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Abstract.

Satellite measurements are often compared with higher-precision ground-based measurements as

part of validation efforts. The satellite soundings are rarely perfectly coincident in space and time

with the ground-based measurements, so a colocation methodology is needed to aggregate ’nearby’

soundings into what the instrument would have seen at the location and time of interest. We are par-5

ticularly interested in validation efforts for satellite-retrieved total column carbon dioxide (XCO2
),

where XCO2
data from Greenhouse Gas Observing Satellite (GOSAT) retrievals (ACOS, NIES, Re-

moteC, PPDF, etc.) or SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY

(SCHIACHY) are often colocated and compared to ground-based column XCO2 measurement from

Total Carbon Column Observing Network (TCCON).10

Current colocation methodologies for comparing satellite measurements of total column dry-air

mole fractions of CO2 (XCO2
) with ground-based measurements typically involve locating and av-

eraging the satellite measurements within some latitudinal, longitudinal, and temporal window. We

examine a geostatistical colocation methodology that takes a weighted average of satellite observa-

tions depending on the ‘distance’ of each observation from a ground-based location of interest. The15

‘distance’ function that we use is a modified Euclidian distance with respect to latitude, longitude,

time, and mid-tropospheric temperature at 700 hPa. We apply this methodology to XCO2
retrieved

from Greenhouse Gas Observing Satellite (GOSAT) spectra by the ACOS team, cross-validate the

results to TCCON XCO2
ground-based data, and present some comparison between our method-

ology and standard existing colocation methods showing that in general geostatistical colocation20

produces smaller mean-squared error.
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1 Introduction

Carbon dioxide (CO2) is an important anthropogenic greenhouse gas, and quantifying the exchange

of CO2 between the atmosphere and the Earth’s surface is a critical part of the global carbon cycle

and an important determinant of future climate (Gruber et al., 2009). One important measure of CO225

is total column carbon dioxide (XCO2
), which is available from ground-based Total Carbon Column

Observing Network (TCCON: Wunch et al., 2011a) and from space-based satellite instruments such

as the Greenhouse gases Observing Satellite (GOSAT: Yokota et al., 2004; Hamazaki et al., 2005)

and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY:

Bovensmann et al., 1999).30

Ground-based total column CO2 measurements tend to be more precise and accurate than space-

based measurements, but ground-based stations often are sparsely located around the globe, and

areas such as Siberia, Asia, Africa, South America, and the oceans have particularly poor coverage.

Satellite instruments have much better coverage and are able to sample the entire globe in a matter

of days or weeks. Together, the ground-based and space-based CO2-observing instruments provide35

a complementary ensemble of high-precision sparse-coverage and lower-precision global-coverage

measurements. An important component of satellite retrieval assessment is validation relative to

independent in-situ ground-based sources of data in order to assess important metrics such as bias

and variability relative to the underlying true process. These bias and variability assessments can in

turn be used to improve the retrieval algorithm to reduce spurious error resulting from factors such40

as: limited understanding of the instrument’s calibration, uncertainties in the O2 and CO2 absorption

cross sections, and subtle errors in the implementation of the retrieval algorithm (Crisp et al., 2012).

Often, there are spatial and temporal mismatches in the observed locations of the remote sensing

instrument and ground-based validation instrument, and some spatial (and temporal) interpolation

is required in order to ‘colocate’ the two sources of data before a direct comparison is possible.45

We define ‘validation colocation’ as estimating, through interpolation using nearby satellite obser-

vations, what a remote sensing instrument would have seen at some chosen location and time. In

this paper, we examine a new colocation methodology that is mathematically motivated in an error-

minimization framework. Specifically, we are interested in developing a colocation methodology to

combine retrieved XCO2
data from GOSAT spectra using the Atmospheric CO2 Observations from50

Space (ACOS) for comparison against TCCONXCO2
data with the goal of minimizing the expected

interpolation error.

Colocation methods for XCO2 in the existing literature include geographical, T700 (Wunch et al.,

2011b), and SRON/KIT (Guerlet et al., 2013) colocation. Geographical colocation typically defines

some spatio-temporal neighborhood region, also known as a coincidence criterion, around the loca-55

tion of interest and then take a summary statistics (e.g., mean or median). Examples of geographical

colocation includes averaging all same-day satellite observations falling within ±5 degrees of a lo-

cation of interest (Inoue et al., 2013), averaging all observations falling within 5 degrees and ± 2

2



hours (Cogan et al., 2012), and taking the monthly median of all observations within 10×10 degrees

lat-lon box (Reuter et al., 2013).60

More sophisticated colocation methodologies add other correlated geophysical covariates in con-

structing such ‘neighborhoods’ under the principle that conditioning on these additional correlated

covariates would improve the quality of the comparison. Wunch et al. (2011b)’s T700 colocation

method takes the average of all GOSAT observations falling within ± 30 degrees longitude, ± 10

degrees latitude, ± 5 days, and ± 2 Kelvin in T700 of the TCCON location of interest. Guerlet et al.65

(2013)’s SRON/KIT method similarly takes the average of all same-day satellite values that fall

within ± 7.5 degrees latitude, ± 25 degrees longitude, and ± .5 ppm of the 3-day averaged model

XCO2 data.

All the colocation methodologies above operate on an implicit assumption that observations ‘near’

one another are more likely to be correlated, where ‘nearby’ indicates being proximal in some coor-70

dinate space and metric. The notion of ‘nearness’ is captured in the definition of ‘neighborhood’ that

they specify; however, all observations falling within such a neighborhood are given equal weights

in the computation of the summary statistics. While this approach might be intuitive and straight-

forward, it fails to take further advantage of the spatial information encoded within the coincident

locations. For instance, suppose that we have 10 satellite observations falling within a coincident75

neighborhood of a ground-based station. The colocation methods above do not distinguish between

the case where we have 10 satellite observations retrieved exactly at the ground-based station and

the case where the 10 observations are retrieved far away on the edge of the neighborhood region;

the colocation methods would return the same colocated value in both cases.

