
Replies to the comments

General Issues:
I would like to thank the reviewers for the interesting and thorough discussion
and the helpful comments which have substantially improved the manuscript.
The main critical issues raised by the reviewers were:

• It was suggested to make a stronger link to practical applications. This
link has been made in the revised version by (a) including a series of test
cases which cover a wide range of possible applications and (b) by splitting
the conclusions sections into a theoretical (descriptive) and a practical
(prescriptive) part. The latter includes clear practical recommendations.
(c) Further the discussion of the interpolability of the averaging kernel
seems to me to be of major practical relevance.

• A more balanced description has been required. This has been achieved
in revised version by turning all notion-dependent statements into condi-
tional statements, where the condition is the respective notion or definition
etc.

In the following reply, the reviews are inserted in italic face; the reply is printed
in normal face. Changes are tracked in the revised manuscript. The author’s
reply on the discussion page and the letter to the editor are identical.

1 Anonymous Referee #1

Comment: Overview: This is a nice thought provoking paper that revisits and
challenges established thinking on the quantification and description of error es-
timates for atmospheric remote sounding measurements. I enjoyed reading the
paper; it is well thought out and generally well written. While the discussion
is, in places, arguably a more philosophical than is typical in atmospheric sci-
ence literature, the bottom line message is one the atmospheric remote sounding
community would generally benefit from internalizing and acting on in the rep-
resentation of their results to the wider community.
Reply: I thank the reviewer for this encouraging comment.

Comment: As with the other reviewers, I feel that the manuscript would benefit
from some more specific examples. Such examples could serve as more concrete
“case studies” to which subsequent authors describing their remote sounding
datasets can “anchor” a citation. However, I understand that such additions
would change the character (and increase the length) of the paper, and go be-
yond this authors original intent. As such, as, in my opinion, this discussion
deserves publication (and where better than in AMT), I would be OK if the au-
thor decided not to go down that path.
Reply: I have now performed a series of tests where I scan a wide range of
correlation lengths and vertical resolutions. These should cover most practical
applications. Results are now presented in a table and thus do not add too
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much length to the paper. I don’t discuss in the paper applications of the aver-
aging kernel found in the literature in detail. Instead I have made references to
existing literature.

Comment: I have little to add to the discussion, other than some minor (mostly
wording) suggestions, given below. I also appreciated reading the interactive
discussion between the other reviewers and the author, and am generally satisfied
by the responses given by the author to the thoughtful comments from reviewer
#5.
The writing is very clear and logical indeed. In a few places the choice of phrase-
ology reflects the author’s linguistic roots, but it is in all cases perfectly under-
standable. I’ve identified a few of these places and suggested potential amend-
ments, but a brief look over by a copy editor would probably not hurt.
Last minute note. I wrote this review before I’ve had a chance to read over Clive
Rodgers comments. Given the deadline is rapidly approaching, I’ve decided to
go ahead and submit this review rather than delay things by trying to consider
his points in more detail.
Minor comments:
Page 3302 Line 18: Suggest deleting comma before “because”
Reply: Agreed and deleted.

Comment: Line 24: “... as fine as that chosen ...”
Reply: Agreed and inserted.

Comment: Page 3306
Line 1: “... suggest the application of generalized ...”
Reply: Agreed and reworded according to the reviewer’s suggestion.

Comment: Page 3307 Line 15: Consider adding the point that this is more
complex in the non-linear case, but that that is beyond the scope of this paper.
Reply: I’ve inserted ‘linear estimate’ at the beginning of the paragraph to make
clear that all the following is linear approximation.

Comment: Page 3307 Lines 15-18: I wonder if, somewhere in this discussion,
it might make sense to point out to the less familiar reader that “Gaussian error
propagation” applies equally to random variables regardless of whether they have
a “Gaussian” probability distribution function or not. It is perhaps unfortunate
that the same mathematician’s name is attributed to these two cornerstones of
statistics, as many people’s natural assumption may be that one requires the
other.
Reply: Agreed; footnote added.

Comment: Page 3308
Equation 12: Is there any value in discussing the significance of cases where
(WTW)−1 is singular here?
Reply: I prefer to avoid this discussion. In practical applications I have never
encoutered this case except if the altitude ranges of the two representations do
not match, and this would add another branch to the discussion such that the
it may be hard for the reader to follow the main train of thoughts.
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Comment: Line 15: As pointed out by others, would be good to define “param-
eter error” here.
Reply: Agreed; definition added.

Comment: Page 3309
Line 10: Consider citing equation 8 after “propagation”?
Reply: Agreed and cited.

Comment: Line 22: “... have been chosen to be 1km and ...”
Reply: Agreed and inserted.

Comment: Page 3310
Line 2: “... were chosen to be altitude ...”
Reply: Agreed and inserted.

Comment: Line 21: “both” → “the two”
Reply: Agreed and changed.

Comment: Line 27: “how” → “by which”
Reply: Agreed and changed.

Comment: Line 29: “which will be tried” → “as will be attempted”?
Reply: agreed and reworded according to suggestion.

Comment: Page 3311
Line 4: “Having understood the source of the problem, the natural approach
would appear to be to evaluate ...”?
Reply: Agreed and reworded according to the suggestion.

Comment: Line 19: “... problems with the definition of these quantities ...”
Reply: Agreed and reworded according to the suggestion.

Comment: Line 21: would: “it is not our intent to discuss the state ...” be
better?
Reply: Agreed and reworded according to the suggestion.

Comment: Page 3312
Line 6: “not acceptable” → “unacceptable”?
Reply: Agreed and changed.

Comment: Line 14: “an alternative understanding of the meaurements of the
atmospheric state as characterizing an extended ...”?
Reply: Agreed and reworded according to the suggestion.

Comment: Lines 20-24: I have to confess to not having understood how this
“back door” differs from the front one that was discussed in sections 3 and 4.
Apologies if I’ve missed something.
Reply: Here the front door was meant to be the notion that the truth is under-
stood to be a representation of the atmosphere without any smoothing and that
all deviation from this ideal atmosphere by finite resolution being a ‘smoothing
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error’. By analyzing the smoothing error on a finite grid, one breaks with the
assumption of the unsmoothed true atmosphere and goes back to the notion of
finite air volumes. I have reworded this part.

Comment: Page 3313
Line 24: “notion with respect to the soothing error concept, inapplicable to ...”
→ “discussion of the smoothing error in this paper, inapplicable to ...”?
Reply: Agreed and reworded according to the suggestion.

Comment: Page 3314
Line 1: “also turns” → “also makes”
Reply: Agreed and changed.

Comment: Line 8: “suggest in their paper that profiles be validated against
each other by ...”
Reply: Agreed and reworded according to the suggestion

Comment: Line 11: “... these authors suggest that Sn∆ be calculated as”
Reply: Agreed and reworded according to the suggestion

Comment: Page 3315
Line 18: Any citations of papers giving examples of those “retrievals without a
formal constraint”?
Reply: Citation added.

Comment: Page 3316
Line 6: Perhaps consider having a new sentence and “However, ” before “wouldn’t”.
Also this sentence needs to end with a question mark. However, the phrasing of
this thought as rhetorical question is out of character with the rest of the paper.
Consider rewording?
Reply: Apparently my grammar was incorrect and misleading. It was meant
’if the consequence wasn’t that...’; I have reworded this.

Comment: Figure 1
Consider adding a legend to the plots. Having to read through the caption to get
the meaning of colors etc. is a little tedious. Minor point, consider postscript
fonts rather than Hershey fonts for clarity (!p.font=0 in IDL).
Reply: Agreed but postponed because I am fighting with the deadline. I will
do this along with other technical corrections once the other revisions will have
been fixed.

Comment: Caption: Suggest “gridwidth” → “grid spacing”
Reply: Agreed and changed.

