O2 to remove EC on the filter. Since some
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of the OC is converted to EC through pyrolysis in pure He, as evidenced by darkening
of the filter, IMPROVE_A also specifies a reflectance pyrolysis adjustment. Reflected
light at wavelength λ = 633 nm is monitored throughout the heating (Huntzicker et al.,
1982). OC and EC are defined as carbon evolved before and after the filter reflectance
(R) returns to its initial level, respectively.5

In addition to reflectance, some TOA protocols use transmitted light (T) to monitor
the pyrolysis (Birch and Cary, 1996; Turpin et al., 1990). EC based on R or T splits are
referred to as ECR and ECT, respectively. In addition to particle deposits, adsorbed
organic vapors within the quartz-fiber filter (Chow et al., 2010; Watson et al., 2009) can
pyrolyze during the analysis (Yang and Yu, 2002; Chow et al., 2004). ECR differs from10

ECT since the R signal is dominated by pyrolyzed OC (POC) on the filter surface while
the T signal is influenced by POC both on and within the filter (Chen et al., 2004; Chow
et al., 2004). Unlike IMPROVE_A which reports both ECR and ECT, other TOA pro-
tocols employ different temperature steps, often reporting only the ECT results (Birch
and Cary, 1996; Cavalli et al., 2010; NIOSH, 1999; Schauer et al., 2003; Peterson and15

Richards, 2002).
The R and/or T measurements as part of TOA can infer the light absorption co-

efficient (babs), analogous to the principle of optical absorption monitors such as the
aethalometer (Hansen et al., 1984), particle-soot absorption photometer (PSAP; Bond
et al., 1999), and the multi-angle absorption photometer (MAAP; Petzold and Schön-20

linner, 2004). Both the aethalometer and PSAP apply T attenuation while the MAAP
incorporates both R and T attenuations in the calculation of babs. In any case, it is
necessary to compensate for multiple scattering and loading effects of the particle-
filter matrix that causes deviations from the simple Beer’s Law (Chen et al., 2004;
Arnott et al., 2005b; Virkkula et al., 2005). Black carbon (BC) concentrations can be25

derived from babs by applying a mass- and wavelength-specific absorption efficiency
(MAEλ, typically in m2 g−1). Many collocated measurements showed high correlations
but different slopes in BC/EC comparisons (Ahmed et al., 2009; Quincey et al., 2009;
Reisinger et al., 2008; Snyder and Schauer, 2007; Chow et al., 2009). This confirms
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the overlapping concept of EC and BC but also signifies the complex nature of car-
bonaceous material and uncertainties in such measurements (Andreae and Gelencser,
2006; Moosmüller et al., 2009; Petzold et al., 2013; Lack et al., 2014).

While BC (or EC) absorbs light strongly across the solar spectrum (300–1000 nm),
some organic compounds that evolve in the OC step can also absorb light, especially at5

shorter wavelengths (<600 nm). These compounds have been termed “brown carbon”
(BrC), and are associated with the smoldering phase of biomass burning and some
end-products of secondary aerosol formation (Andreae and Gelencser, 2006; Clarke
et al., 2007; Zhang et al., 2011). The spectral dependence of babs is often described
by α:10

α(λ) = −
dln(babs(λ))

d ln(λ)
(1)

where α(λ) is the absorption Ångström exponent. For BC (or EC) with graphitic-like
structure and a constant refractive index, α = 1, and babs is proportional to λ−1. For
BrC and mineral dust, α varies with λ and is mostly >1 (Moosmüller et al., 2009; Chen
et al., 2014), causing babs to increase more rapidly towards shorter wavelengths (blue15

and ultraviolet) than is the case for BC. The aerosol deposit thus appears to be brown,
or sometimes yellow, red, and chartreuse, as the longer wavelengths of illuminating
light are reflected and the shorter wavelengths are absorbed. The multi-wavelength
aethalometer has revealed different spectral patterns that are indicative of BC, BrC,
dust, and their mixtures (Sandradewi et al., 2008; Favez et al., 2009; Yang et al., 2009).20

Given the large number of samples per year analyzed by TOA worldwide, the optical
data acquired as part of the analysis could be used, in addition to OC and EC, for stud-
ies relevant to source apportionment, human health, visibility, and climate. Described
and characterized here is a retrofit of a TOA carbon analyzer that expands the single-
wavelength R and T monitoring to seven wavelengths for the IMPROVE_A analysis,25

hereafter designated as Thermal/Spectral Analysis (TSA). Equivalence of the OC and
EC fractions for TOA and TSA is demonstrated for several source and receptor sam-
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ples, and the wavelength dependence of OC-EC split is investigated. An approach to
report spectral babs (as aerosol optical depth) and α for decoupling the BC and non-BC
components is also introduced.