In this paper, we present a refinement of these colocation methodology by modeling the corre-80

lation structure as a function of ‘distance’ using geostatistics, and then weighting nearby satellite

observations by their correlation with one another and correlation with the location of interest. Our

geostatistical methodology is motivated under an error-minimization mathematical framework and

is related to optimal interpolation (for more detail, see kriging; Cressie, 1993, Chapter 2).
:::
Our

:::::::::::
methodology

:::
has

:::
the

::::
same

:::::::::
framework

::
as

::::::::::::::::
Zeng et al. (2014) ,

::::::::
although

:::
they

:::::::
applied

:::
the

:::::::::::
methodology85

::
in

::
the

:::::::
context

::
of

:::::::::
gap-filling

::::
CO2

::::
from

:::::::
regional

::::
data

:::
and

:::
not

:::
for

:::::::
defining

:::::::::
colocation

::::::
criteria,

::::
and

::::
they

:::
did

:::
not

:::::::
consider

:::
the

:::::::
addition

::
of

:::::::::
non-spatial

::::
and

:::::::::::
non-temporal

:::::::::
covariates

::
in

::::
their

::::::
model.

The benefits of a geostatistical approach include explicit specification of the underlying covariance

structure, error propagation, and minimized expected mean-squared error. All colocation method-

ologies are essentially interpolation techniques, which result in an interpolation uncertainty that is90

incorporated into the variability of the colocated/validation data comparison. It is important to min-

imize the interpolation error so that we can better assess the underlying variability and bias between

the satellite and validation data. The geostatistical colocation methodology has the attractive the-

oretical property that, given the correct spatial correlation structure, it has the lowest interpolation

error of all linear methodologies.95
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In Section 2, we describe the data from ACOS-GOSAT and TCCON. Section 3 contains the details

of our methodology as well as the estimation procedure, and we compare the performance of our

geostatistical methodology to existing colocation methods in Section 4. Summary and discussion of

the methodology along with possible extensions are presented in Section 5.

2 Overview of ACOS-GOSAT, TCCON, and auxiliary data sources100

The Greenhouse Gases Observing Satellite (GOSAT) was launched on January 23th
:
,
::::
2009 as a joint

venture by the National Institute for Environmental Studies (NIES), the Japanese Space Agency

(JAXA), and the Ministry of the Environment (MOE). It is a polar-orbiting satellite dedicated to

the observation of total-column CO2 and CH4, both major greenhouse gases, from space using re-

flected sun-light spectra from the Thermal And Near-infrared Sensor for carbon Observation Fourier105

Transform Spectrometer (TANSO FTS, Hamazaki et al., 2005). It flies at approximately 665 kilo-

meters (km) altitude, and it completes an orbit every 100 minutes. The satellite returns to the same

observation location every three days (Morino et al., 2011).

Following the failure of Orbiting Carbon Observatory (OCO) launch in February 2009, the OCO

projected
::::::
project formed the Atmospheric CO2 Observations from Space (ACOS)

:::
task

:
and, under110

agreement with NIES, JAXA, and MOE, applied the OCO retrieval algorithm to the GOSAT spectra

to compute column-averaged dry-air mole fractions of CO2. The ACOS-GOSAT data processing

algorithm is based on the optimal estimation approach of Rodgers (2000) and is decribed in detail

in O’Dell et al. (2012). It is modified from the OCO retrieval algorithm (Bosch et al., 2006; Con-

nor et al., 2008; Boesch et al., 2011) to account for the different physical viewing geometries and115

properties such as instrument line shapes and noise models.

In this paper, we assess the performance of different colocation methods on ACOS-GOSAT data

by comparing colocated values to the more precise and accurate TCCON data. We use the v3.3

release of ACOS-GOSAT data, available from the Goddard Data and Information Services Center

spanning July 2009 to April 2013 (see ‘ACOS Data Access’ in Bibliography for notes). GOSAT data120

are divided into three categories: glint (ocean) data, land High (H) gain data, and land Medium (M)

gain data. The v3.3 Data User’s Guide notes that M data and ocean glint data have some deficiencies

in that particular version and should only be used with heightened caution (Osterman et al., 2013).

Hence in this paper we only make use of H gain land data.

Following the recommendation of the Data User’s Guide, we screen the v3.3 H gain data using125

a set of 11 criteria to obtain data suitable for science analysis. The set of screening criteria are

reproduced in Table 5. The ACOS-GOSAT data have a bias that is known to be correlated with cer-

tain other variables such as airmass, blended albedo, and posterior-prior surface pressure difference

(Wunch et al., 2011b). The v3.3 Data Guide recommends a linear bias correction to ACOS-GOSAT

XCO2
based on the difference between the retrieved and prior surface pressure from the A-band130
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cloudscreen and the ratio of the signal in the strong CO2 band to that of the O2A band (Osterman

et al., 2013). However, since such bias correction was done through comparison of v3.3 ACOS

retrievals with models and TCCON retrievals, we refrain from applying the v3.3 bias correction to

avoid potential ‘feedback’ in the comparison of our colocated v3.3 ACOS and TCCON values.

The Total Carbon Column Observing Network consists of ground-based Fourier Transform Spec-135

trometers that record direct solar spectra in the near-infrared. These spectra are then used to retrieve

column-averaged abundances of atmospheric constituents including CO2, CH4, N2O, HF, CO, and

H2O, which are directly comparable with the near-infrared total-column measurements from space-

based instruments (Wunch et al., 2011a). Whereas GOSAT retrievals are susceptible to variability

resulting from contamination by optically-thick clouds and aerosols that were missed by the cloud140

screening process (O’Dell et al., 2012), TCCON makes direct observation of the solar disk and hence

is less sensitive to errors from scattered light (Crisp et al., 2012).

TCCON sites sample in a diverse range of atmospheric states, which include tropical and polar

regions, continental and maritime, polluted and clean, providing valuable validation link between

space-based measurements and the extensive ground-based in situ network (Wunch et al., 2011a).145

TCCON XCO2
data in turn are validated against integrated aircraft profiles (Washenfelder et al.,

2006; Deutscher et al., 2010; Messerschmidt et al., 2011; Wunch et al., 2010) and have a precision

and accuracy of ∼0.8 ppm (Wunch et al., 2010).

