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Abstract. We present measurements acquired by the world’s
first airborne 3-backscatter plus 2-extinction High Spec-
tral Resolution Lidar (HSRL-2). HSRL-2 measures par-
ticle backscatter coefficients at 355, 532, and 1064 nm
and particle extinction coefficients at 355 and 532 nm.5

The instrument has been developed by NASA Langley Re-
search Center. The instrument was operated during Phase 1
of the Department of Energy (DOE) Two-Column Aerosol
Project (TCAP) in July 2012. We observed pollution out-
flow from the northeast coast of the US out over the West10

Atlantic Ocean. Lidar ratios were 50–60 sr at 355 nm and
60–70 sr at 532 nm. Extinction-related Ångström exponents
were on average 1.2–1.7 indicating comparably small parti-
cles. Our novel automated, unsupervised data inversion al-
gorithm retrieved particle effective radii of approximately15

0.2 µm, which is in agreement with the large Ångström expo-
nents. We find good agreement with particle size parameters
obtained from coincident in-situ measurements carried out
with the DOE Gulfstream-1 aircraft.

20

1 Introduction

We developed an automated, unsupervised inversion algo-
rithm. We tested the performance of the algorithm for the
first time with data acquired with the world’s first airborne

”3 backscatter (β) + 2 extinction (α) ” multiwavelength25

High Spectral Resolution Lidar (HSRL-2). The instrument
acquired data during the first Intensive Observation Period
(7 – 30 July 2012) of the Department of Energy (DOE) Two-
Column Aerosol Project (TCAP) (Berg et al., submitted).

TCAP goals included quantifying aerosol properties and30

radiation and cloud characteristics at a location subject to
both clear and cloudy conditions, and both clean and polluted
conditions. HSRL-2 is the successor of HSRL-1 which has
been operating in various field campaigns since 2006 (Hair
et al., 2008). Like HSRL-1, HSRL-2 measures backscat-35

ter, extinction, and depolarization at 532 nm and backscat-
ter and depolarization at 1064 nm. In addition, HSRL-2 also
measures extinction, backscattering, and depolarization at
355 nm.

Raman lidar and High-Spectral-Resolution Lidar pro-40

vide high quality backscatter and extinction coefficients.
Multiwavelength lidar (MWL) allows for aerosol typ-
ing, e.g. (Burton et al., 2012). Aerosols of specific types
show characteristic values of extinction-related and/or
backscatter-related Ångström exponents and extinction-45

to-backscatter (lidar) ratios and particle depolarization
ratios. Aerosol typing information provides the climate
modeling community with information on aerosol prop-
erties. Aerosol types can be related to their aerosol mi-
crophysical properties. Pure aerosol types possess a lim-50
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ited parameter range (particle size distribution, complex
refractive index). Recently, attempts have been made to
split mixtures of different aerosol types into pure types
(Tesche et al., 2009; Burton et al., 2014; Noh, 2014) which
then can be processed individually by the aforementioned55

inversion algorithms.
The 3 β + 2 α lidar techniques are the basis for micro-

physical retrieval algorithms, e.g. inversion with regular-
ization (Qing et al., 1989; Müller et al., 1999a; Veselovskii
et al., 2002; Böckmann et al., 2005), singular-value de-60

composition, linear estimation, and principal compo-
nent analysis techniques (Donovan and Carswell, 1997;
Veselovskii et al., 2012; de Graaf et al., 2013), and the lat-
est development, dubbed ”Arrange & Average Algorithm
(E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C.65

Hostetler, and R. Ferrare, Arrange & Average algorithm
for the retrieval of aerosols parameters from multiwave-
length HSRL/Raman lidar data, Applied Optics, submit-
ted). These algorithms allow for inverting the measured
optical quantities into microphysical properties, such as70

particle size distribution or their integral properties and
the complex refractive index. First successful applications
of the method of inversion with regularization can be
found in Müller et al. (1998), Veselovskii et al. (2002), and
Böckmann et al. (2005).75

In the case of inversion with regularization the re-
trieved particle size distributions and the complex refrac-
tive index can be used to compute single-scattering albedo
(scattering-to-extinction ratio) which is one of the most
important parameters in climate forcing studies (Bond80

et al., 2013). Recently, simulation studies were carried out
with the goal of investigating how accurately absorption
and scattering coefficients can be inferred from the mi-
crophysical parameters. The results of these simulation
studies will be presented in two contribution that are in85

preparation: D. Müller, E. Chemyakin, and A. Kolgotin,
Automated and Unsupervised Inversion of Multiwavelength
Lidar Data, Part 1: Microphysical Parameters and Uncer-
tainties Derived from Simulation Studies, and D. Müller, E.
Chemyakin, and A. Kolgotin, Automated and Unsupervised90

Inversion of Multiwavelength Lidar Data, Part 2: Optical Pa-
rameters and Uncertainties Derived From the Microphysical
Data Inversion Products.