2 Instrument design and calibration

The 633 nm He/Neon (Ne) laser in the DRI Model 2001 carbon analyzer (Chow et al.,5

2011; Chen et al., 2012) is replaced with a package of 7 diode lasers with wavelengths
(λ) of 405, 455, 532, 635, 780, 808, and 980 nm covering the visible and near infrared
regions. The lasers are alternately pulsed (two consecutive pulses per laser, 14 pulses
per cycle) and lock-in amplified at a frequency of 30 Hz, resulting in two cycles and
∼ four pulses for each wavelength every second. The bifurcated fiber-optic for deliv-10

ering the He/Ne laser to the reflectance light pipe is replaced with an eight-furcated
optical-fiber bundle, one for each of the lasers and the last for transferring the light
reflected from the filter punch (0.5 cm2) to a photodiode (Fig. 1). Another light pipe on
the opposite side of the filter directs the transmitted light toward a separate photodiode
detector.15

Photodiode signals are acquired with a NI6216 data acquisition system (National
Instruments, Austin, TX) at a rate of up to 100 000 data points per second. The system
integrates the product of photodiode and reference (30 Hz square wave) signals every
second to suppress noise (e.g., from 60 Hz power supply and oven glow, random noise,
and baseline drift). The resulting integrals are reported as the spectral laser reflectance20

and transmittance (LRλ and LTλ, respectively). Example thermograms with LRλ and LTλ
are illustrated in Fig. S1 of the Supplement.

LRλ and LTλ are relative terms depending on not only optical properties of the sample
but also laser intensity and response of the photodiode. They are related to absolute
filter reflectance and transmittance (FRλ and FTλ, i.e., fraction of light reflected from or25

transmitted through the filter, respectively) using a set of transfer standards consisting
of eight PM2.5 quartz-fiber filters acquired using high-volume samplers from the Fresno
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Supersite (Watson et al., 2000; Chow et al., 2009), with EC loadings ranging from 0.9
to 15.8 µg cm−2. The high-volume filters (406 cm2) represent well-characterized urban
aerosol while providing sufficient sample for extensive testing. FRλ and FTλ of the trans-
fer standards were pre-determined using an integrating-sphere spectrometer (Lambda
35, Perkin Elmer, Massachusetts, USA, e.g., see Zhong and Jang, 2011; Chen et al.,5

2014) tracable to the National Institute of Standard and Technology for wavelengths
between 300 and 1000 nm.

Figure 2 compares LRλ and LTλ with FRλ and FTλ, respectively, for the transfer stan-
dards. Within the range of FRλ (0.1–0.8) and FTλ (0.0001–0.1), highly significant linear
relationships (r2 >0.9) demonstrate the stability of LRλ and LTλ measurements and the10

feasibility of converting them to FRλ and FTλ through calibration with a standardized
spectrometer. Figure S1 in the Supplement illustrates the changes in FRλ and FTλ re-
trieved from LRλ and LTλ throughout a typical TSA. The uncertainty of FRλ and FTλ
retrievals may be evaluated by the coefficient of variance of root mean square residual
(CV-RMSR) in the FRλ/LRλ and FTλ / LTλ regression, respectively:15

CV-RMSR =
1

Yobs

√∑
(Ycal − Yobs)2

n−2
(2)

where Yobs is the FRλ or FTλ measured by integrating-sphere spectrometer, Ycal is the
FRλ or FTλ calculated from LRλ or LTλ, respectively, and n is the number of samples.
FR633nm and FT633nm based on He/Ne laser of a typical Model 2001 analyzer exhibit
a ∼3 % uncertainty (Fig. 2). For this retrofit, FRλ uncertainties range from 3 to 11 %20

and FTλ uncertainties range from 5 to 18 %, with the best precision shown at 455 and
808 nm.
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3 Consistency of the OC-EC split

Several source and ambient PM2.5 samples (Table 1) are used for testing the system.
Samples from the Fresno Supersite (2 April 2003–28 December 2003) contain a mix-
ture of carbonaceous materials from fresh engine exhaust, biomass burning, and cook-
ing (Chen et al., 2007; Chow et al., 2007b; Gorin et al., 2006; Schauer and Cass, 2000).5

Reno ambient samples were acquired during the period of Rim Fire impact (17 August
2013–24 October 2013) and are dominated by an aged biomass burning plume con-
taining flaming and smoldering components. Source testing as part of the Lake Tahoe
Prescribed Burning Study (Malamakal et al., 2013) and Gasoline/Diesel Split Study
(Fujita et al., 2007) provided pure biomass burning and diesel exhaust samples, re-10

spectively. All these samples were analyzed by both TSA (using the retrofit) and TOA
(using conventional Model 2001 analyzers) following the IMPROVE_A protocol.