We use the 2012 release version of the TCCON data (”GGG2012”) from the TCCON Data

Archive (see ‘TCCON Data Access’ in Bibliography for more information) for the following 16150

locations: Bialystok, Bremen, Darwin, Eureka, Garmisch, Izana, Karlsruhe, Lamont, Lauder (both

120HR and 125HR), Ny Alesund, Orleans, Park Falls, Reunion, Sodankyla, Tsukuba (both 120HR

and 125HR), and Wollongong. At each TCCON location, we use all available data that fall within

the period July 2009 to April 2013. A map of the TCCON locations are shown in Figure 1.
::::
This

::::::::
particular

::::::
version

:::
of

:::::::
TCCON

::::
data

:::::::
suffered

:::::
from

:::::::::
site-to-site

::::::
biases

:::
due

:::
to

:
a
:::::

laser
::::::::
sampling

:::::
issue155

:::::
inside

:::
the

::::::
Bruker

:::::::
125HR

::::::::::
instruments,

::::
and

::::
thus

:::
we

::::::::
corrected

:::
for

:::::
these

::::::
biases

:::::
using

:::
the

::::::::
TCCON

:::::::::::
recommended

::::
bias

:::::::::
corrections

::::
(for

:::::
more

:::::
detail,

:::
see

:::::::::::::::::::
TCCON Data Access ).

:

Atmospheric variability of XCO2
has been shown to be correlated to the free-tropospheric poten-

tial temperature, which can be considered as a proxy for equivalent latitude forXCO2
in the Northern

Hemisphere (Keppel-Aleks et al., 2011). In this paper, we follow Wunch et al. (2011b) in making use160

of mid-tropospheric temperature as one of the covariates along with latitude, longitude, and time.

Specifically, we use the mid-tropospheric temperature field at 700 hPa from the National Centers

for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR)

reanalysis product, which uses a frozen state-of-the-art analysis/forecast system and performs data

assimilation using past data (Kalnay et al., 1996). The mid-tropospheric temperature field at 700 hPa165

should be directly proportional to the potential temperature at 700 hPa for the range of temperature

of interest, and its inclusion as a covariate should allow us to construct better colocation metrics.
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2.1 Averaging kernel correction

To compare two observations obtained through optimal estimation properly, the retrievals must be

computed about a common a priori profile and the averaging kernels must be applied to account170

for the effect of smoothing (Rodgers and Connor, 2003). A detailed exposition on applying the

averaging kernel correction for a ACOS-GOSAT and TCCON comparison is given in Section 4 and

Appendix A of Wunch et al. (2011b).

Typically, to compare retrieval results from two different instruments with different viewing ge-

ometrics, retrieval algorithms, a priori profiles (xa), and averaging kernel (A), we need an com-175

mon ensemble profile (xc) and covariance matrix (Sc), which represent the mean and variability of

the atmosphere at the common comparison location. As an alternative, we can use one observing

system to try to retrieve what the other system would have produced as its retrieved total column

(Rodgers and Connor, 2003). Given that TCCON retrievals are considered more precise and accu-

rate, we smooth the TCCON value with the ACOS-GOSAT column averaging kernels to produce180

what ACOS-GOSAT would have produced at the TCCON location given the TCCON profile as

‘truth’.

Fortunately, ACOS v3.3 a priori profiles and TCCON a priori profiles are very close to one an-

other, and hence we only need to account for differences in the averaging kernels. We use the

following averaging kernel equation from Appendix A of Wunch et al. (2011b):185

ẑ12 = za + (γ− 1)
∑
j

hja1jxaj , (1)

where za is the a prioriXCO2
, ẑi is the retrievedXCO2

and i= 1 for ACOS and i= 2 for TCCON, h

is the XCO2
pressure weighting function, and a is the XCO2

averaging kernel norm. The term γ is a

scaling factor that produces the best fit of the TCCON output to the spectrum, and it is approximated

as a ratio between the retrieved TCCON XCO2 and the a priori XCO2 ,190

γ ≈ ẑ2
za
.

We apply Equation (1) to TCCON data between July 2009 and April 2013 at the 16 chosen TC-

CON locations. For each TCCON observation, we obtain the corresponding ACOS a priori infor-

mation using the colocation neighborhood region defined in Wunch et al. (2011b); see Section 4

for more detail. Figure 2 displays a plot of the relationship between the original TCCON retrievals195

versus the averaging-kernel-corrected TCCON data. In effect, the averaging kernel correction tends

to pull TCCON observations closer to the ACOS a priori XCO2 ; TCCON values that are higher than

the ACOS a priori value tend to be pulled downwards, while TCCON values lower than the ACOS

a priori XCO2
tends

::::
tend to be pulled upwards. The standard deviation of the difference between

non-corrected and corrected TCCON values, aggregated over all TCCON sites, is .24 ppm.200

Having done averaging kernel correction to put the TCCON and ACOS retrievals on the same

footing, we now describe our methodology for optimally colocating ACOS-GOSAT observations to
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any TCCON location in the next section. The colocated values will then be compared to averaging-

kernel-corrected TCCON data in Section 4.

3 Geostatistical Colocation205

Our colocation methodology exists within a geostatistical framework, which is a part of the broader

area of spatial statistics. Here, we briefly review that framework, give some necessary notation, and

present basic derivations for estimation in a spatial context.

Let {Y (s) : s ∈D} be a hidden, real-valued spatial process on a multi-dimensional domain. In

the application of ACOS-GOSAT and TCCON, we let s = (slat,slon,st,sT )′ be a 4-dimensional210

vector specifying the latitude, longitude, time, and mid-tropospheric temperature at 700 hPa (T700)

respectively and we assume Y (s) is theXCO2
process at location s. We assume that the Z(s), XCO2

retrieval at location s, is a sum of the true XCO2 process and a retrieval-error term. That is,

Z(s) = Y (s) + ε(s)

= t(s) + ν(s) + ε(s), (2)215

where t(s) is a large-scale deterministic trend term that accounts for seasonal and yearly trends, ν(s)

is a small-scale variability term that accounts for spatial correlation, and ε(s) is the retrieval-error

term. We also assume that we have a variogram function 2γ(si,sj) which describes the degree of

spatial dependence between any two locations si and sj as in the following definition,

2γ(si,sj) = var(Z(si)−Z(sj)) = E
(
|(Z(si)− t(si))− (Z(sj)− t(sj))|2

)
; si,sj ∈D. (3)220

Let Z = (Z(s1),Z(s1), . . . ,Z(sN ))′ be the vector of satellite observations taken at N footprints

around an interpolation point s0, and let T = (t(s1), t(s1), . . . , t(sN ))′ be the corresponding N -

dimensional vector of trend terms. We wish to find an estimate of Y (s0) as a linear combination

of the detrended retrieved XCO2 vector D = (Z−T) and an unknown vector of coefficients a′s0 .

