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Abstract

AMTD

We have improved an ozone Differential Absorptibn Lidar (DIAL) system, originally de-
7, 171184, 2014

veloped in March 2010. The improved DIAL system consists of a Nd:YAG laser and

a 2m Raman cell filled with 8.1 x 10° Pa of CO, yas which generate four Stokes lines

{276 287, 299, and 312 ﬂm‘; of stimuiated\Raman scatiering, and two recelving tele- DIAL measurement of .

Scopes s with diameters of_g and 10¢gm. Using this system, 44 ozone profiles were lower tropospheric

observed in ’Ehe 1-6 km altitude range over Saga {33.24° N, 130.29°E) in 2012.(High ' - e
aeeiedwetion layers were observed at around 2 km altitude during Aprz \pril and May, " B

Ozone coéumn, amounts within the 1-6km alt;tude range were aimost constant %fom w uchino et al.

ozone coéumn amounts neased grea’sy beoause o anges of contmeﬁtai and '
maritime air masgves__ Then in mid-September they sr(rcreaseé again within 1-6 km, and
subsequently decreasgd slowly, becoming aimaost col y December.

The Meteordtogital Research Institute’s Chemistry-Climate Mode! version 2 (MRI-
CCMR) successiully predicted most of these ozone v £ ons with the following excep-
*aong/\/iﬂl -CCM2 couid not predict the high ozene- msxmg I“tatios measured at around
Zknratitude on 5 May and 11 May, possibly in part because em;ssmns were assumed

A
in the model to be constant {chma’sologjcal data were used} . : Tatios
dicted by MRI-CCM2 were low in the 2-6 km range on 7 July and-high in the T-4km
range on 19 July compamd with those measured by DIAL.

1 introduction

Ozone Is an important air pollutio ftio! ~ heall
and ecosystems including crop$ {Parrish et ai,, 2012) ‘%‘ro;aospherzc ozone ha‘s%m%ﬂ
sources: photochemical production in the troposphere and downward fransport from
the stratosphere. Tropospheric ozone is ‘;g?o% e/d from nitrogen oxide§MO, ), carbon
monoxide {CO)}, e volatile organic compounds (VOCSB phoiochemicai reactions.
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In Asia, emissions of these czone precursors increased between 1980 and 2003
{Ohara et al. 200?)%’& China ‘s=pastierder, NO, increased from 1998 through 2004
{Znang et al., 2007). Summertime ozone concentrations in the 0-3km altitude range
over Beliing mcreased at the rate of 3%yr™ " from 2002 to 2010 {Wang et al., 2012},
" Ozone is also a greenhouse gas that plays an important role in climate change The
radiative forcing due to tropospheric czone is the third sirongest after carbon dioxide
and methane (IPCC, 2007). ; provid 2 'f't,o 5!
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In recent years, high cortcentrat;ons of surface ozonje’ﬁéi/&een observed from April
through June in the Kyushu district of western Japan!in 2011, we deployed an ozone
Differential Absorption Lidar {(ozone DIAL} system, originally developed by the National

institute for Emvironmental Studies (NIES) at Tsukuba, at Saga (33.24°N, 130.29°E} .
in the Kyushu district, with three aims: (1) to validate GOSAT (Greenhouse gases Ob-"

serving SATellite) ozone products retrieved from thermal infrared .spectral radiances
by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform
Spectrometer {TANSO-FTS) onboard GOSAT (Ohyama et al., 2012}; {2} to detecThigh
ozone concentrations in the lower troposphere; and {3} to compare the observed con-
certrations with concentration data predicted by the Meteorological Research Insti-
tute’s {MRI) Chemistry-Climate Mode!, version 2 (MRI-CCM2) (Deushi and Shibata,
2011). Except in summer, Saga is downwind of the Asian continent most of the year.
Thus, f DIAL can be used to detect high czone concentrations, then inputting DIAL data
into MRI-CCM2 will allow us to make usefui predictions for photochemical oxidant ad-
visories. In Sect. 2 we describe the ozone DIAL system, including some improvements
made since 2011 and comparisons with ozonesonde data, and we describe MRI-CCM2
in Sect. 3. In Sect. 4, we present observationa!l results obtained by the ozone DIAL
systemn and compare them with MRI-CCM2 predic’aoﬂs Section5is a summary and’
conclusuan&‘ :
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2 Ozone DIAL system, data analysis and com arison with ozonesonde results
Msg