Comment: “More important” → “More importantly”
Reply: Agreed and corrected.

Many thanks for all these suggestions!
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2 Reviews by John Worden

2.1 First Review of Paper

Comment: Thomas,
Please consider this as ”iteration 1” on my review as I wanted to make a sug-
gestion first based on my experience and get your response before formally going
through the paper and making comments (so for now please ignore the odd rat-
ings I gave your paper as there does not appear to be a way for me to make a
comment without rating your paper)
You mentioned in the acknowledgements that you were inspired to write this
paper as a result of the SPARC intercomparison activities (which I was also
involved in via Jessica Neu’s inter-comparison paper).
Reply: My mentioning of the SPARC Data Initiative refers to the first project
meeting at ISSI, Berne, where it was discussed if and how the different content
of prior information of the different climatologies should be taken into account.

Comment: I think this paper would be quite a bit more useful if you added a
few examples on why this subtle aspect of the smoothing error is important.
Reply: A large list of further examples has been included.

Comment: I agree that most of these issues are resolved by simply supplying
an averaging kernel associated with the measurement.
Reply: The non-interpolability of the averaging kernel adds some further com-
plication to this issue. See reply to Clive Rodgers’ review for further dertails.
This issue is now discussed in the paper and numerical tests have been included.

Comment: That said, a bound on the smoothing error is still important when
encountering logarithmically large differences between a remotely sensed mea-
surement and a model...
Reply: It is not quite clear to me how the smoothing error concept solves
the problems of the logarithmically large differences. Aren’t those uncertainties
which are caused by the fact that the averaging kernel is not representative due
to these large differences just propagated onto the smoothing error, which then
would be very inaccurate itself?

Comment: ...or comparing measurements with very different sensitivities.
Reply: In this case, the ‘smoothing error of the difference’ is applicable (c.f.
Section 6 of my paper).

Comment: For example, in my recent methane papers using TES methane and
CO (see Worden et al. ACP 2013), we could not directly use GEOS-Chem pro-
files through the stratosphere because the differences between GEOS-Chem and
our a priori were orders of magnitude different in the stratosphere and these
differences propagate into the altitude region of interest (in our case the tropo-
sphere) via the averaging kernel.
Reply: In this case the model atmosphere is apparently outside of the range of
values where linear diagnostics still can be applied. I see the problem, but I do
not see how the smoothing error would help here since it also depends on the
state-dependent averaging kernel.
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Comment: The approach we took to address this issue is to truncate at the
tropopause which introduces an error equivalent to the cross-term A strat trop##-
S strat strat##transpose(A strat trop), where A strat trop is the influence of
stratosphere on troposphere.
Reply: I see the point: the averaging kernel is used only at altitudes where the
model atmosphere is in the range of values which is accessible to linear diagnos-
tics. But I do not quite see how the smoothing error concept helps here.

Comment: A similar problem occurs in the SPARC inter-comparison problem
in which limb measurements are being compared to TES nadir profiles but the
stratospheric limb measurements are not sensitive to the mid and lower tropo-
sphere. Using the approach above introduces an error that is too large so in that
case Jessica has to scale an a priori in the troposphere so that it matches the
limb estimate.
Reply: Also here the problem is solved by a variant of the observation operator
method but not by application of the smoothing error concept.

Comment: In both of these cases an error associated with limited vertical res-
olution (or lack thereof) affects the comparison and hence it is useful to at least
bound the smoothing error to determine if the estimates are consistent to within
the observation error plus this component of the smoothing error.
Reply: For the examples you mention, I think that it is not the ‘smoothing
error’ in absolute terms (viz. the expected a priori induced difference between
the true atmospheric state and the retrieval) what you actually need but the
‘smoothing difference’ as discussed in Section 6 of my paper. In my paper I do
not criticize the latter application but I confirm that it is a powerful tool for
profile intercomparison.
The smoothing error is discussed in the methodical framework of linear theory,
and its refutation by a reductio ad absurdum takes place within the framework
of linear theory. I do agree that there are issues with the averaging kernel which
are not trivial to solve. Most of these problems, however, have to do with the
fact that linear methods are pushed towards (or beyond) the limits of linear the-
ory. Log retrievals or prior information orders of magnitude off the measured
state raise problems due to the state dependence of the Jacobian K (otherwise
it would be easy to transform the retrieval to another a priori). A thorough
discussion of these issues, however, would force me to replace the framework
of linear theory (in the narrow sense of this term) by a theoretical framework
allowing state-dependent Jacobians where the linearization point has to be con-
sidered. I do not think that it is adequate to add that additional complication
to the discussion since all this is not needed for the title issue of the paper.
Workarounds to cope with such problems have already been developed and re-
ported in the literature, and I do not think I should review these here. Instead,
I have just added some related references.

Comment: For these reasons, I would recommend that you augment your pa-
per with some practical examples of this nature so that the paper becomes more
useful for the remote sensing community.
Reply: In the revised version I make reference to applications of the averaging
kernel concept in the conclusions section.
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2.2 Formal Review of Paper

Comment: This response represents my “formal” review of the paper.
In general the paper is well written and easy to understand and has a point that
has not yet been formally stated in the literature, i.e., that the smoothing error
cannot directly be linearly related (or mapped) from one gridding to another. In
that respect, I can say that the paper is publishable with some minor changes
(e.g., add references to the Bowman et al. 2006 and Worden et al. 2004 papers
where we discuss the effects of mapping on the calculated errors)
Reply: The References have been included in the revised version.

Comment: On the other hand, in the papers current state, its unclear how
often the paper would be referenced ...
Reply: Indeed I assume that the paper will be referenced more often in reviews
or rebuttals than in journal publications.

Comment: ...because most well characterized retrievals have already addressed
the issue discussed in this paper by supplying the instrument operators (averag-
ing kernelsand constraint vector), as well as the observation errors.
Reply: The reviewer claims that for most well characterized satellite data prod-
ucts the problem I have identified is already solved because in these cases the
observation operator is provided. I do agree that in a majority of cases (not
always, but this is another story!) the observation operator solves the problem
of data application/comparison. I have now referenced some examples. By my
discovery that the smoothing error is not an error in terms of error propagation I
provide the theoretical justification that in the context of constrained retrievals
this is the only known way to go, not just an option. Still a lot of groups publish
the total error budget (with the smoothing error included).
However, there are situations where traditionally it is argued with the total
error budget: This is typically done when the data quality (not the data them-
selves!) are intercompared in order to find out which instrument or which data
processor is superior over another. In these cases, the inclusion of the smoothing
error would lead to absurd results: Let there be two retrievals, one on an 1-km
grid, another on a 3-km grid. Let the vertical resolution of both retrievals be
3 km, and let the retrieval noise be the same for both. In this case, traditional
smoothing error analysis would assign a larger total error to the retrieval on
the 1-km grid and will thus rate the retrieval on the 3-km grid better although
both retrievals carry exactly the same information. Now, at the decline of the
golden age of Earth observation pre-flight studies in the context of evaluation of
future space missions gain more importance while the work with existing data
will (unfortunately) be reduced. In this context a correct understanding of the
smoothing error and its pitfalls is essential.

Comment: It is for this reason that I would suggest adding some “real-life”
examples (e.g., from the SPARC comparison) that I think would make this paper
more relevant to the remote sensing community.
Reply: Many more case studies have been added and references to papers
where the application of the averaging kernel is demonstrated have been added,
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however without changing the main focus of the paper.

3 Review by Clive Rodgers

General Remarks: We agree in more points than it appears at first sight. We
seem to agree

• that the averaging kernel is more helpful but sometimes less intuitive than
the smoothing error;

• that it is often possible to provide a reasonable estimate of Se,fine;

• that the smoothing error should not be linearly mapped to a grid finer
than that on which it has been evaluated (which is the main focus of my
paper).