That is,225

Ŷ (s0) = t(s0) + a′s0D, (4)

such that we minimize the expected mean-squared error

minas0
E
(

(Y (s0)− Ŷ (s0))2
)
, (5)

subject to the unbiasedness constraint a′s01 = 1.

The solution to the constrained minimization problem in (4) and (5) can be found using the method230

of Lagrange multipliers. Cressie (1993) gives the following equation for the solution as0 that satisfies
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(4) and (5),

as0

λ

=


γ(s1,s1) . . . γ(s1,sN ) 1

...
. . .

...
...

γ(sN ,s1) . . . γ(sN ,sN ) 1

1 . . . 1 0



−1
γ(s1,s0)

...

γ(sN ,s0)

1

 , (6)

where λ is the scalar Langrange multiplier and as0 is the vector of kriging coefficient.

An attractive property of the geostatistical approach is that the semivariogram function can be235

used to calculate the expected estimation error at the interpolation location. The expression for the

interpolation error is as follows,

σ̂(s) =
(

a′s0 λ
)

γ(s1,s0)

...

γ(sN ,s0)

1

 . (7)

Estimating the fully general semivariogram model γ(sN ,s0) is a difficult problem that is prone

to robustness issues when the data are sparse. To make the problem more tractable, we assume240

that the variogram structure of Z is isotropic under certain distance metrics. That is, we assume

that the semivariogram capturing the spatial dependence between any two locations γ(si,sj) is only

dependent on its ‘distance’ as in the following equation,

γ(si,sj) = γ(|si− sj |B), (8)

where | · |B is a modified Euclidean distance given by245

|si− sj |B =

√(
(si,lat− sj,lat)2

B1
+

(si,lon− sj,lon)2

B2
+

(si,t− sj,t)2
B3

+
(si,T − sj,T )2

B4

)
(9)

=
√

((si− sj)′B(si− sj)), (10)

and B is a diagonal 4× 4 matrix whose diagonal elements (B1,B2,B3,B4) represent the scaling

parameters along each of the coordinate direction: latitude, longitude, time, and T700.

3.1 Application to ACOS-GOSAT and TCCON data250

Computation of the colocated values and their corresponding interpolation error in (4) and (7) re-

quires that we know the trend t(·), the scaling diagonal matrix B, and the semivariogram function

γ(·, ·). In practice, these terms are unknown. For our application, we will assume certain paramet-

ric forms for the trend t(·) and the semivariogram function γ(·, ·) and estimate the corresponding

parameters along with B from the retrieved data.255

Unfortunately, ACOS-GOSAT data are quite sparse once we pass the radiances through a cloud-

filter, retrieval selection criteria, and post-retrieval data quality filters. The relative global sparse-

ness of the ACOS-GOSAT data makes it difficult to obtain robust estimates of the scaling matrix
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B and the semivariogram function γ(·, ·). We address this problem by using CarbonTracker model

XCO2
data to estimate these spatial-temporal dependence parameters. Our assumption here is that260

CarbonTracker and ACOS-GOSAT share the same medium-to-large scale spatio-temporal depen-

dence structure for XCO2 . For instance, the dynamics in CarbonTracker should reasonably approx-

imate synoptic and large-scale dependence in moderately homogeneous areas such as the southern

hemispheres
:::::::::
hemisphere. Note that this assumption is not as restrictive as the assumption that Car-

bonTracker and ACOS-GOSAT have the same expected value of XCO2
at every location.265

CarbonTracker is a CO2 assimilation system developed by the National Oceanic and Atmospheric

Administration (NOAA) to keep track of the global CO2 emissions and uptake. The model com-

bines surface air samples collected around the globe and from tall towers and small aircrafts in

North America with an atmospheric transport model coupled with a Kalman filter to produce esti-

mates of atmospheric CO2 mole fractions on a global grid (Peters et al., 2007). The model XCO2
270

data are regularly gridded at 1× 1 degree daily resolution, making it particularly convenient for use

in spatial parameter estimation. We use two years’ worth of CarbonTracker data
:::::::
(CT2001

:::::::::::::
SUBSCRIPTNB

:
o
::
i) between January 2009 and December 2010 in estimating the trend t(·), the scal-

ing matrix B and the semivariogram function γ(·, ·).

3.2 Trend Terms275

The trend term t(·) is a deterministic term that accounts for the annual increase in XCO2
as well

as the seasonal variations. This deterministic trend needs to be modeled, estimated, and removed

from the data in Equation (2) in before we can apply the geostatistical colocation on the remaining

stochastic terms in Equation (4). We assume that the trend term in Equation (4) can be modeled as a

mixture of a linear constant trend and a seasonal sinusoidal trend,280

t(s) = c0(s) + c1(s)st + a(s) · sin(2πst + θ(s)) (11)

where c0(s) is the y-intercept and c1(s) the slope of the linear portion, a(s) is the amplitude of

the seasonal sinusoidal variability, and θ(s) is the sinusoidal phase shift. The period for seasonal

variability is assumed to be one year, and st is the time in year-fraction starting at 0 for January 1st,

2009.285

We make a simplifying assumption that the annual and seasonal trends are constant over the hemi-

spheres. We aggregate daily CarbonTracker XCO2
values over both the northern and southern hemi-

spheres for the entire two-year period, and we compute the trend coefficients {c0(s), c1(s),a(s),θ(s)}
using variable transformation and linear regression (Artis et al., 2007). The resulting coefficients are

displayed in Table 1.290

A plot of the sinusoidal fits versus the aggregated data are shown in Figure (3). In general, the

sinusoidal curves roughly reproduce the linear trend and seasonal variability in the averaged Carbon-

Tracker data. The fit is not perfect, and the difference between the two might be due to small-scale

spatial variability, which will be captured in the remaining stochastic terms in Equation (4).
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3.3 Parameter Estimation295

Having modeled and estimated the trend term t(·), we now estimate the scaling matrix B and the

semivariogram function γ(·, ·). We model the semivariogram function with the spherical semivari-

ogram, which has the form

γ(si,sj)≡ γ(h) = (s−n)

((
3h

2r
− h3

2r3

)
1(0,r)(h) +1[r,∞)(h)

)
+n, (12)

where h= |si− sj |B is the modified Euclidean distance between si and sj , 1S(h) is 1 if h ∈ S and300

0 otherwise, the term n is the nugget, which denotes the height of the semivariogram at the origin

where h= 0, the term s is called the sill, which is the limit of the semivariogram as h→∞, and r

is the range, which is the distance at which the difference between the semivariogram and the sill is

negligible (see Cressie, 1993, for more detail).