Tropospheric ozone DIAL systems have b Mevelopedﬁ:aﬂ:ase tunable dye lasers

{Gibson and Thomas, 1975; Pelon angg eg , 1982; Bro;zg et al., 1983; Profitt and

Langford, 1997; Kuang et a , 2013)g mStokes ings of maiaied Raman scatter-

s ing (SRS} of pressurized gasp\mped by excimer iasers {Uchino et al., 1983; Kempfer

etal., 1994; Eisele et al., 1299), %nd by Nd:YAG lasers (Anceliet et al., 1989; Sunesson
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 DIAL measurement of
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et al., 1994; McDermid et al., 2002; Nakazato et al., 2007; Apituley et al., 2010) Lin
2010, we developed & troposphe ic ozone DIAL system at NIES {Uchino et al., 2011}
that was installed in a container with dimensions of about 228 cmx683¢cmx255¢cm. {The

1 system’s transmitter transmitsVthree es lines {(276.2 nm, 287.2 nm, and 299.1 nm)
of the SRS of carbon dioxide (CO,)lpumped by the fourth harmonic (266 rtm} of

a Nd:YAG laser {Nakazato et al., 2007, Seabrogk et al., 2011).
We used tru% transmitter with a coaxial fecewmg\;s\y:‘sem with a 49 cm-diameter New-

o tonian r@ﬁm elescope to measlire ozone profles from a few hundred meters 10

?/ma'a about 10km ammwmever ’fhe/s;gnai induced b} \s {SIB} from the photomultiplier
tubes {PMTs) limited the measurgment aititude to beigw about 86km {Sunesson et al.,

1994; Proffitt and Langford, 1997}) mechanical cho;%\er with & fast rising time could

suppress the SIB {Uchine and “E/“abat 1991 McDermid &t al., 2002; Godin-Beekmann

et al., 2003; Apituley et al., 2010}, éut there‘ﬁ‘?sfbﬁot enough space in the container to

w &add a mechanical chopper td the DIAL recetving system.\Therefore, in January 2012

we modified the coaxial recgivmg system by adding a biaxial system. In the biaxial sys-
tern, the Stokes lines were' transmitted upward by a 10cmi-diameter mirror with 90 %

ref lectivity that was set afa dlstan;:e of 25 cm from the edge of the 49cm teiescape

U*"’W ang about 10% of the Jdser energy was used to measurellow-aflitude ozone by the

© 25 original coaxial system\ addmg the biaxial systemn, we cpuid measure ozone pro-

files up to about 10 kmﬂab&t it was fime-consuming fo measure ozone profiles from Tto

10km by al’zema’emg betnﬁeen biaxial and coaxial measureme\is
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| To mal >to measure fropospheric ozone profiles simultaneously in the

altitude range @f 0.\5‘3’“?1 0km, we introduced admew 10 cr-diameter Newtonian sefeeing ro 2 LuriL, BMITD
N telescope in Sé‘meﬁﬁber 2012, using a 1.8 mm-diameter quartz_optical fiber eablie o é 154 5014
transmit the receiving light from the position of the iris of the 10 cm telescope to the en- 7. 171-184, 2014

s trance of a spectrometer, A dichroic beamsplitter with a 15° incidence angle efficiently
separated the signal irz‘f two wavelengths, 276 and 287 nm. Furthermore, we iested