Table 1 compares total carbon (TC), OC, and EC by reflectance (i.e. OCR and ECR)
and transmittance (i.e., OCT and ECT) between TSA with the 635-nm and TOA with the
normal 633 nm OC-EC split. As expected, TC is equivalent, with the averages agreeing15

within ±5 % and regression slopes (m) ranging from 0.91 and 1.06 for each of the four
sample types. The relative difference (RD), defined as the ratio of the difference divided
by the average of two measurements (i.e., TSA and TOA) on the same sample does
not differ from zero at the 5 % significance level (p > 0.05). The standard deviations of
RD, a measure of random error, are higher for source (14–15 %) than for ambient (4–20

9 %) samples, indicative of greater deposit inhomogeneity for these samples, possibly
due to variable sampling conditions over short sampling durations.

TSA and TOA also yield statistically equivalent OC and EC results, either by R or T
(Table 1). Figure 3 visualizes the comparisons for OCR and ECR. With respect to the
standard deviation of RD, OCR and OCT are similar to TC while ECR and ECT are25

higher (up to 33 %) due to a lower fraction of EC in TC. By category average, ECR and
ECT account for 10–50 % and 5–46 % of TC, respectively. In general, ECR>ECT as
reported in previous studies (Khan et al., 2012; Han et al., 2013; Chow et al., 2001;
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Schmid et al., 2001), consistent with organic vapors pyrolyzed within the filter leav-
ing the sample after native EC and POC in the surface deposit have evolved (Chen
et al., 2004). POC was least apparent for the diesel exhaust samples where optical
adjustments were negligible.

Table 2 compares OC-EC splits for 635 nm with splits derived from shorter (455 nm)5

and longer (808 nm) wavelengths that have relatively low LR/LT uncertainties. Chow
et al. (1993) observed that the operational definition for EC defined by a TOA protocol
might contain some light-absorbing OC. When BrC is present, its contribution to EC
would increase as the wavelength used for the OC-EC split decreases, with the 880 nm
split being the least sensitive to BrC. Even in the absence of BrC, pyrolysis adjustment10

can depend on wavelength due to different spectral dependences of MAE for EC and
POC.

ECR based on the 635 nm split agree well with those based on the 808 nm split
(i.e., slopes within the standard error from unity and p(RD)>0.02) for all the sample
types. This suggests that the 633 nm R-split used for optical adjustment since Huntz-15

icker et al. (1982) does not respond to the BrC and POC characteristics more than
longer visible or infrared wavelengths. For ECT, the 880 nm split yielded higher val-
ues than the 635 nm split, especially for biomass burning dominated samples. This is
consistent with ECT being more influenced by POC within the filter, and this effect on
the T-split increases with decreasing wavelength (thus, increasing multiple scattering20

enhancement for absorption).
The 455 nm split appears to be sensitive to BrC content, as evidenced by larger

ECR than those determined with 635 nm (except for diesel exhaust samples where BrC
contents are low). The difference is largest for the aged Reno wildfire samples, which
may also contain some secondary organic aerosol formed during transport over the25

200 km distance between Yosemite National Park and Reno, Nevada. As demonstrated
in Fig. S1 in the Supplement, shorter wavelengths produce earlier splits, resulting in
higher ECR concentrations. The increase of ECT due to a 455 nm optical correction is
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not evident, which may be due to the opposing effects of BrC and POC at the shorter
wavelength.

4 Multi-wavelength absorption retrieval

Light absorption by particles on the filter is often estimated by transmittance attenuation
(ATN):5

ATNλ = − ln
(FTλ,i

FTλ,f

)
(3)

where i and f indicate FTλ measured before and after thermal analysis, respectively.
FTλ,f approximates a blank filter since all of the carbon has been removed. ATNλ in-
cludes scattering and absorption within the substrate. On the other hand, the absorp-
tion optical depth (τa,λ) measures only the light absorption. For diesel soot samples10

with negligible BrC and POC,

τa,λ = MAEλ,EC · [EC] (4)

where [EC] is the areal concentration of EC on filter in µg cm−2. If there were not filter
effects, ATN and τa would be identical for a given λ as described by the Beer’s Law.
With the knowledge of sampling volume (V ) and filter area (A), ambient babs can be15

calculated from τa ·A/V .
The relationship of [EC] and ATN635nm throughout the EC2 step (740 ◦C in a 98 %