Given the scaling matrix B, we can estimate the semivariogram parameters {n,s,r} by construct-305

ing the robust empirical semivariogram estimator discussed in Cressie (1980) and Cressie (1993,

Section 2.4), from the CarbonTracker data as follows. For h > 0, define

2γ̄(h)≡

{
1

|N(h)|
∑

N(h) |D(sm)−D(sn)|
1
2

}4

.457 + .494
|N(h)|

, (13)

where D(s) is the detrended CarbonTracker value at location s, and N(h) is the set of observation

pairs that are separated by distance of h,310

N(h) ≡ {(sn,sm) : |sn− sm|B∗ = h; m,n= 1, . . . ,N}.

In practice, the set N(h) is defined using a small tolerance interval around h, since it may not be

possible to find pairs of locations that are exactly distance h apart (Cressie, 1993, p. 70). The term

|N(h)| denotes the number of unique elements in N(h).

We assume that the scaling matrix B and the semivariogram function γ(·, ·) are constant with re-315

spect to each hemisphere and with respect to time. To estimate the scaling matrix B, we construct

empirical semivariograms using data pairs that only approximately differ in one of the four coordi-

nates. This effectively sets three of the four terms in the right-hand side of (9) to zero (or very close

to zero), allowing us to estimate the single remaining scaling parameterBi. For instance, to estimate

the scaling parameter along the longitudinal direction, we search through the CarbonTracker data320

for the corresponding hemisphere to obtain pairs of observations that share the same date, latitude,

and T700 but different longitudes. We then calculate the robust semivariogram estimator in Equation

(13), compute the corresponding semivariogram fit to the spherical model in Equation (12), and set

the scaling parameter Bi equal to the resulting range r.

Table 2 contains the list of scaling parameters for the northern hemisphere and the southern hemi-325

sphere. In general, the scaling parameters agree fairly well with the coincidence windows given

in Wunch et al. (2011b)’s T700 methodology. For the northern hemisphere, the scaling parameters
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for latitude, longitude, time, and T700 are 15.1, 24.5, 3, and 3.1, respectively; the corresponding

parameters for the southern hemisphere are 11.6, 19.3, 3, and 2.3. This indicates that in general the

northern hemisphere has longer spatial correlation range than the southern hemisphere.330

Having estimated the scaling parameters B, we construct a set of empirical semivariogram values

using Equation (13) for each of the hemispheres and estimate the semivariogram parameters {n,s,r}
using an iterative, Gauss-Newton fitting algorithm to fit to the chosen spherical semivariogram model

to the empirical semivariogram estimates (Cressie, 1985). The resulting nugget, sill, and range

parameters for the northern and southern hemisphere are in Table 2.335

The nugget and the sill parameters indicate that in general the northern hemisphere has higher

variability and that the spatial correlation structure is weaker in the southern hemisphere. Hav-

ing estimated the parameters for B and γ(si,sj), we can compute the colocated ACOS-GOSAT

value at any TCCON location using Equations (4) and (6).
::
In

:::
our

::::::::::
application

::
to

::::::
ACOS

::::
data,

:::::
these

::::::::::
geostatistical

::::::::::
parameters

:::::::
typically

:::::
result

::
in

::
a

::
95%

:::::::::
confidence

::::::
interval

:::
of

:::::
about

::
+/-

::
.7
::::
ppm

:
,
::::::
which

::
is340

::::::
slightly

::::::
smaller

::::
than

:::
the

:::::::
average

::::::::
TCCON

:::::::
accuracy

::
of

:::
+/-

::
.8
:::::

ppm.
:::::
(Note

::::
that

:::
the

::::::
ACOS

:::::::::
collocated

:::::::::
confidence

:::::::
intervals

:::::
derive

::::::::::
information

:::::
from

::::
many

::::::
ACOS

:::::::::::
observations,

:::::
while

:::
the

:::::::
TCCON

::::::::
accuracy

:
is
:::
per

:::::::::
sounding).

:

4 Comparison to existing methodologies

Having outlined the geostatistical colocation methodology in Section 3, we now assess its perfor-345

mance relative to existing methodologies, which include geographical colocation and Wunch et al.

(2011a)’s T700 colocation. Our primary standard for comparison is the root mean-squared error be-

tween TCCON and colocated ACOS-GOSAT data. This root mean-squared error is the sum of the

variability from various sources such as the underlying atmospheric variability, GOSAT and TCCON

measurement errors, relative bias, and interpolation error resulting from colocation. In this experi-350

ment, we manipulate the magnitude of the interpolation error by varying the method of colocation.

The resulting changes in total root mean-squared error should be indicative of the corresponding

changes in interpolation error.

Geographical colocation methodology is perhaps the most popular colocation methodology due to

its simplicity and straightforwardness. Examples of geographical coicident criteria include selecting355

all same-day satellite observations falling within ±5 degrees of a location of interest (Inoue et al.,

2013), selecting data falling within ± 30 minutes from about .5 to 1.5 degrees rectangles centered

at each validation site (Morino et al., 2011), selecting data within 5 degrees and ± 2 hours (Butz

et al., 2011; Cogan et al., 2012), selecting observations within 10◦× 10◦ lat-lon box (Reuter et al.,

2013), and selecting weekly data that fall within 5 degrees radius of a validation site (Oshchepkov360

et al., 2012). For the performance comparison in this section, we define a geographical colocation

methodology by averaging all same-day satellite observations falling within 500 km of a location
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of interest. This colocation methodology is based on the one used in Inoue et al. (2013), with the

exception that we replace the lat-lon circle with a great-distance circle to avoid warping near the

poles.365

Wunch et al. (2011b) refined the geographical method by adding mid-tropospheric temperature

at 700 hPa as an extra threshold to take advantage of the correlation between XCO2 and mid-

tropospheric temperature (Keppel-Aleks et al., 2011, 2012). Their colocation methodology locates

and averages all ACOS-GOSAT observations falling within ± 30 degrees longitude, ± 10 degrees

latitude, ± 5 days, and ± 2 Kelvins in T700. The longitudinal constraint is reduced to ± 10 de-370

grees for the Tsukuba TCCON site to avoid inordinate influence from ACOS-GOSAT retrievals over

China. In this section, we assess the performance of Wunch et al. (2011b)’s colocation criterion and

the geographical method relative to geostatistical colocation methodology between the period July

2009 and April 2013.