DIAL measurement of

the use of a fourth Stokes line {312.0 nm} of SRS from Cngfg‘f'ﬁiéésurem 1L e OZONEV. - ?\\)ower froposphetic
.7, ozone

up to 1520 km on a cldar night. @W,UT{'\—;:WWQ Lapeke
. A block diagram of the improved DIAL system is Shown-in-Fig-1—The TTaximum ot~ aw- i
TR Edise energy of the Nd:YAG laser (Quante| YGI981C)is 107 mJ pe pyiseat266nms ST O. Uehino etal.
: u;@ﬁﬁﬁa‘ the normal averages of the output energ‘ ies are 70-85mJ, Th BSEr Beam is cof-
——~Timated 6 e Center of a 2m-long Ramah cell, which consists of a stainless-steel
tube with a diameter 0§ 35 mm and 10 mm-thick UV-grade quariz Windows with an anti-

TR it et

pre;s/me?,m | S ét-.é?‘é..z, ,287.

m-diameter=—
guartz lens with affocal length f, = 42901mm.""’!‘he beam divergence of the four Stokes
fines transmitted/into the atmosphere is about 0.1 mrad. The full field of Views of the

49 cmand 10cr telescope are 1.0 and 3.0mrad, respectively. The system uses PMTs
{Hamamatsu F3235) to detect the backscatiered ]i‘gliﬁ”gfr/o_hﬁﬁﬁjjmgo:?ﬁ@re For signal
2 processing, a/12-bit A'D converter¥énd photon counte? (\.Lice?TRZG—Egi,are used. The
timing of the/DIAL system is comrtl‘[ed by a delay/pulse gesgfsera or {Stanford Research

20 The four Stokes fiines are expanded by a fact about 3"5_%3; a 50

Systems DE645). The specifications of this ozone DIAL system are summarized in
Table 1. / I~ B
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in F;g 1 were cormecfed to(Qain “fzgh dynamxc raizg@'?o increase the s%gna -%o-nozse m
ratio, the ;ntegrated spatial range interval (Az} was varied from 75 t¢ 375m withlalti-
fude. Ozor;e number concentration profiles were computed from the differential of the
iogamhm of the ratio of the signals by fitting a third-order polynomial to nine adjacent’
azgnais byﬂ'ze least-mean-squares method {Fujimoto and Uchino, 1994). effective
| 'o?i;'aon was about 9-Az-0.4 = 3.6-Az, which was estimated from the full-width
m of the ozone profiles retrieved when an impulse function of czone den-
it (Beyerle and McDermid, 1999). To calculate atmospheric molecular ex-
ﬁnc’ttom,ﬂwe t;sed the atmospheﬂc moiecmar} extmctuors cross secton {Bucholiz, 1995}

sect:o:‘j % :*cuiated by takmg temperature dependenoe into account {' SS, 1984) .,
The ozon ""mtxmg ratio was also calcul fated from the molecular density, i = ding wate o
ﬁ offe _

easuremm%s usmg four wave eng‘fhs zr;cizze;

His case, vertical prolfz es of the ozone number derisity and mi m]g_
ith their statistical errors {precision} caiculated from the lidar sxgna ’
{Uchino and Tabata 19 1} A different waveiengm?air was used fO{
i ‘ 0-3.0km (Az = 75m}, 287/298 nm %(
{Az - 375m), and 26 9/312 nm for 17.4- .

about 6 h to obse veq‘g?’é%a grof;ie

ﬁg 312nm, 5
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- 6km, measured by the DIAL system using three Wavelengths (276, 287, and 299 nm}.-

In this DIAL data analysis, the systematic error {giccuracy) due to particulate backsgat-
- fer and extmc’clcm was not taken into account ‘ systemat;c error is 5

: 7 17i= 194 2@"4
L & P '(VM e}aﬂ
Jéa"wf’ (Eapry “’/w"?