He/2 % O2 atmosphere) of IMPROVE_A analysis for a diesel exhaust sample is shown
in Fig. 4. The temporal variation in [EC], i.e., d[EC]/dt, is determined from carbon re-
leased and detected by the carbon analyzer. Arnott et al. (2005b) proposed a quadratic20

relationship between [EC] and ATN, derived from:

dATNλ

dt
=

Mλ ·MAEλ,EC√
1+βλ · [EC]

· d[EC]

dt
(5)
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and thus:

[EC] =
βλ

4(Mλ ·MAEλ)2
ATN2

λ +
1

Mλ ·MAEλ
ATNλ (6)

where Mλ and βλ account for the wavelength-specific multiple scattering and loading
effects, respectively. Eq. (6) fits the relationship in Fig. 4 (r2 >0.99), thereby allowing
Mλ and βλ to be estimated. EC (quantified by IMPROVE_A ECR or ECT) and initial5

ATN635nm (prior to TSA) of all other diesel exhaust samples exhibit a consistent pattern
(Fig. 4). This supports the use of ATN635nm as a surrogate for EC and light absorption.
Similar relationships hold between [EC] and ATN for other wavelengths (Fig. S2 in the
Supplement). The largest scatter for 532 nm corresponds to the highest uncertainty
in FT532nm retrievals; it is attributed to low sensitivity of the transmittance photodiode10

detector at this wavelength, which has been addressed in a subsequent design of the
retrofit optics.

To relate τa,635nm to ATN635nm, a MAE (EC) of 7.4 m2 g−1 at 635 nm was used. The
MAE was derived from concurrent babs, by a photoacoustic sensor at 1047 nm, and EC,
by IMPROVE_A, measurements during the Gasoline/Diesel Split Study (Arnott et al.,15

2005a) and assuming an α of 1 in Eq. (1). The quadratic relationship holds for all of the
available wavelengths, as seen in Fig. 5. Light absorption is enhanced by the filter since
any τa,λ <1 corresponds to a larger ATNλ , with more amplification towards shorter
wavelengths. These τa,λ–ATNλ relationships would apply to any samples, regardless
of the nature of light-absorbing material (e.g, EC, BC, BrC, or mineral dust). Particle20

penetration depth and, to a lesser degree, single scattering albedo and the asymmetric
g factor can influence the τa,λ–ATNλ dependence, though for a similar sampling config-
uration and filter material/thickness with typical loading, the perturbation is expected to
be small (Chen et al., 2004; Arnott et al., 2005b).

Using the relationships in Fig. 5, τa,λ were calculated for all samples from the initially25

measured ATNλ values, with average τa,λ · λ by sample type compared in Fig. 6. The

nearly constant τa,λ · λ for diesel exhaust samples, i.e., τa,λ ∝ λ−1, is consistent with
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the exclusive contribution of EC to light absorption. BC derived from the τa,λ would
be equivalent to diesel EC. Averaged τa,λ · λ increases by factors of 1.5, 3.0, and 3.9
from 980 nm to 405 nm for the Fresno ambient, Reno wildfire, and prescribed burning
samples, respectively. This reflects different levels of non-EC contribution.

5 Separation of BC and BrC contributions5

A simplified two-component model consisting of BC and BrC, each with explicit absorp-
tion Ångström exponents (αBC and αBrC), is used to explain the spectral dependence
of τa,λ in the samples:

τa,λ = qBC · λ−αBC +qBrC · λ−αBrC (7)

where qBC and qBrC are fitting coefficients. This is analogous to the approach of San-10

dradewi et al. (2008) who considered the two components to be traffic and wood burn-
ing particles. Assuming a αBC of 1 the same as diesel EC, then:

τa,λ · λ = qBC +qBrC · λ−(αBrC−1) (8)

Fitting coefficients in Eq. (8) were obtained for any given αBrC between 2 and 8 by least-
square linear regression, and the αBrC that led to the overall best fit in terms of r2 was15

selected as the effective absorption Ångström exponent of BrC with which τa,λ,BC and
τa,λ,BrC can be calculated from the first and second terms of Eq. (7). For each of the 44
samples, Fig. S3 (Supplement) shows that fitted τa,λ are within ±5 % of the measured
values for τa,λ >0.01. Examples of the τa,λ decomposition as a function of wavelength
are shown in Fig. S4 in the Supplement.20

Table 3 summarizes the apportionment of τa,635nm into BC and BrC fractions along
with average αBrC, “diesel-EC-equivalent” BC (termed BCd hereafter), ECR, and ECT
by sample type. Consistent with Fig. 5, BrC contributions to τa,635nm are much higher
in prescribed burning than in diesel exhaust samples (averaging 46 % vs. 1 %) while

9183

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/9173/2014/amtd-7-9173-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/9173/2014/amtd-7-9173-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
7, 9173–9201, 2014

Multi-wavelength
optical measurement

to enhance
thermal/optical

analysis

L.-W. A. Chen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

somewhere in between (10–26 %) for Fresno and Reno wildfire samples. Effective αBrC
compare well among Fresno, Reno wildfire, and prescribed burning samples (4.2–4.8),
and are consistent with BrC of a similar nature from biomass burning (Bahadur et al.,
2012; Kirchstetter and Thatcher, 2012). Even in the infrared region BrC accounts for 3,
6, and 24 % of τa,980nm for the Fresno, Reno, and prescribed burning samples, respec-5

tively, on average. αBrC in diesel exhaust, detectable in 5 of 11 samples, appears to be
significantly lower (2.3±0.1) than other sample types.