4.1 Comparison between ACOS-GOSAT and TCCON data375

For the performance assessment, we use all available TCCON data from 16 locations (four in the

Southern Hemisphere, 12 in the Northern Hemisphere, see Figure 1) between the period July 2009

and April 2013. Since the three colocation methodologies compute averages over large temporal

spans, applying the three methodologies to individual same-station TCCON observations (which

may be spaced seconds or minutes apart from one another) would result in a scenario where many380

temporally-proximal TCCON observations are matched to the same ACOS-GOSAT colocated value.

We avoid this problem by taking the daily median of TCCON XCO2
values and use them as the

standard against which we assess the outputs of the colocation methodologies.

Having taken the daily median of the TCCON XCO2 values, we scan the entire TCCON dataset

and locate corresponding matches using the colocation methodologies. At every TCCON location385

and every day for which we have a daily median TCCON XCO2
value, we gather the correspond-

ing ACOS-GOSAT values falling within the respective coincidence regions and then compute the

colocated value for each of the three methodologies. Some TCCON locations may not have a corre-

sponding colocated ACOS-GOSAT value for particular days due to the fact that they do not have any

GOSAT values within their coincidence neighborhood. The neighborhood regions are constructed390

separately for each TCCON location, and thus some ACOS-GOSAT sounding may be used more

than once in computing the colocated values for several temporally or spatially proximal TCCON

daily-median values.

Figure 4 displays the colocated ACOS-GOSAT values versus the data from the 16 TCCON sites.

The x-axis displays the temporal range while the y-axis displays the TCCON daily-median values395

and the colcoated ACOS-GOSAT from the three colocation methodologies. In general the Wunch

et al. (2011b) and the geostatistical methodology have a lot more colocated values due the fact that

they use data from a large spatio-temporal neighborhood surrounding a TCCON site. From Figure
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4, all colocation methodologies indicate that ACOS-GOSAT XCO2
tends to be larger than TCCON

XCO2
and the magnitude of this bias is between 1-1.5 ppm. Northern TCCON sites such as Eureka400

and Ny Alesund do not have nearby ACOS-GOSAT H-gain good-quality retrievals during the winter

due to ice and snow issues.

Table 4 displays five ACOS-GOSAT/TCCON summary statistics: number of matched days (N ),

mean bias, standard deviation, correlation coefficient (r), and slope. Geostatistical and T700 method-

ologies have wider coincidence criteria than our chosen geographical methodology, and conse-405

quently have more daily-matched ACOS-GOSAT/TCCON pairs. To better examine the patterns

in Table 4, we display the main statistics (bias, standard deviation, and correlation coefficient) in

graphical form in Figure 5 with the TCCON stations listed in order of decreasing latitude.

In the top panel of Figure 5, we examine the average bias between the three colocation method-

ologies versus TCCON daily-median XCO2
at each of the 18 TCCON datasets. The average bias is410

fairly consistent between the three methodologies and range between .6 ppm to 2.5 ppm. In general,

the T700 and geostatistical colocation methodologies tend to produce the same bias, while the geo-

graphical method has more pronounced variability in the estimates of mean bias at the TCCON sites.

This is likely due to the fact that the geographical method has a much smaller neighborhood region,

and thus do not yield enough colocated matches relative to TCCON to produce a robust bias esti-415

mate. All three methodologies tend to have high bias estimates for the three northern-most TCCON

sites: Sodankyla, Eureka, and Ny Alesund. This is likely because soundings acquired over these

snowy and icy surfaces have low reflectivity in the 1.61 and 2.06 µm bands; consequently scattering

by thin clouds and aerosols can constitute a larger fraction of the total signal and introduce larger

uncertainties in the optical path length (Crisp et al., 2012).420

The clear delineating metric between the three methodologies is the root mean-squared error (also

known as standard deviation), which we display in the middle panel of Figure (5) on a station-by-

station basis. The three methodologies are roughly separated into clusters: the geographical method

has on average the highest root mean-squared error, T700 ranks in the middle, and geostatistical

colocation has the lowest root mean-squared error. One might expect the geographical method to425

have the lowest root mean-squared error since it only accepts ACOS-GOSAT values within a fairly

narrow spatio-temporal neighborhood (500-km same-day window). However, this is not the case

since the root mean-squared error is a function of both the spatial dependence structure and the

retrieval error characteristics. Since the GOSAT measurements tend to have relatively large single-

sounding uncertainties, the T700 and the geostatistical colocation methods are able to take advantage430

of the large number of observations within the coincident neighborhood to reduce the variability

through the law of large numbers.

While the T700 and the geostatistical methods tend to have the same mean bias; see top panel

of Figure 5, the geostatistical method tends to produce lower root mean-squared error. Table 3

displays the overall root mean-squared error aggregated over all TCCON locations for the three435
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colocation methodologies using both original and averaging-kernel-corrected TCCON data. In both

cases, the geostatistical methodology has the lowest root mean-squared error while the geographical

methodology has the highest root mean-squared error. This is not surprising since the geostatistical

method is explicitly motivated by the error-minimizing framework in Equation (5). That is, given

that the spatial dependency structure that we learned from CarbonTracker is correct, the geostatisti-440

cal methodology is guaranteed to produce the lowest root mean-squared interpolation error relative

to the truth (here represented by TCCON) of all linear methodologies. While it is unlikely that

we have perfectly estimated the true spatial dependency structure of ACOS-GOSAT data from Car-

bonTracker, we note that the improvement in performance indicates that the dependency structure

that we ultimately derived, compared to the other colocation methodologies in this section, is more445

reflective and representative of the true underlying dependence structure.