There still seems to be disagreement about

• if it is possible to routinely provide the smoothing error on a grid fine
enought that either interpolation to an even finer grid will not be at-
tempted or causes no additional error;

• if it is acceptable to treat the smoothing error as an error while Gaussian
error propagation does not yield the smoothing error on a finer grid;

• how serious the errors by interpolation of the averaging kernel are com-
pared of those related with linear mapping of the smoothing error.

3.1 Initial Review

Comment: Thomas,
My apologies for lateness in commenting on this paper. Here are some quick
comments - it will be a couple of weeks before I can do a detailed job. I don’t
want to rate the paper yet.
I agree that smoothing error covariance is difficult to evaluate correctly, because
Se is usually not well enough known. I regard it as a qualitative measure, giving
an indication of the magnitude of the difference between the retrieval and the
true state due to the finite width of the averaging kernel. The averaging kernel
itself is more helpful. (GK, not GKV)
Smoothing error, like the averaging kernel, is properly only defined on a ‘fine’
grid. Any attempt to evaluate it on a coarse retrieval grid is doomed to failure,
for the reasons given in the paper. However the expression for smoothing error
covariance given in eqn (16) appears to be in error. Rodgers (2000) eqn 10.3
leads to

(WGzK− I)Se(WGzK− I)T

whereas (16) would give

(WGzKWV − I)Se(WGzKWV − I)T

but WV is not a unit matrix.
Reply: I agree that the analytically correct evaluation of the smoothing error
requires the averaging kernel which represents the response of the retrieval to
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the variation of the true atmosphere on the fine grid. I used in the original
manuscript the averaging kernel which represents the response of the retrieval
to the variation of the true atmosphere on the coarse grid and have then in-
terpolated this coarse-grid averaging kernel to the fine grid. Thanks a lot for
pointing out! Eq. 16 has been corrected in the revised manuscript. The case
study has been redone with correct Eq. 16. In the following I will discuss the
implications of this error for the paper.

• Implication for the main result of the paper: The main result of the paper
is that Gaussian error propagation is not compatible with the smoothing
error concept. This conclusion is even more supported when the fine-grid
averaging kernel is used in Eq. 16. The conclusion holds a fortiori.

• Implications for the case study: The new results differ only marginally
from the old ones.

• Implications for the recommendation to supply the averaging kernel in-
stead of the smoothing error: Here we have a serious problem. Facing the
fact that the averaging kernel cannot be interpolated, the user cannot
calculate the exact smoothing error on his preferred grid himself. This
issue is discussed in more detail in the context of the second review.

Comment: Effectively (16) strips out the fine scale variation from Se.
Reply: This comment is discussed in more detail in the context of the second
review, which comments also my initial reply to this comment.

Comment: The discussion about the possibility of arbitrarily large variation in
the state vector at fine scales seems to be a red herring. Agreed it is conceivable,
but no evidence is given that it actually happens, and experimental evidence
from gravity waves seems to show the opposite.
Reply: Here I feel a little misunderstood. I do not claim that this variation
is large. I just claim that it does not disappear, even at fine scales. What I
intend to say is that, if one has evaluated the smoothing error on a fine grid,
there always is a finer grid with its own small-scale variability, and Gaussian
error propagation will fail when the smoothing error is propagated to this finer
grid. There is no limit beyond which there is no more additional variability and
where Gaussian error propagation would be fully applicable to the smoothing
error.

Comment: I haven’t done an exhaustive search of the literature, but the first
paper I turned up (http://www.atmos-meas-tech.net/4/1627/2011/amt-4-1627-
2011.pdf) fig 5 shows a decrease with wavenumber in the region of k−3 towards
small scales, which I think is typical of the scale of variation of atmospheric
quantities. Incidentally, this can be used as a basis for extrapolating Se to finer
scales than have been measured, by considering a fourier representation.
Reply: I agree that an educated guess (as you call it on p 163 of your book,
however in the context of Sa) is often possible, although there is a large variety
of processes which can lead to large small-scale variability (e.g. photochemical
species beneath scattered clouds; intermittently emitting sources, etc.). In my
original manuscript I did not at all mention difficulties to evaluate Se on a
fine grid. The discussions during the access review phase and during the first
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part of the official discussion phase have pushed me somewhat towards this
issue although my main interest has been the conflict between the smoothing
error and Gaussian error propagation. My concern is that the data user who
has no access to instrument-specific data cannot transform the smoothing error
to a finer grid than that used for the calculation of the original smoothing
error. In other words: I do agree with you that the smoothing error can be
calculated (directly, from Se;fine) on the fine grid. We also agree that the
smoothing error on the fine grid cannot be estimated from a smoothing error
on a coarse grid via Gaussian error propagation. We seem not to agree if the
term “error” is inadequate or not in a context of a quantity which is in conflict
with the established error propagation laws. Although somewhat pushed into
this direction, I have not challenged in my paper the possibility to provide some
Se;fine. I only mention that often no reliable estimate is available, and I do not
think that this statement is too strong.

3.2 Final Review

Comment: General Comments
The aim of this paper is to show that the concept of smoothing error leads to
problems of interpretation that make it not a useful quantity in characterising
retrieval errors. I agree that smoothing error is a tricky concept, and should
not form part of the error analysis supplied to data users. However it is still a
useful concept if handled correctly. The error analysis is best described in terms
of the retrieval noise covariance (uncorrelated between separate retrievals), the
systematic error covariance (may be correlated between retrievals), and the av-
eraging kernels on clearly specified representation of the state. (See Rodgers
(2000) 11.2.6.) Smoothing error is useful in certain circumstances, but is for
the data users to compute based on their own assessment of the state ensemble
covariance, and the spatial resolution needed for their particular applications.
Reply: I do agree; in the section of the paper where the smoothing error is
presented (after Eq. 5) I have now included a statement on the benefits of the
smoothing error.

Comment: Detailed Comments
3303 L1: An optimal estimation scheme is one which optimises something. It
covers all sorts of possibilities, of which MAP is just one. I did not retitle the
MAP approach, I simply used the name which had been normally used in the
literature for many years.
Reply: I have reworded this paragraph accordingly.

Comment: 3303 L5: I don’t think the use of the term ‘a priori’ in analytic
philosophy is relevant.
Reply: But I do not think that it is harmful either. Many remote sensing
scientists think that its meaning in remote sensing and information theory is
equivalent to its general meaning, which is not true.

Comment: 3303 L12: “indirect prior knowledge” does not sound like “knowl-
edge” at all. It is simply a representation, used as a practical neccessity (we
can only deal with a finite number of rational numbers), which has the effect of
constraining the solution to a particular region of state space.
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Reply: Agreed; I have replaced the term by “indirect prior assumptions”. This
seems appropriate to me, because a finite number of points without some as-
sumption how the atmosphere behaves in between is of no value.

Comment: 3306 L4: As other reviewers have pointed out, Sa should be Se.
Incidentally the error analysis in Rodgers (2000) chapter 3 applies to any re-
trieval method....
Reply: Agreed and corrected. This caused no major further complication be-
cause the (real) Sa matrix has played no major role in this paper.

Comment: ...That analysis only uses Sa as a linearisation point.
Reply: I assume it uses xa, not Sa as a linearisation point.

Comment: 3306 L1820: The choice of grid is important. It needs to be chosen
so that it can represent all scales of variability that are important to the problem
in hand, and so that information present in the raw measurement is not lost...
Reply: I agree in part. I would go a step further: For the retrieval it is sufficient
to define the grid in a way that no information present in the raw measurement
is lost. For the smoothing error, however, the grid must be chosen in a way that
no variability of the real atmosphere is lost. Related difficulties are the main
topic of my paper.