Table 3 shows that BCd as determined from τa,635nm,BC/MAE635nm (7.4 m2 g−1)
are lower than ECR635nm. The differences are especially significant (i.e., p value of
RD<0.01) for Reno wildfire and Tahoe prescribed burning samples with relatively10

high BrC contributions. The comparisons do not change with ECR808nm (with low BrC
influence) replacing ECR635nm. A continuum of light-absorbing carbon, ranging from
BrC, char, to soot, from biomass burning as suggested by Pöschl (2003) and Masiello
(2004) may explain the discrepancy. As char and soot resulting from pyrolysis and high-
temperature graphitization, respectively, are both quantified as EC by TOA (Han et al.,15

2009), they may have distinct optical properties. BCd that was calibrated against diesel
EC would more represent just the soot fraction because there is little char material in
diesel exhausts. ECT635nm is substantially lower than ECR635nm due to the aforemen-
tioned POC effect, and is much closer to BCd for the Reno and Tahoe biomass burning
samples but not the Fresno and diesel exhaust samples.20

6 Conclusions

Thermal/optical analysis that combines thermal separation and optical monitoring is
potentially a powerful tool for analyzing carbonaceous aerosol on filters. Spatiotempo-
ral variations and long-term trends in aerosol loading, chemical composition, sources,
and effects have been inferred from OC and EC measurements (e.g., Chen et al., 2012;25

Hand et al., 2012; Malm et al., 1994; Murphy et al., 2011; Park et al., 2006). As many
archived samples may be retrieved for reanalysis and ∼40 000 new samples are col-
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lected per year in the US long-term networks alone, an enhanced multi-wavelength
thermal/optical analyzer would benefit the scientific community that uses the data.

The seven-wavelength (visible to near-infrared regions) TSA with both R and T sen-
sors allows determination of OC-EC split at different wavelengths and light absorp-
tion measurements to be made with wavelength-specific loading corrections. In the5

selected ambient and source PM2.5 samples, contributions of BC and BrC to light ab-
sorption were decoupled, assuming an absorption Ångström exponent of unity for BC
and much higher values for BrC. Thus, BC concentrations optically equivalent to diesel
exhaust EC, i.e., BCd, can be calculated. BrC with average absorption Ångström expo-
nent of 4.2–4.8 is found to be enriched in samples influenced by biomass burning.10

Despite the modifications in light source and detection technique, it is shown that the
TSA measures OC635nm and EC635nm equivalent to OC633nm and EC633nm from con-
ventional TOA following the same IMPROVE_A protocol with either R or T pyrolysis ad-
justment. ECR635nm is also consistent with those determined with longer wavelengths
(e.g., 808 nm), though OC-EC splits with shorter wavelengths (e.g., 455 nm) increase15

ECR appreciably showing the effect of BrC. For ECT, the BrC effect is somewhat can-
celed by an opposite POC effect. The optically derived BCd underestimate ECR635nm
or ECR808nm in biomass burning dominated samples with relatively high BrC content
though the agreements are good for other samples. This discrepancy calls for further
studies on the optical properties of EC, including soot and char, from biomass burning20

in contrast to those of diesel soot particles.

The Supplement related to this article is available online at
doi:10.5194/amtd-7-9173-2014-supplement.
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Table 1. Comparison of TC, OCR, OCT, ECR, and ECT between the 633 nm (TOA) and 635 nm
(TSA) optical split following the IMPROVE_A protocol.a

Sample Type Optical Split
(nm)b

Sample # and avg.c Corr. Deming Regression:
y =m ·x+b

RD: 2(y −x)/(y +x)

x y n x y r2 mc (±1σd) bc (±1σd) mean±1σ pe

TC
Fresno Supersite 635 633 10 20.30 20.05 1.00 0.97±0.05 0.38±0.75 −0.01±0.04 0.56
Reno Wildfire 635 633 14 30.69 30.21 1.00 0.91±0.06 2.14±1.18 0.04±0.09 0.15
Prescribed Burn 635 633 9 19.27 20.11 1.00 1.06±0.09 −0.32±1.12 0.01±0.14 0.91
Diesel Exhaust 635 633 11 8.10 7.78 0.97 0.99±0.05 −0.26±0.48 −0.06±0.15 0.21
All 635 633 44 20.34 20.23 0.99 0.95±0.07 0.89±1.00 0.00±0.12 0.85