Another way to assess the fit between ACOS-GOSAT and TCCON values is through examining

the correlation coefficient. Since the satellite and station instruments are both observing total-column

XCO2
, we expect the two to follow a linear relationship with slope 1 and y-intercept equal to the

mean bias. The correlation coefficient is a good tool to examine the strength and direction of the450

linear relationship between the ACOS-GOSAT and TCCON values, and we show the correlation

estimates at each of the TCCON sites in the bottom panel of Figure 5.

In our particular application, correlation values closer to 1 indicate stronger linear dependence.

In this respect, geostatistical colocation performs marginally better than T700 colocation, and they

both perform better than geographical colocation. The correlation estimates mostly cluster between455

the range .75 to .99, with the exception of being TCCON stations in the southern hemisphere. This

likely results from the fact that the northern hemisphere and the southern hemisphere have different

seasonal and synoptic variability ratio. The ACOS-GOSAT retrievals in general do quite well in

capturing the overall seasonal trends in both hemisphere. However, in the northern hemisphere, the

seasonal variability amplitude is larger than the synoptic variability, and consequently the correlation460

coefficient between ACOS-GOSAT and TCCON is larger. In the southern hemisphere, the seasonal

variability amplitude is much smaller at .3 ppm, thus lowering the correlation coefficient.

The comparisons in this section indicate that in general geographical colocation has low match-

ing yield and poor accuracy performance. This is likely because the geographical colocation used

(same-day 500-km circle) lacks the large coincident neighborhood to reduce the individual retrieval465

variability through averaging. Wunch et al. (2011)’s T700 and geostatistical colocation both take

advantage of a larger colocation neighborhood to produce more accurate ACOS-GOSAT colocated

values.

While these methodologies produce roughly the same bias estimates, geostatistical colocation

produces distinctly lower root mean-squared error. This improvement likely comes from the fact that470

while the existing colocation methodologies tend to give equal weights to all satellite observations

falling within the coincident window, our methodology gives different weights to the coincident
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satellite observations based on the distance metric defined in Equation (10). XCO2
in general tends

to be a smoothly-varying field and it can be reasonably assumed to follow the geographical principle

that locations close to one another are more likely to be similar than locations far apart (Tobler,475

1970); therefore our methodology produces better accuracy because its spatial-dependency model is

more reflective and representative of the true underlying XCO2 field.

5 Conclusions

Validation colocation, or the practice of interpolating satellite and ground-based validation data to

the same spatio-temporal coordinate, is an important part of instrument validation and assessment.480

All colocation methodologies are essentially data interpolation, which carries with it interpolation

error. This interpolation error is an extra component in the root mean-squared error of the difference

between validation and colocated data; it is important to minimize the interpolation error as much

as possible in order to better assess important instrumental and operational metrics such as bias and

variability relative to the validation data.485

This paper examines a new colocation technique in comparing ACOS-GOSAT and TCCON data.

We model the spatial dependence structure as being isotropic under a modified Euclidean distance

metric. Our methodology is similar to previous colocation techniques (e.g., geographical, T700,

SRON/KIT) in that we assume that nearby observations are more likely to be correlated than obser-

vations far apart. However, whereas the existing methodologies define some neighborhood regions490

and then give all neighboring observations equal weights, our methodology weights each observation

depending on the distances between the data and the interpolation location of interest.

In Section 4, we show that our geostatistical colocation methodology has the lowest mean-squared

error of the difference between colocated ACOS-GOSAT data and TCCON data when compared

with two existing colocation methodologies. Naturally, one would expect the correlation structure in495

ACOS-GOSAT XCO2 to vary smoothly as a function of distance, and hence our method has better

performance because its spatial correlation model is more approximate of the true underlying spatial

structure. While we applied the methodology in Section 3 to ACOS-GOSAT and TCCON data, the

colocation methodology can be readily applied to other satellite instruments and other geophysical

processes where the underlying correlation structure can be reasonably assumed to vary smoothly as500

a function of distance.

In Section 3, we chose to use mid-tropospheric temperature as a covariate to improve our interpo-

lation; it is possible to replace T700 with another covariate such as 3-day-averaged model XCO2 as

in the SRON/KIT method. While the parameters of the resulting correlation function would change

with the replacement of T700, the parameter estimation procedure in Section 3.3 would remain the505

same. We also note that the distance metric we derived in (10) has value beyond performing geo-

statistical colocation. It could be used as a stand-alone metric in assessing proximity (e.g., finding
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k-nearest neighbors, computing inverse distance weighting, constructing Voronoi diagrams, etc.).

In this paper we assumed that that ACOS-GOSAT retrievals can be approximated and treated

as zero-area points. In certain applications it may be more reasonable to assume that a satellite510

observation is an average of the true geophysical process Y (·) over the area of the footprint plus

some measurement-error term. The resulting process of inferring a spatial process at one resolution

from data at another resolution, also known as the change-of-support problem, is more complex; see

Gotway and Young (2002) for a review. In general, there is no analytical solution for estimating from

areal data the parameters of standard variogram models (e.g., spherical, exponential, etc.), however,515

certain classes of spatial models provide for straightforward and seamless parameter estimation (for

instrance, see Spatial Random Effects model, Cressie and Johannesson, 2008; Nguyen et al., 2012).

In Section 4, we model the variogram parameters as temporally-constant. An extension of the

methodology would be to model temporal dependence in the variogram parameters. Naturally, good

models of the temporal dependence would improve the colocation performance, but there is a trade-520

off in the complexity of the temporal evolution models and the robustness of the parameter estimates.

One possible approach would be to assume that the spatial-correlation structure is constant over a

season; although care would be needed in combining data straddling different seasons. Further ex-

amination about the the trade-off between estimation robustness and temporal evolution complexity

would be needed.525
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Table 1. Annual and seasonal trend coefficients.

Intercept Slope Amplitude Phase Shift

(ppm) (ppm/year) (ppm) (radian)

Northern Hemisphere 385.7900 2.6061 3.2040 0.1556

Southern Hemisphere 383.5127 2.4878 0.3099 4.0978

Table 2. Scaling coefficients and semivariogram parameters for Eqn (9).

B1 B2 B3 B4 nugget (n) sill (s) range (r)

Northern Hemisphere 15 25 3 3 .3 2.3 1.98

Southern Hemisphere 11 19 3 2 .21 .73 1.7
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Fig. 1. Locations of the 16 TCCON locations for which we perform GOSAT/ACOS and TCCON colocation

comparison.