Comment: ...Se matrices from real data should be constructed in such a way
that the are not singular. And, of course, due allowance should be made for the
errors in the ‘real’ data. See Rodgers (2000) section 10.3.3.
Reply: Agreed.

Comment: 3306 L248: If you can think of a better term, please suggest it!...
Reply: In the paper I will occasionally use now the term ‘constraint diagnos-
tic’. Admittedly this term is less specific than ‘smoothing error’ but at least
it will not raise wrong expectations. The exclusive use of the new term in the
paper would be confusing because the reader would lose track what I am talking
about; thus I still use the term ‘smoothing error’ in most instances.

Comment: If you think of eqn (4) in terms of a fourier expansion or in terms
of the eigenvectors of A, you will generally find that smaller scale components
are suppressed more than large scale components, hence ‘smoothing’. If the jaco-
bians are, as is commonly the case, more or less single peaked smooth functions
of finite width, you would expect a smoothing effect.
Reply: The small scale components of the difference x̂ − xa are suppressed.
This, however, does not necessarily mean that also the small scale components
of x̂ are suppressed. It appears to me that you assume xa = xe. In this partic-
ular case I agree.

Comment: 3308 L57: The statement in parentheses could be omitted without
loss.
Reply: I have removed it because I am no longer sure if it indeed holds for
indirect measurements.

Comment: 3308 L9: You should remind the reader here that VW = Icoarse
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but WV 6= Ifine.
Reply: Agreed and added.

Comment: 3308 L19: What makes you think it has remained unnoticed? Isn’t
it obviously the case?
Reply: I may have misinterpreted the fact that this issue had not be discussed.
I have now changed this statement accordingly.

Comment: The same arguments apply as for Se. Smoothing error should not
in principle be calculated on a grid which is too coarse to capture all relevant
atmospheric variability. Or, if you do so, you must be aware that you have
introduced another source of error – representation error, describing variability
in the null space of the representation you are using.
Reply: Here I disagree. Error propagation is a generic concept, and the usual
laws have to be applicable without expert knowledge about the specific kind of
error. Application of generalized Gaussian error propagation to interpolation
should yield the expected difference between the estimated and the true state
also in the new grid, regardless of the nature of the error, as long as the initial
covariance matrix is correct (including the off-diagonal elements). This holds
for noise and parameter error but not for the smoothing error. The problem
of the smoothing error comes from the fact that the initial smoothing error
does not describe the difference of the estimate and the true atmosphere but
the difference of the estimate and one specific finite representation of the true
atmosphere. In case of the smoothing error, Gaussian error propagation yields a
quantity which can be interpreted only with expert knowledge and which has a
physical meaning only to people who know for which specific case this error has
been calculated. The error budget should be understandable without detailed
instrument specific knowledge.

Comment: 3309 L1: What precisely do you mean when you say “Gaussian er-
ror propagation is not compatible with the smoothing error concept”. What goes
wrong? If I understand you properly, then what you mean is that the smoothing
error calculated correctly on a fine grid does not equal the smoothing error calcu-
lated on a coarse grid, and then interpolated to a fine grid. Why would anyone
expect otherwise? It is not that the smoothing error concept or Gaussian error
propagation has gone wrong, it is that you are not comparing like with like.
Reply: We fully agree about what goes wrong but we seem to disagree if this is
acceptable (see above). Error bars on different grids are not comparable. Thus,
in case of grid-transformation Gaussian error propagation has to be applied
to avoid an apples-to-oranges comparison. For all other errors Gaussian error
propagation serves this purpose except for the smoothing error. In the latter
case, Gaussian error propagation yields a quantity which is non understandable
without knowledge on which grid the smoothing error has initially been evalu-
ated, and – contrary to the other error types – the magnitude of the smoothing
error depends on this grid.
You argue that the initial grid must be chosen fine enough to include all vari-
ability. I object that (a, theoretically) this representation does not exist, and (b,
practically) that, if it existed, distributing these large amounts of data would
be beyond reach.
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Comment: Gaussian error propagation applies, but it gives you the error of
the coarse smoothing error when interpolated to the fine grid, not the smoothing
error calculated on the fine grid.
Reply: But, as said above, it is just the purpose of Gaussian error propaga-
tion applied to grid transformations to make initially uncomparable error bars
comparable and to remove the dependence on the grid chosen. This works for
all other error types except of the smoothing error.

Comment: That is given by the corrected version of eqn (16). Incidentally,
it can be shown (see appendix) that eqn (15) is related to corrected eqn (16)
by replacing Se;fine by WVSe;fine(WV)T , i.e. Se;fine with the finer scales
removed.
Reply: We agree about what is going on mathematically but we seem to dis-
agree what expect Gaussian error propagation to produce.

Comment: 3310 L22–24: Gaussian error propagation does not have to be aban-
doned, it just has to be used appropriately. Smoothing error should be calculated
on the fine grid, and then transformed to the coarse grid, if required.
Reply: Gaussian error propagation is a general concept which is applicable to
any linear operation, without restriction. Transformation to a finer grid is a
linear operation. Thus the smoothing error is a diagnostic quantity which does
not have the properties an error usually has. The smoothing error is a valuable
diagnostic in its own right (I have made this clearer in the revised version) but
to me it does not have the nature of an error.

Comment: 3311 section 4: There is no doubt variability on all scales, and we
may not be able to estimate it from independent measurement or from theory
(though turbulence theory may be helpful). However there will be a scale be-
low which we can be reasonably sure that our instrument has effectively a zero
sensitivity. We should choose a representation such that scales larger than this
can be represented. (See Rodgers (2000) 10.3.1.2 and 10.3.1.2.) A data user
who wishes to extend the smoothing error to smaller scales (if he has a suitable
Se;fine!) can then assume that all variation at smaller scales is in the smoothing
error.
Reply: I agree that this is the right way to go. However, Gaussian error propa-
gation is a generic concept where exceptions as required for the smoothing error
are not foreseen. Thus I suggest not to treat the smoothing error like an error
and not to include it in the error budget (I think we agree at least on the latter,
c.f. Sect 11.2.6 in Rodgers 2000, and first lines of this review). The statement
that, with a suitable Se;fine available, the user can calculate the smoothing er-
ror on his preferred grid needs some discussion. We have WV 6= Ifine, and the
user does not typically have Afine on the desired grid available, because this is
an instrument-specific quantity. Thus the user will have to apply my old (incor-
rect) version of Eq. 16. But we have the additional assumption that the initial
grid is fine enough that all scales the instrument is sensitive to are represented.
In this case the inaccuracy of old Eq. 16 turns out to be tolerably small. This
is important, because otherwise the data user who wants to go to a finer grid
would not be helped with providing the original grid averaging kernel. My test
calculations corroborate what one might intuitively expect: The differences due
to the use of the interpolated averaging kernel are small when the initial sam-
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pling is fine compared to the scales of variability and resolution. This saves the
recommendation to provide the averaging kernel as one main diagnostic, which
otherwise would be of limited use. Of course my test calculations must not be
over-generalized because results will depend on the actual shape of the averag-
ing kernels but the test indicates that the harm done by interpolating averaging
kernels is orders of magnitude smaller than the harm done by applying Gaussian
error propagation to the coarse grid smoothing error in a straight forward way.
I think that this result considerably strengthens the practical usefulness of my
paper.

Comment: 3312 L5–7: It is simply wrong to attempt to do this, as discussed
above.
Reply: Why? This approach would be fully in agreement with Gaussian error
propagation. If we accept Gaussian error propagation but get absurd results,
I conclude that the quantity propagated is not an error in the sense of error
propagation.