OCR
Fresno Supersite 635 633 10 16.02 15.91 0.99 0.97±0.06 0.44±0.76 0.00±0.05 0.85
Reno Wildfire 635 633 14 27.62 26.99 1.00 0.90±0.07 2.09±1.27 0.03±0.09 0.30
Prescribed Burn 635 633 9 17.22 18.25 1.00 1.07±0.06 −0.12±0.76 0.03±0.13 0.65
Diesel Exhaust 635 633 11 4.08 3.91 0.52 0.95±0.35 0.04±1.35 −0.04±0.17 0.46
All 635 633 44 16.97 16.91 0.99 0.94±0.08 0.90±0.99 0.00±0.12 0.68

OCT
Fresno Supersite 635 633 10 17.80 17.82 1.00 1.01±0.03 −0.17±0.43 0.00±0.04 0.85
Reno Wildfire 635 633 14 29.07 28.64 1.00 0.92±0.06 1.93±1.19 0.03±0.08 0.14
Prescribed Burn 635 633 9 18.11 18.92 1.00 1.07±0.05 −0.37±0.72 0.01±0.13 0.65
Diesel Exhaust 635 633 11 4.42 4.14 0.46 1.01±0.46 −0.33±1.91 −0.07±0.20 0.32
All 635 633 44 18.10 18.07 0.99 0.96±0.07 0.74±0.94 −0.01±0.13 0.75

ECR
Fresno Supersite 635 633 10 4.28 4.15 1.00 0.99±0.06 −0.11±0.17 −0.06±0.08 0.06
Reno Wildfire 635 633 14 3.07 3.22 0.99 1.04±0.07 0.02±0.15 0.12±0.23 0.14
Prescribed Burn 635 633 9 2.05 1.86 0.88 0.92±0.18 −0.03±0.34 −0.13±0.25 0.25
Diesel Exhaust 635 633 11 4.02 3.87 0.99 0.97±0.07 −0.03±0.23 −0.17±0.30 0.12
All 635 633 44 3.37 3.31 0.99 1.00±0.03 −0.05±0.08 −0.04±0.25 0.17

ECT
Fresno Supersite 635 633 10 2.50 2.23 0.99 0.78±0.12 0.29±0.22 −0.07±0.14 0.13
Reno Wildfire 635 633 14 1.62 1.57 0.98 0.82±0.02 0.24±0.07 0.10±0.30 0.33
Prescribed Burn 635 633 9 1.16 1.18 0.85 0.87±0.10 0.17±0.13 0.07±0.30 0.50
Diesel Exhaust 635 633 11 3.68 3.64 0.99 0.92±0.13 0.24±0.30 −0.08±0.33 0.70
All 635 633 44 2.24 2.16 0.98 0.90±0.03 0.14±0.06 0.01±0.28 0.74

a TC: Total Carbon; OCR: Organic Carbon by Reflectance; OCT: Organic Carbon by Transmittance; ECR: Elemental Carbon by Reflectance; and ECT:
Elemental Carbon by Transmittance following the IMPROVE_A thermal/optical carbon analysis protocol (Chow et al., 2007). TOA: Thermal/Optical
Analyses; and TSA: Thermal/Spectral Analyses.
b x is by modified 7-wavelength carbon analyzer; y is by conventional single-wavelength (633 nm) DRI Model 2001 thermal/optical carbon analyzer.
c Concentration in µg cm−2; m is the slope; b is the intercept in µg cm−2.
dσ: Standard deviation.
e Student’s t test p values.
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Table 2. Comparison of TSA-determined 635 nm ECR and ECT with 880 nm and 455 nm fol-
lowing the IMPROVE_A protocol.

Sample Type Optical Split
(nm)a

Sample # and avg.b Corr. Deming Regression:
y =m ·x+b

RD: 2(y −x)/(y +x)

x y n x y r2 mb (±1σc) bb (±1σc) mean±1σ p

ECR
Fresno Supersite 635 455 10 4.28 4.74 1.00 1.23±0.04 −0.55±0.13 0.01±0.13 0.82
Reno Wildfire 635 455 14 3.07 4.29 0.95 1.90±0.58 −1.55±1.24 0.14±0.25 0.06
Prescribed Burn 635 455 9 2.05 2.14 0.98 1.41±0.23 −0.74±0.39 −0.03±0.16 0.57
Diesel Exhaust 635 455 11 4.02 3.93 1.00 1.00±0.01 −0.10±0.06 −0.08±0.11 0.06
All 635 455 44 3.37 3.86 0.90 1.36±0.28 −0.71±0.66 0.02±0.19 0.76

