Interactive comment on "FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations" by C. K. Carbajal Henken et al.

Anonymous Referee \#1

Received and published: 27 June 2014

The authors describe a daytime cloud property retrieval algorithm using measurements from the instruments AATSR and MERIS onboard ENVISAT. In fact, three algorithms, one for cloud optical thickness and particle effective radius as well as two for cloud-top height, are introduced. The retrieval approaches are generally clearly described and appear to be sound. Evaluation results are mixed but appear to be comparable to what is commonly found for cloud properties derived from passive imagers.
The authors are encouraged to more explicitly outline the novel features of their algo- rithms, because there are many similar algorithms around. One such feature could be the synergy between two instruments, but I do not really get this synergy from the manuscript (except that radiances reprojected on the same grid as well as a synergistic cloud mask are used as input). It seems there are two stand-alone algorithms for

AATSR and one for MERIS. Thus, there are actually two independent cloud-top height products instead of one synergy product, which may leave the reader wondering which

AMTD

7, C1438-C1445, 2014

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper erties. Also suggest to write cloud-top thermodynamic phase and effective radius, as

P4912, L2-4: This was indeed an important finding but applies mostly to the differences between the group of sensors mentioned here and other sensors such as lidars and IR sounders.

P4912, L10: It should be AMSR-E on Aqua.
P4912, L15: I believe ORAC did not take part in the CREW inter-comparison.
P4912, L18: A reference to the CREW CTH paper by Hamann et al., AMTD, 2014 might be appropriate.
P4913, L26: These are not only visible but also near-infrared wavelengths.
P4914, L5: AATSR has one more channel at 0.56 micron. Also, the central wavelengths of two of the mentioned channels are 0.7 (0.66) and 0.9 (0.87) instead of 0.6 and 0.8 micron, respectively.
P4914, L15-16: Which data were used as truth cloud mask in the neural network?
P4914, L18: Is cloud flag the cloud mask? Is cloud abundance a cloud fraction? If yes, is it also used in this study?
P4915, L1: This seems strange since one expects the center wavelength to be fixed. On P4921-4922 it is explained (the spectral smile effect). I suggest to give this explanation already here.
P4915, L5: Again, the use of micro-physical is not correct here.
P4915, L21-22: What do you mean with the wavelength dependency not being used in the text? I do see the wavelength appearing in most of the equations.
P4915, L14: Observed should be simulated. Also, the forward model equation (2) is not really at top of cloud because it does not consider in- and below-cloud absorption.
P4915, L16-17: Couldn't Rayleigh scattering below the cloud be important for semi-

7, C1438-C1445, 2014

 transparent clouds?

P4915, L22: What is meant with 'amount of extinction'?
P4917, L11: What does 'therefore setting the airmass to 2' mean?
P4917, L6-10: Write out the equation used for transmittance with the coefficients from Table 2.

P4918, L4: what kind of observations?
Interactive
P4919, Eq. (8): The notation appears to be inconsistent. Why T_ct instead of T_c as in L15-16? Why t_ct-1 instead of t_a as in Eq. (3)?
P4922, L11-13: To pick one of the extinction profiles from the ISCCP classes, a cloudtop pressure is needed. What is used?
P4922, L20: It seems the resolution of ERA-Interim is 0.8 rather than 1.125 degrees.
P4923, L12: DCHP gives the impression of being one algorithm, but it seems that these are actually two independent OE algorithms (both with a 1-element state vector). Is that correct, or is there any connection?

P4923, L22-23: I would say that optimal estimation can be cast as a minimization of a cost function.

P4924, L10: K is not the averaging kernel but the weighting function matrix (or Jacobian), i.e. the derivative of F to x. Also, y are observations which by definition do not depend on state parameters.
P4924, L14-15: Add that the observation errors should also obey a Gaussian distribution. And again, the measurements do not depend on the state parameters.
P4925, L4-5: Same comment as above.
P4925, L12: Optimal estimation is a maximum likelihood method (independent of the

P4925, L14-19: This is a bit confusing. Is a new cloud phase category 'uncertain'
introduced here? If so, it is better to do this on P4918. Also, explain more clearly which

LUT (water or ice) is used to retrieve COT-REF for this phase category, and how exactly

AMTD
7, C1438-C1445, 2014

Interactive
Comment
P4927-P4928, discussion of Table 3: A limitation of these comparisons appears to be that the portions of the sky being cloudy or having a certain cloud phase may be quite different, in particular for the uncertain-phase class. This affects the other statistics, and should be clearly mentioned in the paper.
P4928, L15: The meaning of REF and REF16 is not explained.
P4929, L18-23: Why are not the standard ARM cloud-top heights used? Also, explain why the mean Doppler velocity is used.
P4930, L1-2: Why does the MERIS retrieval fail more often?
P4930: discussion of Fig. 8: The smallest bias is obtained for AATSR for single-layer clouds (as quoted in the abstract). However, this small bias is to a large extent a compensation of large positive bias for two low cloud cases with large negative bias for up to five high cloud cases. So is this bias meaningful?
P4929-4930 (Section 5.2): The measurements at two sites are combined here. I realize this may be needed to reach a reasonable number of observations, but can anything be said about differences between the sites?
P4930, L7-8: One would expect an O2-A band approach to yield a cloud top lower than the physical cloud top. So please explain this result.
Table 2: Can you give a reference for the 4% uncertainty in reflectance?

Figure 4: A lot of the cirrus flagged pixels as well as some of the water phase pixels seem to have a reflectance pair located above the forward model solution space. How

AMTD

```
7, C1438-C1445,2014
```

Interactive
Comment

Full Screen / Esc

P4917, L5: Dobson Units with capitals.

P4918, L1: here should be where
P4921, L12: replace are by have been
P4922, L9: Introduce the figures in correct order (i.e. exchange Figs. 1 and 2).
P4922, L18: Typo re-analzses
P4923, Eq. (25): For clarity add that J is a function of (and is minimized with respect to) x. So write J(x).

Interactive
Comment
P4924, L23: change the order of S_a and S_y.
P4925, L9: remove a
P4925, L11: constraint instead of constrain
P4926, L24: add the before same
P4926, L25: replace for by from
P4928, L20: horizontal should be horizontally
P4928, L28: replace and by which
P4928, L29: Start new sentence with this.
P4929, L19: doppler should be Doppler
P4929, L23: threshold should be thresholds
P4929, L27: It seems 23 should be 22.
P4930, L7: replace underestimated by too low
P4930, L27: replace retrieval is by retrievals are
P4931, L12: What does 'Efforts are shown' mean?
P4931, L15: remove for

P4931, L21: replace errors by differences
Table 2: Use consistent notation in the table, i.e. either tau or COT.
Figure 2: Add the COT-CTP borders determining the ISCCP cloud classification.
Figure 3: What does 'COT+cirrus' mean?
Figure 4: The lower end of the water LUT seems to be invisible. Could you plot it on top of the points?

Figure 5: Expand caption, mentioning the parameters shown. For example, upper left panel is not a 'mean relative uncertainty estimate'.
Figure 5: The GER region has not been introduced yet (it will be in Fig. 6).
Figure 8: Add in the caption AATSR (top) and MERIS (bottom) as well as for singlelayer (left) and multi-layer (right) clouds.

Interactive comment on Atmos. Meas. Tech. Discuss., 7, 4909, 2014.

AMTD
7, C1438-C1445, 2014