Comment: 3312 L8–13: We do not attempt to retrieve at dimensionless points.
The state vector is always a set of numbers which define a continuous function.
It is the continuous function that we retrieve, and which is required to evaluate
the forward model.
Reply: I do not mean extensionless points with gaps in between. But if the grid
attempts to catch all natural variability, it will approach towards an infinitesimal
grid, which means that each gridpoint will represent an infinitesimal extension.
In reality, absurdities will be encountered long before the infinitesimal scale will
be reached, i.a. already when the molecular scale is reached, which strengthens
my case. All this is only about demonstrating that convergence is not achieved.
I have reworded this paragraph accordingly.

Comment: 3312 L13–20: As mentioned above, this is exactly what I recom-
mend, e.g. in Rodgers (2000) 11.2.6. (Though very briefly – I was hurrying to
finish the book!)
Reply: ok, here we agree; I have added a reference to this section of your book.

Comment: 3312 L20-24, I don’t understand this sentence.
Reply: This sentence has been reworded.

Comment: 3313: Much of this will need a different emphasis in the light of
the difference between Se and Sa.
Reply: I agree and have corrected this paragraph accordingly.

Comment:3314 L6: useful
Reply: corrected.

Comment: 3315 L17-19: The formalism can be applied ML retrievals. All you
need is the representation function (which is the same as W), and an Se;fine

matrix. The smoothing error can be evaluated on the fine grid.
Reply: Agreed but not added to the paper because the discussion of maximum
likelihood retrievals is beyond the scope.
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Comment: 3315 L25: for “implicit smoothing error” I would use “representa-
tion error” as a more descriptive term.
Reply: Agreed that “representation error” is more descriptive. I use now both
terms.

Comment: 3315 next sentence: I don’t think it has been shown adequately in
a practical sense. Extensionless points are not relevant. You could e.g. use a
fourier series.
Reply: As said above, I don’t use the term “extensionless points” in the context
of points with gaps in between but as points as the limit when inifinitesimally
fine resolution is attempted.

Comment: 3316 L4 onward: I do think the problem is purely philosophical and
practically irrelevant!
Reply: My new series of tests shows that interpolation to a finer than the
original grid leads to considerable mis-estimates of the smoothing error even in
cases when the grid is several factors finer than the correlation length of natural
variability and much finer than the resolution of the retrieval. Philosophical
or theoretical issues aside, distribution of diagnostics on grids fine enough that
problems are practically (while not theoretically) solved will easily be beyond
reach for practical reasons. I have added a comment on this. However, I am
still not sure if there isn’t a misunderstanding. I do NOT challenge that the
smoothing error can in principle be evaluated on any fine grid. I only claim
that Eq 15 (which is the correct application of Gaussian error propagation) in
the context of interpolation to an even finer grid will fail to produce the correct
smoothing error on this finer grid.

Comment: Smoothing error does comply with Gaussian error propagation if
done correctly.
Reply: Here I disagree. Eq. 15 is correct in terms of Gaussian error propaga-
tion, and we cannot just redefine the rules of error propagation just because the
quantity to be propagated behaved differently than errors usually do.

Comment: 3316 L15: I agree strongly that the averaging kernel should be sup-
plied. I also feel that the smoothing error should not be supplied...
Reply: I have included another reference to Rodgers 2000 Sect 11.2.6 here.

Comment: ... The users can evaluate that themselves if they want it.
Reply: Agreed with the caveat that also the averaging kernels cannot interpo-
lated from the fine to the coarse grid. But if the original grid has been chosen
fine enough, related inaccuracies turn out to be tolerable.

Comment: Comments on Thomas’s reply:
C797 Implications for sect 5, L1-6: These are exactly the reasons that TES
chose to provide averaging kernels with their data set.
Reply: Agreed

Comment: C798 2. Possibility...: But there will always be a scale beyond
which it doesn’t matter for practical purposes.
Reply: I assume that, if the data user decides to interpolate data on a finer
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grid, there is some additional variability on this grid. Otherwise the user had
no interest in using this finer grid. And as soon as interpolation to a finer grid
occurs, the discussed problems will occur.

Comment: Appendix: Eqns 15 and 16
The correct version of eqn 16 requires Afine = WGKfine:
Reply: Agreed and corrected.

Comment:
Ssm;fine = (Ifine −WGKfine)Se;fine(Ifine −WGKfine)

T

Equation 15 uses Acoarse = GKcoarse = GKfineW.
Ssm;fine = W(Icoarse −GKfineW)Se;coarse(Icoarse −GKfineW)TWT

Substitute Se;coarse = VSe;fineV
T and bring the W’s inside the brackets:

Ssm;fine = (W −WAcoarse)VSe;fineV
T (W −WAcoarse)

T

Substitute Acoarse = GKfineW and move the right hand W’s:

Ssm;fine = (Ifine −WGKfine)WVSe;fine(WV)T (Ifine −WGKfine)
T

This is the same as eqn 16, but with Se;fine replaced by WVSe;fine(WV)T ,
which is Se;fine projected onto the coarse grid, and interpolated back on to the
fine grid, thus removing fine scale information.
Reply: Agreed that Eq. 15 can be written in the structure of Eq 16. This
explains what goes wrong with Eq. 15 (and by the way, answers the related
question by Reviewer #5. But since it is still different from (old) Equation
16, this does not prove that old Eq 16 (with the fine-grid Se matrix but inter-
polated averaging kernel) destroys the small-scale information as Eq 15 does.
Tests have shown that old Eq 16 may be a justifiable approximation for cases
when the small-scale averaging kernel is not available and the grid on which the
original averaging kernel has been evaluated is still fine enough to resolve what
the instrument can see.

Thank you, Clive; your comments have helped me much to improve the paper.
I think that the aspect of interpolability of the averaging kernel, which resulted
from our discussion, has added considerable practical value to the paper.

4 Review by Brian Connor

Comment: The paper presents a detailed discussion of a subject which is im-
portant to the interpretation of remote sensing measurements, but is not well
understood in the community. The subject of smoothing error has by-and-large
been approached correctly by investigators responsible for retrievals from remote
measurements, but its implications and limitations are often not understood by
data users.
The current paper will help alleviate this shortcoming. It also presents a quanti-
tative aspect of the subject for the first time, namely its relation to error propaga-
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tion. The paper is generally well reasoned and well written, with a few exceptions
already discussed by other reviewers. I feel it makes an important contribution
and should be published with minor changes. One recommendation made by
others which I support is to include a few specific examples. They needn’t be
lengthy. A sentence or two and a reference could specify how a particular ex-
periment dealt with the smoothing error issue.
Reply: More examples (case studies) have been added and summarized in a
table. References how measurements are characterized by the smoothing error
and/or by the averaging kernel have been added.

Comment: Both the concepts of smoothing error and averaging kernels are
intended to cope with the limited information inherent in remote measurements.
The following discussion is relevant to the author’s recommendations regarding
their use.
The concept of ‘null space’ error was first introduced in Rodgers, 1990. (It
was subsequently renamed ‘smoothing error’ after A. O’Neil pointed out that
‘null space’ was not strictly correct.) Clive and I discussed that paper when it
was in draft form, and we both recognized smoothing error as a problematic (but
unavoidable) concept. However the principal difficulty we saw with it was its de-
pendence on the covariance matrix of variability of the true atmospheric state,
which is poorly known at best. To the best of my knowledge, the paper being
reviewed is the first to recognize the difficulty with Gaussian error propagation
applied to smoothing error.
It emerged from those early discussions that one could eliminate smoothing er-
ror from the comparison of atmospheric profiles from different sources (measure-
ments or models) if the vertical resolution of one profile was much finer than the
other. The smoothing error is removed by smoothing the high resolution profile
with the low resolution averaging kernels. As far as I know, this was used first
in Connor et al 1994, who called the result the ‘convolved profile.’ This approach
also removes the a priori profile, used by the low resolution measurement, from
the comparison.
References:
Connor, B.J., D.E. Siskind, J.J. Tsou, A. Parrish, A.E.E. Remsberg, Ground-
based microwave observations of ozone in the upper stratosphere and meso-
sphere. J. Geophysical Res., 99, 16,757-16,770, 1994.
Rodgers, C. D.: Characterization and error analysis of profiles retrieved from
remote sounding measurements, J. Geophys. Res., 95, 5587–5595, 1990.
Reply: Since this ‘convolution’ method is widely used, I have added it to the
paper, along with the reference. I avoid, however, the term ‘convolution’ be-
cause I am not quite sure if a matrix product where A can have rows which differ
by more than only a shift really is the discrete representation of a convolution.