‘Eroposphere {Nakaza’zo eral., 20 v s .
— We compared ,DIAL measareme%{mzoz esond%ﬁmmp n et al., ' mm measmemeﬁi of
2011) (Fig. 3) ~YFhe’ ozonesondes us te compose EGC ozone sensor f = :
B (ENSCI-Z) and a GPS radiosonde {Meisei RS-06G). The precisign and accufacy
of the ozone sensor were =4% and 5% at 1000hPa and +12% and 2.2
1w at 200hPa, respectively, .and the vertical resolution of the sengor was =®
{http: !fwww dropletmeasurement.com/productsfairborne/ECC_Ozonegonde}. fwo
ozonesondes were launched by the Japan Weather Association under contract with
-NIES; and the measurements used in our comparison were made on ‘and 15 January
2013. The ozonesonde and DIAL measurement fimes were from 12:3j to 13:53LT and
15 from 12:46 to 13:30LT, respectively, on 9 January. On 15 January, the ozonesonde
measurement time was from 12:31 to 14:04LT under cloudy conditions, and we
‘used DIAL data obtained from 14:00 to 17; 04 ,E_T under comparatiyely clear weather
conditions for the comparison. The vertical {ego[utlon of the DIAL measurement was
110 m in the lower altitude range and 830m in the upper altitude frange. Within their
20 measurement errors, the ozonesonde and DIAL data were consistent beicmi an altitude
of 8 m;{ﬁég., 3). ‘

3 mm ccmz

_ o €9~ : ' ;
/@/ MR- CCEVEZ/vses ‘chemical and physical processes from ’shle surface to the stato-
sphgre o sxmu late the giobal distribution and evolution of ozone and other trace gases
2 {Deushi and Shibata, 2011). The previous version (MRI-CEM1} was a stratospheric
chemistry-climate model (Shibata et al., 2005}. Version 2/ however, incorporates an
elaboratéMechanism for HO,-NO,-CH,-CO photochemistry and mechanisms for the
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degradation of non-methane hydrocarbons and heterogeneous tropospheric reactions
of aerosols, so # can simulate tropospheric ozone chemistry as well as stratospheric

‘chemistry.. Deushi and Shibata {2011} showed that MRI-CCM2 can reproduce reason-
ably well ’she observed seasonal variations of the monthly means of ozone and carbon -

monoxmle inthe troposphere. This mode! is currently used to predict the distribution

- of pho’sochemmal oxidants near the surface in support of operational air-quality fore-

10

_neous gas-phase chemical reactions (172 chemical kinetic reactions and 59 photolysis
reactfcf‘fé}' and 16 heterogeneous reactions, and it incorporates grid-scale transport
'wrtﬁ a semi-Lagrangian scheme, sub-grid-scale convective transport and turbulent dif-

dry and we’z deposmon arzd emissions of trace gases fmm varaous somces The

15

20 ¢

25.

casts of the Japan Meteorological Agency (JMA). As first step toward better air quality
predrcﬁon us;ng the model itis necassary to eva]uate MF{I CCM2 by var;oﬁs ‘ohserva-

The r zs’zfy moduie recezves meteoroiogfca% and radration fields aﬁd smface C(}ﬂdi-
tions'f ;MF{I-AGCMS ‘E‘he honzontal_ coardmate system of MRI-CCM2is a Ga_ussfan

In ’zhe hybrrd p-cr coozdmate system ’zhe vert cai coordmate is a terraln-fo owmg o-

coordinate (o = p/ p,) near the surface, and it gradually changes 1o a pressure coordi-

nate | nate} near the top. The vertical resciution increases from about 100 to
800 m from he surface to Bkm. The time step of the transport {chem;siry} scheme is
30{15)min. -

Nich thxs study, the honzorrtal wind field in AGCMS was forced toward the observed

field by usmg a nudging assimilation with an 18 h e-folding time. JMA operational anal- -

ysis.data. were used as the observed wind field for the nudging .assimilation. In the
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chemistry module, trace gas emissions from the burning of fossil fuels by industrial
activities and aircraft {anthropogenic sources}, from biomass burning (anthropogenic . - AMTD

L 71711842014

-and natural sources), and from vegetation, soils, and the ccean (natural sources) were

- tained from the inventory in the Emission Database for Global Atmospheric Research

| {for details; "see Deushi and Shibata, 2011). Emission of trace gases from biomass