Table 3. Overall mean-squared error for the three colocation methodologies before and after averaging kernel

correction on TCCON. Units are ppm.

T700 Geographical Geostatistical

Before AK correction 1.57 1.88 1.43

After AK correction 1.45 1.60 1.22
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Table 4. Overall summary statistics for the three colocation methodologies. Statistics include number of

matched days (N ), mean bias, standard deviation, correlation coefficient (r), and slope.

Geostatistical T700 Geographical

Latitude names N mean sd r slope N mean sd r slope N mean sd r slope

53.23 Bialystok 342 1.29
::
1.09 1.06 0.90 0.89 319 1.24

::
1.04 1.45

::
1.46 0.83 0.96 100 1.08

::
0.87 1.93 0.72 0.95

53.10 Bremem 185 0.87
::
0.67 1.33 0.86 0.77

::
0.78 167 1.05

::
0.85 1.51 0.81 0.83 66 1.12

::
0.92 1.66

:
1.65

:
0.77 0.85

::
0.86

-12.43 Darwin 325 0.59
::
0.39 0.87 0.79 1.05 302 0.48

::
0.28 0.99 0.77

::
0.76 1.11 84 0.99

::
0.80 1.10 0.81 1.22

80.05 Eureka 46 2.42 1.09 0.80 0.82 43 2.66 1.67 0.66 0.97 19 3.30 2.21 0.65 1.19

47.48 Garmisch 357 1.62 1.09 0.87 0.91 321 1.73 1.34 0.81 0.93 127 2.14 1.82 0.74 0.95

23.30 Izana 156 1.78 0.88 0.88 0.96 144 2.10 1.13 0.82 0.99 3 3.57 0.43 0.96 0.99

49.10 Karlsrube 246 0.83 1.11 0.86 0.81 233 0.83 1.20 0.83 0.83 109 1.20 1.61 0.73 0.83

36.60 Lamont 795 0.93
::
0.73 0.97 0.89 0.82 729 1.01

::
0.81 0.92 0.90 0.86 345 0.86

::
0.66 1.37 0.77 0.81

-45.05 Lauder120 146 1.32 1.22 0.53 0.98 136 1.44 1.53 0.38 0.91 31 1.44 1.96 0.16 0.60

-45.05 Lauder125 235 1.55 0.55 0.76 0.92 224 1.52 1.30 0.35 0.90 30 1.42 1.85 0.23 0.96

78.92 Nyalesund 10 2.52 0.97 0.93 0.87 10 1.61 1.81 0.75 0.71

47.97 Orleans 208 1.33
::
1.13 1.14 0.89 0.83 196 1.54

::
1.34 1.36 0.84 0.86 74 1.30

::
1.11 1.79 0.79 0.87

45.94 Park Falls 590 1.40
::
1.20 1.48

:
1.49

:
0.83 0.80 550 1.14

::
0.94 1.51

::
1.52 0.82 0.87 165 1.31

::
1.11 1.66 0.81 1.06

-20.90 Reunion 10 1.07 0.69 0.21 0.12 10 1.60 0.54 0.58 0.35

67.37 Sodankyla 312 2.13 1.20 0.91 0.94 291 2.69 1.67 0.85 1.01 101 2.82 1.79 0.83 1.09

36.05 Tsukuba120 179 1.03 1.81 0.66 0.90 170 1.37 2.12 0.65 1.05 35 2.69 1.46 0.83 1.14

36.05 Tsukuba125 51 1.31 2.01 0 -0.03 49 2.51 2.37 0 -0.02 13 4.27 1.06 0.29 0.46

-34.41 Wollongong 437 1.52
::
1.32 0.85 0.70 0.81 404 1.42

::
1.22 0.95 0.64 0.81 115 1.99

::
1.79 1.37

:
1.38

:
0.52

::
0.51 0.89

::
0.88
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Fig. 2. Matched TCCON original daily median observations vs averaging-kernel-corrected TCCON values.

The red line is the linear regression line, while the blue is the 1-1 line.
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Table 5. Advanced screening criteria for ACOS v3.3 L2 H-gain data (Osterman et al., 2013, Section 2.5.2)

Variable Comment Criteria

RetrievalResults/outcome flag Flag indicating full physics out-

come

1 or 2

RetrievalResults/aerosol total aod Retrieved total column integrated

aerosol optical depth for all aerosol

types

.01 to .02

SoundingGeometry/sounding altitude stddev Standard deviation of the measure

of altitude of the surface within the

sounding

< 200

IMAPDOASPreprocessing/CO2 ratio idp Ratio of retrieved CO2 column (no

scattering code) in weak and strong

CO2 band

.995 to 1.015

IMAPDOASPreprocessing/H2O ratio idp Ratio of retrieved H2O column (no

scattering code) in weak and strong

CO2 band

.92 to 1.05

ABandCloudScreen/surface pressure delta cld Difference between surface pres-

sure and a priori surface pressure

-825 to 575

SpectralParameters/reduced chi squared O2 fph The reduced χ2 value of the O2 A-

band clear-sky fit used in determine

the presence or absence of cloud

< 1.5

RetrievalResults/albedo slope strong CO2 Retrieved spectral dependence of

Lamberion component of albedo

within strong CO2 channel

>−10.0× 10−5

RetrievalResults/albedo slope o2 Retrieved spectral dependence of

Lamberion component of albedo

within O2 channel

<−1.3× 10−5

Blended Albedo A mixture of two albedo terms < .08
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Fig. 3. Plots of averaged CarbonTracker trend versus sinusoidal trend fit for the northern hemisphere (left) and

southern hemisphere (right).
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Fig. 4. TCCON daily median (black) vs T700 (red), geostatistical (blue), and geographical (green) colocation

values. Time in days is displayed on the x-axis, while XCO2 concentration in ppm is displayed on the y-axis.

Reunion and Tsukuba125 datasets are omitted due to the low number of observations.
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Fig. 5. Summary statistics for the comparison between ACOS and TCCON using 3 colocation methodologies

(top panel- bias; middle panel- standard deviation; bottom panel- correlation coefficients). TCCON stations are

listed in order of decreasing latitude. .
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