Fresno Supersite 635 808 10 4.28 4.12 1.00 0.95±0.08 0.06±0.22 −0.05±0.05 0.03
Reno Wildfire 635 808 14 3.07 3.22 1.00 1.04±0.08 0.03±0.17 0.15±0.23 0.02
Prescribed Burn 635 808 9 2.05 2.12 0.99 1.00±0.09 0.06±0.17 0.03±0.09 0.30
Diesel Exhaust 635 808 11 4.02 4.00 1.00 1.00±0.00 −0.02±0.02 −0.01±0.02 1.00
All 635 808 44 3.37 3.40 1.00 0.99±0.03 0.05±0.07 0.04±0.16 0.19

ECT
Fresno Supersite 635 455 10 2.50 2.44 1.00 1.00±0.02 −0.05±0.07 −0.04±0.08 0.16
Reno Wildfire 635 455 14 1.62 1.35 0.99 0.85±0.06 −0.02±0.06 −0.20±0.14 0.00
Prescribed Burn 635 455 9 1.16 1.07 0.98 1.06±0.25 −0.16±0.22 −0.08±0.24 0.16
Diesel Exhaust 635 455 11 3.68 3.59 1.00 0.97±0.01 0.01±0.04 −0.04±0.06 0.07
All 635 455 44 2.24 2.10 0.99 0.97±0.02 −0.08±0.03 −0.10±0.16 0.00

Fresno Supersite 635 808 10 2.50 2.67 1.00 1.03±0.04 0.10±0.08 0.08±0.04 0.00
Reno Wildfire 635 808 14 1.62 2.00 0.99 1.24±0.04 −0.01±0.08 0.18±0.18 0.00
Prescribed Burn 635 808 9 1.16 1.27 0.99 1.10±0.12 −0.01±0.12 −0.09±0.60 0.13
Diesel Exhaust 635 808 11 3.68 3.53 1.00 0.99±0.01 −0.11±0.07 −0.24±0.41 0.01
All 635 808 44 2.24 2.38 0.99 1.01±0.07 0.11±0.12 0.00±0.38 0.02

a x and y are both by modified 7-wavelength carbon analyzer, but with optical pyrolysis adjustment at different wavelengths.
b Concentration in µg cm−2; m is the slope; b is the intercept in µg cm−2.
cσ: Standard deviation.
e Student’s t test p values.
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Table 3. Average τa,635nm for four sample types and their respective BC and BrC fractions,
BrC absorption Ångström exponent, and diesel-EC equivalent BC (BCd) concentration. IM-
PROVE_A ECR and ECT determined by the 635 nm optical adjustment are compared to BC in
terms of average and p value of the relative difference (RD).

Sample
Type

τa,635nm τa,635nm,BC τa,635nm,BrC
(% in τa)

αa
BC αBrC BCb

d

(µg cm−2)
ECR
(µg cm−2)

ECT
(µg cm−2)

p value
(RDBC,ECR)

p value
(RDBC,ECT)

Fresno
(Ambient)

0.33 0.30 0.03 (10 %) 1 4.8±1.5 4.0 4.3 2.5 0.02 0.87

Reno
(Wildfire)

0.10 0.07 0.02 (26 %) 1 4.8±1.7 1.0 3.1 1.6 0.00 0.00

Prescribed
Burning

0.04 0.02 0.02 (46 %) 1 4.2±1.8 0.3 2.1 1.2 0.00 0.00

Diesel
Exhausts

0.26 0.26 0.00 (1 %) 1 2.3±0.1 3.5 4.0 3.7 0.05 0.06

a Pre-assumed values.
b Calculated from τa,635nm,BC/(7.4m2 g−1).
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Figure 1. Configuration of optical sensing (left) modified from the DRI Model 2001 analyzer 

(Chen et al., 2012).  The 7-laser module (i.e., L1-L7) represents 7 diode lasers with wavelengths 

of 405, 455, 532, 635, 780, 808, and 980 nm. Reference (top right) and laser (middle right) 

signals are modulated at 30 Hz for a lock-in amplification of the reflectance or transmittance 

signals (bottom right). Only 30-Hz signals with the same phase as the reference are amplified at 

gains proportional to the reference signal voltage and number of data points integrated. 
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Figure 1. Configuration of optical sensing (left) modified from the DRI Model 2001 analyzer
(Chen et al., 2012). The 7-laser module (i.e., L1–L7) represents 7 diode lasers with wavelengths
of 405, 455, 532, 635, 780, 808, and 980 nm. Reference (top right) and laser (middle right)
signals are modulated at 30 Hz for a lock-in amplification of the reflectance or transmittance
signals (bottom right). Only 30 Hz signals with the same phase as the reference are amplified
at gains proportional to the reference signal voltage and number of data points integrated.
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(a) 
 