’zhe mcde every hour for the comparison with the DIAL- served data in this study.
cﬂu i PW ‘
4 DiAL observational fesults and comparxson with MR%@G&&Z omput ‘ bV
axeq. | S

""AHZ\\'PI; | W/ o S
_-1he vertical profiles of lower troposphenc czone in & affityde range of 1-8km mea-
sured by DIAL petween January and May 2012 are comgared with MRI-CCM2 pre-

N

prescrived. Global anthropogenic emission data, except those from East Asia, were ob-

{EDGAR) v2.0 {Olivier et al., 1996) modified by the seasonal adjusiments of Miller DIAL ‘mﬁﬁ%fﬁm&ﬂ :
{1992). For East Asia, the prescnbed data were ootained from an inventory of Asian - lower ‘tmpd =}
an’zhropogemc emissions, the Regional Emission inventory in ASia (REAS), version e
1.1 (Ohara et al., 2007}. Biogenic and oceanic emissions were taken from Horowitz
al. {2003) and references therein. Emission of NO, from fightning was diagnosed at
1 intervals in the chemistry module by using the meteocrological fields from AGCM3

burning, ‘which depends on the height above ground, is based on the Description’
of EDGAF% 32F‘{2000{v8} (http e rivin, n[{edgar!lmages;’{}esc:zpi;on of_ EDGAR

orocarbons and halcms were prescrzbed at the surface. LW@ used the data’ oiztpat by

Hourly /grid-peint ozone data predicted by MRI-CCMZ were spatiafly interpolated ®
Saga, averaged over the DIAL measurement time (about 1-7 1}, and fhen c:ompared
mféthFAL ozone data. : :

4 1 Vert:cai profiles

dict;ons,%lzzg 4 The DIAL-measured ozone m:xmg ratiog on 30 January, smashmﬁe
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- 5 May) or over the Korean Peninsula {11 May) from poliuted araasﬁ%gst China

Flgure _G s,ho‘ s time varra’s;oms of %w ower %ro;mspherc czme'co%ﬁmn am'aéh’ts
-within -the 1-

about 40-50pp .,..— st the—s ange, were s&ccessfu pfedic’%ed
CCM2, except in the 4-5 km atftude range Hzgh ozones VET
ataround 2 km altitude in the daytime on 23 April, 5 May, and 11 Me

,a/baékwayd frejectory analysis suggested that the air masses.with these high ozone-
mixing ratios. at 2km were transported to Saga across the Yellow Sea {23 April and

{Parrish-and Zhu, 2009) within a few days. MRI-CCM2 predicted wel igh ozone
densmes on 23 April, but not those on 5 May or 11 May. This is possibly4h part because
s were assumed in the model to be constant {climatological data were used).
- Figure -5 shows ozone profiles in the 1-6km altitude range for Jgl d Septem-
ber2012:-MRI-CCM2 was unable to predict the high ozone-memg@gg%‘; more than
70 ppé‘/above 2 Skm that were measwed by DIAL on7 Juiy On 19 Jiziy, the me‘asared

ratios 0&30-«40 ppb\ée fow 4 km. On 28 Jul y, however MRI-CCME predzcted well the
ozone-mixing ratios measured by DIAL of about 3040 ppb below 4km. On 26 Septem-
IRI-CCM2 predicted very well the ozone-mixing.ia neasured by DIAL of about
35~—?O ppb ffom 500-m to 6 k. According to e backi 2d m;ec%ofy analysis giEEsgr

the aar masses be%ow 4km w?ﬁh fow czcne—mtxmg ra%zos a’; 19 aﬂd 28 duiy

km and 1-2km altitude /(anges over Saga in[2012 as measured
by DIAL -an predicted by MRI-CCM2/ Because of/weather conditions, DIAL mea-
sunaments y yere obtamed only thcaﬂn May and fwice in Junge, but at least three

j i 2012, the ozone

o
Mﬁgﬁ“ﬁ NQQ”WPM
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early July through mid-September. Column amounts within 1-6km were al