Comment: Comparing profiles with comparable vertical resolution is more dif-
ficult. It was a focus of work around the end of the century and eventually led to
Rodgers & Connor, 2003. Here again, as the author of the current paper points
out, smoothing can be eliminated as a source of difference between measured
profiles, by application of the measurement averaging kernels.
My own approach to the problem is given in Connor et al, 2008, for the OCO
mission. It is to provide an estimate of smoothing error as a qualitative guide
for the data user, and also to provide the a priori profiles and the averaging
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kernels. In addition, I have recommended the use of Rodgers & Connor (2003)
in quantitative profile comparisons. Thus, I wholeheartedly agree with the au-
thor’s recommendation for the provision and use of the averaging kernels, and
urge him to accept smoothing error as a simpler, if less precise, aide to under-
standing.
References:
Connor, B. J., H. Bösch, G. Toon, B. Sen, C. Miller, and D. Crisp (2008),
Orbiting Carbon Observatory: Inverse method and prospective error analysis, J.
Geophys. Res., 113, D05305, doi:10.1029/2006JD008336.
Rodgers, C.D.; Connor, B.J. (2003). Intercomparison of remote sounding in-
struments. Journal of Geophysical Research 108(D3), 4116, doi:10.1029/2002JD002299.
Reply: I have added the references and have rewritten the paper in a way that
the smoothing error is no longer challenged as such but only in the context of
error budgets.

5 Anonymous Referee #5

Comment: General Comments The paper “Smoothing error pitfalls” by T. von
Clarmann discusses implications and limitations of the smoothing error concept
in retrieval theory. The “smoothing error” is usually considered being an im-
portant diagnostic quantity of an optimal estimation retrieval. It measures the
difference between the optimal estimate and the unknown true atmospheric state
due to the influence of explicit a priori information. A major finding of the
paper is that the smoothing errors for a coarse retrieval grid are not compliant
with smoothing errors estimated for a finer grid, if the coarse grid data was
simply interpolated to the fine grid and the corresponding smoothing error was
determined by means of Gaussian error propagation. Solutions to this problems
are presented.
In general, I found the paper well-written and interesting to read. I would also
think it is of interest for many readers of AMT. However, right now I am not
convinced that all key statements hold and I would dispute the conclusion that
the smoothing error concept is “questionable”, “untenable”, or “failed”...
Reply: The entire text has been reworded in a way that attributes as listed
above are only used with in conditional statements or within a very specific
context and no more in absolute or general statements. This is hoped to make
the paper more balanced.

Comment: Clarification is also needed that the topic has been addressed in the
literature before, in particular by Rodgers (2000).
Reply: I do not understand this comment. In my paper I make very detailed
reference to Rodgers (2000). All the passages of the Rodgers book quoted by the
review are already referenced in my paper, with explicit page reference. I agree
(and have mentioned in my paper!) that Rodgers discusses non-interpolability
of the Se matrix but I am not aware that the consequeence of this for the
smoothing error has been discussed anywhere in the literature.

Comment: I will try to express my concerns in more detail in the follow-
ing general comments. These concerns need to be carefully addressed and the
manuscripts needs to be revised before it can be published.
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In section 2 the paper presents a misleading definition and discussion of the
smoothing error. In particular, Eq. (5) defines the smoothing error as

Ssmooth = (I−A)Sa(I−A)T .

However, Rodgers (2000, Eq. 3.17) introduced this as

Ssmooth = (I−A)Se(I−A)T ,

with Se being the covariance of a real ensemble of states rather than the a priori
covariance Sa...
Reply: Thank you for spotting this. I should indeed have used another no-
tation and have corrected this in the revision. However, in Rodgers’ Equation
2.23 (p25), Sa is defined as the true variability of the atmospheric state around
the a priori assumption. In contrast, in Rodgers [p.49] the possible use of ad
hoc choices of the Sa matrix is discussed. In Rodgers [p.58] again the smoothing
error is evaluated on the basis of Sa. Anyway, the notation with Se is much
clearer, and in my paper I have replace Sa by Se because I do not use the
regularization term S−1

a except for a few instances where I do now carefully
distinguish between Sa and Se. In my notation, I use R for any generic or ad
hoc regularization matrix, so there is no ambiguity.

Comment: ...It seems Se rather than Sa was introduced intentionally by Rodgers
(2000), with the following argument (p. 49): “Many remote observing systems
cannot see spatial fine structure, the loss of which contributes to the smoothing
error. To estimate it correctly, the actual statistics of the fine structure must
be known. It is not enough to simply use some ad hoc matrix that has been
constructed as a reasonable a priori constraint in the retrieval...”
Reply: I fully agree. This comment is completely in line with my paper: On
page 3306, lines 8 ff (of the AMTD version) I discuss exactly this issue. There
I also make reference to page 49 of the Rodgers book.

Comment: ... I think this is at the heart of the problem raised by the new paper
of T. von Clarmann, i.e., that a coarse grid a priori covariance Sa cannot be
simply interpolated to obtain an estimate of Se on a fine grid. This would not
be a completely new finding than...
Reply: In my paper I do not claim to have discovered the non-interpolability
of the Sa or Se matrix. On page 3308, line 16 of the AMTD version I attribute
this finding explicitly to Rodgers. The new point in my paper is, that this
has important implications for the smoothing error. Once discovered, this issue
seems trivial, but it has to my best knowledge never discussed before in the
literature, and the effect on the error budget of a retrieval is important.

Comment: Rodgers (2000, p. 49) also provides a simple solution to this prob-
lem: “If the real covariance is not available, it may be better to abandon the
estimation of the smoothing error, and consider the retrieval as an estimate of
a smoothed version of the state, rather than an estimate of the complete state.”
T. von Clarmann came to a similar conclusion in his paper, i.e., to better ex-
clude the smoothing error from the error budget and to supply averaging kernels
to the data user instead. However, this would also not be a completely new find-
ing than?
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Reply: Also here I have not claimed to have discovered the solution myself
but on p 3312 line 13 (AMTD version) of my paper I explicitly attribute this
suggestion to Rodgers. In the same paragraph I then conclude that “As a result
of the discussion above, this approach is not only an option but seems to be the
only reasonable choice...”.