(b) 

  
(c) 

  
(d) 

 

Figure 2. Calibration of spectral laser (a), (b) reflectance and (c), (d) transmittance 

measurements (LR and LT, respectively, in millivolts) by the retrofitted 7-wavelength carbon 

analyzer at room temperature against absolute filter reflectance and transmittance (FR and FT, 

respectively) quantified by the Lambda integrating-sphere spectrometer, using 8 Fresno ambient 

samples (5/6, 6/6, 6/19, 7/3, 9/29, 11/4, 11/13, and 12/28 of 2003) of various loadings as transfer 

standards. The 633 nm data are from a conventional carbon analyzer. r
2
 and CV(RMSE) evaluate 

the regression performance. 
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Figure 2. Calibration of spectral laser (a), (b) reflectance and (c, d) transmittance measure-
ments (LRλ and LTλ, respectively, in millivolts) by the retrofitted 7-wavelength carbon analyzer
at room temperature against absolute filter reflectance and transmittance (FRλ and FTλ, re-
spectively) quantified by the Lambda integrating-sphere spectrometer, using 8 Fresno ambient
samples (5/6, 6/6, 6/19, 7/3, 9/29, 11/4, 11/13, and 12/28 of 2003) of various loadings as trans-
fer standards. The 633 nm data are from a conventional carbon analyzer. r2 and CV(RMSE)
evaluate the regression performance.
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(a) 

 
(b) 

 

Figure 3. Comparison of organic and elemental carbon by reflectance optical correction (i.e., 

OCR and ECR, respectively) between the conventional thermal/optical analysis (TOA based on 

633 nm optical split) and 7-wavelength thermal/spectral analysis (TSA based on 635 nm optical 

split) following the IMPROVE_A protocol. Note that both x and y are on log scales. 

 

 

  

Figure 3. Comparison of organic and elemental carbon by reflectance optical correction (i.e.,
OCR and ECR, respectively) between the conventional thermal/optical analysis (TOA based on
633 nm optical split) and 7-wavelength thermal/spectral analysis (TSA based on 635 nm optical
split) following the IMPROVE_A protocol. Note that both x and y are on log scales.
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Figure 4. Relationship of EC concentration, [EC], versus ATN635nm from 1-sec measurements 

during the EC2 step (740 °C in a 98% He/2% O2 atmosphere) of IMPROVE_A analysis for a 

diesel exhaust sample (CIFQ074 from the Gas/Diesel Split Study [Fujita et al., 2007]). Also 

shown are paired [EC]-ATN635nm of 11 diesel exhaust samples where EC is determined from 

IMPROVE_A and ATN635nm from initial filter transmittance. Circles and error bars indicate the 

average and spread, respectively, of EC by transmittance and reflectance (i.e., ECT and ECR, 

respectively). τa,635nm was further calculated from a MAE of 7.4 m
2
/g  [EC] and the regression 

result between τa,635nm and ATN635nm is shown in green. 
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Figure 4. Relationship of EC concentration, [EC], vs. ATN635nm from all 1 s measurements dur-
ing the EC2 step (740 ◦C in a 98 % He/2 % O2 atmosphere) of IMPROVE_A analysis for a diesel
exhaust sample (CIFQ074 from the Gas/Diesel Split Study; Fujita et al., 2007). Also shown are
paired [EC]-ATN635nm of 11 diesel exhaust samples where EC is determined from IMPROVE_A
and ATN635nm from initial filter transmittance. Circles and error bars indicate the average and
spread, respectively, of EC by transmittance and reflectance (i.e., ECT and ECR, respectively).
τa,635nm was further calculated from a MAE of 7.4 m2 g−1 × [EC] and the regression result be-
tween τa,635nm and ATN635nm is shown in green.
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Figure 5.  τa,λ-ATN relationships for 405-980 nm wavelengths, based on a diesel exhaust 

reference sample. Results for 532 nm are not shown owing to lack of sufficient detector signal-

to-noise ratio at this wavelength. 
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Figure 5. τa,λ–ATNλ relationships for 405–980 nm wavelengths, based on a diesel exhaust
reference sample. Results for 532 nm are not shown owing to lack of sufficient detector signal-
to-noise ratio at this wavelength.
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Figure 6. Product of absorption optical depth (τa,λ ) and wavelength (λ) as a function of λ by
sample type. τa,λ shown represents averages over each of the sample types.
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