A stent.from: January to early March, and then mcreased unti ia%e June. The max-
imum- \faiae in-the 1-63<m rar;ge was 7. 82 x 10" molecutes m™2 . comespordding o
29.1 DU 1.DU = 2.688x10%° moleculesm™ } on 22 dune 2012. Thereafier ozone ¢ol- ‘
umn_amotints wn&hm the 1-6km range decreased to early’ August but with large DIAL measuremen’t ef ;
' he minimum value wﬁhm the 1—6km range of 2.28 % 10 r%?gméesm -2
xchanges

column amounts showed an approximately seasonal variation except for . from’ LN e
host. . -AMTD

7171194, 2098

o

_ ‘f czone co%t:mn amomts increased again to m;d-September and then
-siowiy, becoming almost constant by December, when the ozone column
IO zthm the 1w6 km range was 4, 65 X 102 r*ncﬂec&e@m”2 {17.3DU}. The results
rgghcted b MRI-G( yesge DIAL cbservational results.
Briation of the ozone cmiamn grs” within the 1-2km range in
imilar to that in the 1-8km range. The mean value was about 1.03 x
lesm™2 (3.8DU) from 20 January to 11 February Then, the ozone col-
increased to a maxigum value of 2. GQQ "moieculesm” {? SDU}
iowed by a decreasc hemasiaimem value %?ﬁ x 107 moiect.siesm
{1. ‘ID;_ ~of-19 July. The mean ozone co[umn amournt within the 1-2km range was
. about.0, 55.x10%" moleculesm™ {2.0DU) from 28 July to 18 August. Subsequently,
elve creased to\more than 1.0 x 102! moiecmesm“z {3 TDU) by 19 December
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5 Conciudzng remarks

- 'With &e improved DIAL system, 44 ozone profiles were observed inthe 1-8km at’s;mde
~range over Saga in 2012. High ozone-mixing ratios were cbserved at around.2km

altitude’ dﬁrmg Aprit and May. Ozone column amounts within the 1-6km altitude range

were almost constant from January to March, and they increased from late Aprilto

July. From mid-July through August, czone column amounts showed large variations,
attributed to exchanges between continental and maritime air masses. Ozone column
amounts “within the 1-6 km' range increased again to mid-September, then decreased

‘ siowlfy nd became almost constant through Decemiber.

1-CCM2 successfully predicted these ozone variations with the foliowing excep-
1-CCM2 could not predict the high ozone-mixing ratios measured at around

 2km afttude on 5 May and 11 May, possibly in part because emissions (especiaily from

open biomass burning) were assumed in the model to be constant (climatological data
were used} Ozone-mmmg ratios predicted by MRI-CCM2 were low inthe 2-6 km range
on 7 Juf ly and high in the 1-4 km range on 19 July compared with those measured by
DIAL: %VERI CCM2 Is a global model with a horizontal resolution of about 110km. Use
ofa regiona ‘model such as MRI-PM/c (Kajino et al,, 2012) with & hzg%zer spatial resolu-

tion- of 20 km; an up-to-date inventory, and a higher time resolution of biomass burning
' em:ss;o‘ sf‘sé‘%ou id decrease the diiferences befweeﬂ predi cted and measured ozone.
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Table 1. Characteristics of tropospheric ozone DIAL system.

Transmifter

Pump laser Nd:YAG [0
Wavelength 266 nm
Pulse energy 107md | gl

Pulse repetition rate  10Hz -
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Raman active gas CO,
Stokes lines
Pulse energy
Beam divergence

Time resolution(y
Altitude resoéu’czon( Bm
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) 6.0m 287nm N

/8 ‘
Recsiver (od’/TW W"MSW} X3,
Telescope type Newtonian
Telescope diameter  48com
Focal length 1750 mm
Field of view 1 mia
Wavelength 287 nm 299nm
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Transrpission 0.18 032 0.38
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Fig. 1. Block diagram of fropospheric ozone DIAL system.
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over Saga observed by DIAL on 20 October 2012. The emor bars show the statistical errors

cajculated from the lidar signal to noise ratios.
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