Comment: A practical problem that I see with the solution of Rodgers (2000)
and the one presented in the paper is that it can become very inconvenient to
distribute full averaging kernel matrices along with every retrieval, simply in
terms of data size. (I am thinking of current nadir sounders, which provide
measurements for millions of footprints per day, or new limb sounders, which
may require tomographic retrievals that are associated with large and complex
averaging kernel matrices.) Another danger I see is that error budgets excluding
the smoothing error could easily be mistaken as “total” errors by inexperienced
data users? One likely can find good arguments for both, to include or exclude
the smoothing error in the error budget. I would say it is a judgement call and
suggest to discuss this more balanced in the paper.
Reply: The size of the smoothing error covariance matrix is exactly the same
as that of the averaging kernel as long as it is evaluated on the retrieval grid. If
it is evaluated on a finer grid which covers all atmospheric variability (whatever
this is), then the smoothing error covariance matrix is even larger. Of course
one can argue that its diagonal values already contain important information,
but the same is true for the averaging kernel matrix.
The trouble with the smoothing error is a classical inconsistent triad (or antilo-
gism) in the sense of Ladd-Franklin: We have three accepted facts: (a) Gaussian
error propagation holds for linear transformations of erroneous data; (b) linear
interpolation leads, according to Gaussian error propagation, to a reduction of
the smoothing error; (c) actually the smoothing error should be larger at in-
terpolated points. None of these three points seems refutable to me, but still
these three points together are clearly a contradiction. This contradiction does
not involve any merely practical aspect nor faulty actions by inexperienced data
users but it is a conceptual contradiction in itself, so the problems found seem
to be of another category than those mentioned in the review. So I do not see
much room for latitude of judgement.
Further, the solution to characterize the smoothing by the averaging kernel
rather than by the smoothing error has the further advantage that the data
user can calculate an estimate of the smoothing characteristics according to Eq
(5) on any desired grid himself (subject to interpolability of the averaging ker-
nel, see C. Rodgers’ comments and my replies to them). Thus the ‘averaging
kernel solution’ is superior to the ‘smoothing error solution’ because the first
kind of includes the latter but not vice versa. This recommendation is in full
agreement with Rodgers’ recommendation in Section 11.2.6. of his book.

Comment: Another major concern is related to the discussion of the “nature
of the retrieved quantities”: Section 4 first presents a theoretical solution to the
error propagation problem, i.e., to simply evaluate the smoothing error on an
infinitesimally fine grid. In principle, this would allow for the atmospheric vari-
ability on all spatial scales to be taken into account and the problems related to
coarse grid representation would not arise. This solution is then discarded with
the argument that the representation of the atmospheric state based on infinites-
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imal volumes of air itself is meaningless. This is illustrated in the paper in the
following way: “For a single extensionless point in the atmosphere, the mixing
ratio of a species is not a meaningful quantity: either, at the given point, there
is a target molecule; then the mixing ratio is one. Or there is a molecule of
another species; then the mixing ratio is zero. [...] For number densities and
temperature, there are similar problems to define these quantities in any mean-
ingful manner for an infinitesimal point.” Based on this proof by contradiction
is is argued that the smoothing error concept itself failed. In the conclusion (sec-
tion 7) the paper reads: “It has further been shown that this problem cannot be
solved by representing the atmospheric state on a ‘sufficiently fine’ grid, because
the estimate of the atmospheric state does not converge to a useful value when
the grid approaches an infinitesimally find grid.”
However, the complete section 4 does not convince me at all, I am afraid. Start-
ing with the illustrating example of the mixing ratio at a single point: a point
itself is by definition infinitesimal (an “infinitesimal point” or “extensionless
point” as referred to in the paper is a tautology)...
Reply: In the mathematical sense of ‘point’, an extensionless point is (since
the definition of Euclid of Alexandria) a term with a redundant attribute (if it is
indeed a tautology is another question). I had used the attribute ‘extensionless’
just to make clear that I indeed mean the technical mathematical term ‘point’,
as opposed to its physical, everyday, or figurative meaning, and to make clear
which particular characteristics of a point I refer to. Anyway, I have rewritten
the respective paragraph and avoid the questionable terms now.

Comment: .... In contrast, a molecule has finite extent. I would agree that it
does not make sense to try to define mixing ratios in this context. One would
need a finite volume to do this. Likewise, a definition of thermodynamic quanti-
ties such as temperature does not make sense on the basis of individual points in
space. Temperature is a macroscopic quantity that requires a canonical ensemble
with a certain finite volume or system size to be defined...
Reply: I do agree that my chain of arguments was sloppy here, because I did
not properly distinguish between the molecular scale and the infinitesimal scale.
Thanks a lot for pointing this out. I have reworded this paragraph accordingly.
On the other hand: isn’t my argument valid a fortiori when the problem arises
already on the molecular scale, not only on the infinitesimal scale?

Comment: ... However, I think one cannot turn this around and argue that
as we cannot define temperature for an infinitesimal volume (a point) the con-
cept of temperature itself is meaningless. This contradicts basic principles of
statistical physics. The same would also apply for the smoothing error problem
addressed in the paper, I think?
Reply: Here I disagree: Of course we can assign a temperature or vmr to a
point (in its mathematical sense). This temperature or vmr, however, (and this
is the point where I contradict) does not characterize only the point it is as-
signed to but a larger air volume around this point. This resolution aspect is
essential in this context. The smoothing error shall give an estimate between
the smooth estimate and the true atmosphere at ideal resolution but the latter
is undefined, which leads to the problems discussed in the paper. In the revised
version of the paper, I do not claim that the smoothing error is a meaningless
diagnostic tool; I just claim that it does not behave like an error should behave
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and thus should not be treated as an error.

Comment: Instead, I would think that this is a scale problem. It is certainly
true that atmospheric variability occurs on all scales. However, one would really
need to know how variability varies from larger to smaller scales, to judge if the
smoothing error problem will be relevant on all scales. For example, I would
think that “true data” or “real ensemble data” (Rodgers) with a spatial resolu-
tion on the order of a few meters would be perfectly fine to estimate smoothing
errors for today’s satellite remote sensing measurements? There would be no
need to go for the infinitesimal limit? I think the problem discussed here arises
in practice, because such perfect, high resolution data are usually not available.
However, this is not a problem of the theory itself, but an issue that needs to be
specifically addressed for individual problems.
Reply: I do agree that non-availability of the fine-resolved ensemble covari-
ance matrix can add to the problem. But even if we had these data on a 3-m
grid, one satellite group might evaluate their smoothing error on a 1-m grid,
and again they compare apples and oranges, even in the ideal world where we
have access to ensemble covariance matrices as desired. To do it right, one
again has to go back to the ‘smoothing difference’ which I describe (and sup-
port!) in Section 6 of my paper. I would like to state again that I do not
challenge that the smoothing error can in principle be evaluated on a very fine
grid. Instead my point is that interpolation of the smoothing error to an even
finer grid fails. And in an ideal world where we have variability data available
on a 3-m grid, there will be people who are interested in processes on a 1-m grid.

Comment: ...Based on that I would also support the concern raised by referee
John Worden that the paper needs more illustrative and real-world examples to
demonstrate the relevance of the problem. I learned from the online discussion
that such practical problems came up in a comparison of MIPAS and TES data.
I was also wondering, if the problem would not be of even larger relevance for
nadir measurements? Limb measurements, as discussed in the paper, are often
not affected by a priori and regularization as much? In its current form the
paper is focused on limb applications.
Reply: I have included a whole series of test calculations in order to make the
test applicable to a wider range of situations. An important practical aspect
which came up during the discussion with C. Rodgers is the interpolability of
the averaging kernel. The fact that in a rigorous sense the averaging kernel
matrix is not interpolable prima facie seems to rule out the option that the
users can evaluate their own smoothing errors directly on the fine grid, because
the averaging kernel matrix is (as opposed to the Se matrix) an instrument-
deendent quantity which the users cannot construct themselves. That means
that we cannot take it for granted that the recommendation to dirtribute the
averaging kernels instead of the smoothing errors improves anything. My new
series of tests, however’, demonstrates that the error by interpolation of the
averaging kernel remains tolerably small as long as the original averaging kernel
has been evaluated on a grid which resolves all scales the instrument can see. I
think that this is an important new result of practical relevance.

Comment: Finally, I noticed that Rodgers (2000, chap. 10.3.1) suggests an-
other practical solution for scaling an a priori covariance from coarser to finer
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grid: “If we only have an estimate of Sza [coarse grid] we cannot assume that
Sa = WSz,aW

T [fine grid], as this will be singular [...] and will carry the impli-
cation that any structure not represented by the interpolation has zero variance.
If we really have no other information, we should make and educated guess, for
example by changing the zero eigenvalues of the eigenvector decomposition of
WSzaW

T to values conservatively extrapolated form the non-zero eigenvalues.”
This sounds like a very reasonable approach to me. Its applicability could be
directly tested with the idealized example presented in section 3 of the paper, for
instance. This possible solution should be mentioned in the paper at least.
Reply: Attention, this is a recommendation for Sa, not for Se! What is suitable
to construct a well working regularization matrix is not necessarily suitable to
estimate the true small-scale variability. With regard to estimating variability
on small scales I find the method suggested by C. Rodgers in his review, i.e.
to take advantage of the known energy cascade between scales more promising.
However, even this approach cannot take into account that at smaller scales
completely different physical processes may become relevant. While my main
statement is not the challenge of the possibility of the smoothing error on a fine
grid but the problem that it cannot be propagated to finer grids by Gaussian
error propagation, I still have included a remark in the revised version that a
fine-grid Se matrix can be constructed.

Comment: Specific Comments
p3303,l5-7: I think it is fine to explain what we mean by “a priori” in the context
of retrieval theory. I think there is no need to explain its meaning in analytical
philosophy in AMT.
Reply: I think an explication is less ambiguous when the intended use of a
term is contrasted to and demarcated from other existing uses of the term.

Comment: p3306,l24-28: It is okay to point out that the term “smoothing er-
ror” may be misleading in certain situations, as the retrieval may not always
provide a smoothed version of the true profile. However, the standard case is
that a smooth a priori profile is combined with a more fluctuating true profile,
yielding a smooth optimal estimate. So, I think the term “smoothing error” is
okay and I do not see a need to refer to it as “so-called” smoothing error (e.g.
p3304,l3 and in other places). Mentioning this “standard case” in the paper
would provide a more balanced view.
Reply: As soon as the regularization matrix is a regular covariance matrix
(i.e. in maximum a posteriori retrievals but not in retrievals using a Twomey-
Tikhonov-Phillipps-type finite differences constraint), the constraint will push
the retrieval away from the true state towards xa. Even if xa is perfectly cho-
sen, it describes only the mean profile, not the true actual profile. This becomes
very clear if we apply the maximum a posteriori approach to a one-dimensional
retrieval (i.e. the retrieval of a scalar). In this case smoothing plays no role at
all, but the ‘smoothing error’ still will not be zero, except if either S−1

a = 0 or
if the true value happens to be identical to the priori value. This proves that
there generally is something else beyond smoothing. I think this is why editor
Dr Bhartia suggested to me to add a critical discussion of the term “SMOOTH-
ING error”. I have, however, used the quotes for the term “smoothing ERROR”
not because the word ‘smoothing’ might be misleading, but because this quan-
tity, since not propagated by generalized Gaussian error propagation, should
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not be called error. The main point of my paper is to show that this diagnos-
tic quantity does not behave as an error should behave. In the revised version
I have rewritten the part about the terminology; I now restrict the attribute
“so-called” to implicit definitions of new terms, and restrict the quotes to dis-
tinguish metalanguage (i.e. text about terminology) from object language (text
about the content).

Comment: p3307,l17-18: Rather than saying that the error propagation rules
are “generally accepted” for all cases except grossly non-linear functions one
might say that this is actually the way how the “moderately non-linear” and
“grossly non-linear” case are discerned? I thought the difference of the two
is that “moderately non-linear” means “linear within the error bars” whereas
“grossly non-linear” means that a linear approximation is not applicable for er-
ror estimation? Also, I guess you actually mean “moderately non-linear case”
rather than “moderately linear case” in the heading of section 3.1?
Reply: Thanks a lot for spotting the typo in the section header. I fully agree
with your definition of moderatly nonlinear and grossly nonlinear via applicabil-
ity of linear error estimation (which again is borrowed from the Rodgers book,
as far as I remember). The reason why I say that these error propagation laws
are accepted is that I need this to set up the inconsistent triad (see above): In
my paper the nonlinear applications are of no concern, but it is essential to show
that the smoothing error is in conflict with this generally accepted law, even in
the perfectly linear world. If, as suggested, I used in my paper applicability of
Gaussian error propagation as definition of non-grossly non-linear cases, than I
had to conclude (as a result of my paper, because Gaussian error propagation
is shown to fail here) that linear interpolation is a grossly non-linear operation,
which seems absurd to me. Thus I hesitate to use the suggested definition.

Comment: p3308,l5-14: It would be nice to adopt the notation of Rodgers
(2000, chap. 10.3.1.1). This is basically the same discussion and it would be
easier to relate your paper and the discussion of Rodgers (2000) to each other.
Reply: I prefer the self-explaining indices.

Comment: p3308,l15: Maybe briefly introduce what is meant by “parameter
error” here. The term was not introduced in the paper before.
Reply: Agreed, definition inserted.

Comment: p3309,l10-15: I was wondering if it is possible to rewrite Eq. (15)
in a way that it corresponds to Eq. (16) plus an additional term, which rep-
resents the difference of the two equations? This could be helpful to further
understand the differences between Gaussian error propagation and direct linear
analysis?
Reply: This transformed representation has been included. A derivation is
shown, e.g. in the appendix of C. Rodgers’ second review.

Comment: p3310,l20-21: The vertical correlation length of 1 km in this il-
lustrative example seems to be rather short. I am sure it helps to demonstrate
the point as it implies significant variability on smaller scales? Real vertical
correlation lengths may be larger, though? (Larger values are often used in reg-
ularization matrices, I think.)
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Reply: Tests with longer correlation lengths have been added. Further, the
examples can easily be scaled. The original example scaled by a factor of three
or four might give the typical resolution of a nadir sounder, and a correlation
length might be more appropriate for atmospheric problems typically tackled
with nadir sounders. The original example may have been typical for a limb
sounder trying to resolve the hygropause. The point is the contrast between
resolution and correlation length which defines the problem. In that sense, the
examples presented are representative for more cases than it appears. It may
be true that larger values than those used in the initial example are often used
in regularization matrices, but as we have agreed above, it is not the choice of
the regularization matrix Sa what counts here but the true ensemble covariance
matrix Se.

Comment: p3312, l8-13: It would be good to repeat here or in another place
that the representation of the continuously varying atmospheric state does not
only depend on a fixed number of state variables on a fixed set of grid points, but
also on a set of interpolation rules that define the state anywhere in-between.
(Isn’t that also a reasonable way out of the dilemma that the atmospheric state
cannot be defined for an individual point?)
Reply: I agree that this is worthwhile repeating but I do not think that it
solves the problem that the atmospheric state cannot be defined for an individ-
ual point. Of course we can assign a number to each point, but this number
is determined also by the atmospheric state around this point. I realize that
my wording was sloppy and caused misunderstanding: I should have made clear
that ‘defined’ in this context means to characterize independently of its vicinity.
I have added “at infinitesimal resolution” to make this issue clearer.

Comment: p3315, l1-10: I think that these statements require their mathemat-
ical derivation to be shown. I could not directly see that these are true.
Reply: For this derivation I need the approximation Afine ≈WAcoarseV. It
is now shown in the Appendix.

Comment:Technical Corrections
p3309,l19-p3310, l21: This paragraph is rather long. Better split in 2-3 para-
graphs.
Reply: Because of the new test cases this paragraph has been rewritten any-
way. Care has been taken to avoid excessively long paragraphs.

Comment: Technical Corrections
p3314, l5: Suggest to remove “in their paper”.
Reply: Agreed an deleted.
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