With regard to multiwavelength Raman lidar the tech-
nology has matured to the point that ground based sys-95

tems can be operated in a reliable manner at night-
time. EARLINET successfully operates a network of
Raman lidars. Several of these systems are multiwave-
length systems which allow for detailed aerosol stud-
ies over Europe. Regardless of this capability, investi-100

gations of aerosol properties on the global scale cannot
be done with ground-based systems. Comparably long
signal-averaging times make these systems unsuitable for
operation aboard fast-flying platforms, e.g. aircraft and
satellites.105

Thus, HSRL is the method of choice for airborne and
space-borne applications in order to retrieve aerosol mi-
crophysical properties. Space missions of HSRL systems
will be launched by NASA and ESA in the next couple of
years (www.nasa-usa.de/mission pages/station/research/-110

experiments/1037.html) and Stoffelen et al. (2005); Ans-
mann et al. (2007); Flamant et al. (2008). These lidar mis-
sions however do not provide the necessary number of
measurement channels in order to carry out detailed in-
vestigations of particle microphysical properties. Multi-115

wavelength HSRL is needed for providing high-quality
microphysical data products. NASA Langley Research
Center has developed two such systems, dubbed HSRL-1
(Hair et al., 2008) and HSRL-2.

HSRL-2 is the first airborne system capable of provid-120

ing 3 β + 2 α data. This contribution aims at showing
the results of microphysical particle properties that can
be obtained from this instrument. The inversion method
used for the retrievals is based on the concepts presented
by Müller et al. (1999a); Veselovskii et al. (2002). It has,125

however been modified in order to allow for fast, unsu-
pervised, automated data processing. Details on the inver-
sion methodology will be presented in the aforementioned
contributions that are in preparation.

These first results of HSRL-2 3β + 2αmeasurements show130

pollution that was transported from the US and Canada out
over the western Atlantic Ocean during TCAP. Our prototype
software delivers profiles of particle microphysical parame-
ters in near-real time from the inversion of the optical profiles
measured by HSRL-2 aboard the NASA B-200 King Air air-135

craft. We show a comparison of our results to coincident in-
situ measurements of particle size parameters acquired by the
DOE Gulfstream-1 (G-1) aircraft. Section 2 summarizes the
methodologies. Section 3 presents a measurement example.
Section 4 closes with a summary.140

2 Methodology

The DOE (Department of Energy) G-1 aircraft was
equipped to measure particle size distributions, chemical
composition, and optical properties (Berg et al., submit-
ted). The NASA King Air was equipped with HSRL-2145

(http://abstractsearch.agu.org/meetings/2012/FM/
sections/A/sessions/A13K/abstracts/A13K-0336.html).
HSRL-2 is the second generation airborne HSRL
developed at NASA Langley Research Center. It is
an airborne prototype for the lidar on the future150

Aerosol-Clouds-Ecosystems (ACE) mission recom-
mended for implementation by NASA in the National
Research Council’s Decadal Survey for Earth Science
(http://science.nasa.gov/earth-science/decadal-surveys/).
It builds on the heritage of the HSRL-1 system (Hair155

et al., 2008) which has flown on more than 20 field
campaigns since 2006.



MÜLLER ET AL.: HSRL-2 Measurements During TCAP 2012 3

2.1 HSRL-2

HSRL-2 operates at laser wavelengths of 355, 532, and
1064 nm. HSRL-2 measures profiles of particle backscatter160

coefficients and linear particle depolarization ratios at 355,
532, and 1064, and particle volume extinction coefficients
at 355 and 532 nm. The extinction and backscatter coef-
ficients at 355 and 532 nm are derived using the HSRL
technique (Grund and Eloranta, 1991). An iodine-vapor165

filter is used for the extinction-coefficient measurements
at 532 nm. The backscatter coefficient at 1064 nm is mea-
sured using the standard backscatter technique (Fernald,
1984), but with the benefit of transfer of calibration us-
ing the 532-nm HSRL retrievals in clear-air regions of the170

profile (Hair et al., 2008). The measurements presented in
this contribution did not indicate the presence of a signif-
icant amount of depolarizing aerosol particles. The chan-
nels used for the depolarization measurements will be de-
scribed in a separate publication.175

The uncertainties of the data are governed by various fac-
tors, like hardware and its calibration, signal calibration,
signal-to-noise ratio, and signal averaging in time and space.
A detailed description of calibration techniques and sources
of error for the 532 and 1064 nm channels are given by Hair180

et al. (2008). The new feature of HSRL-2 compared to
HSRL-1 is that it measures the particle volume extinction
coefficient not only at 532 nm but also at 355 nm using an
interferometric technique.

Data are sampled at 100-m horizontal and 15-m ver-185

tical resolutions and averaged to achieve the desired
level of random uncertainty. For standard products, this
is typically 1 km horizontally and 30 m vertically for
backscatter and depolarization and 1 km horizontally
and 150 m vertically for aerosol extinction. However, for190

the input to the microphysics retrieval for this study, data
were averaged to 5 minutes and 150 m vertically to make
the random error insignificant (0.1% – 3%); studies are
underway with regard to quantifying systematic errors.
Thus we had had optimum conditions for this first test of195

the automated software as these errors are more than ad-
equate for trustworthy microphysical retrievals (Müller
et al., 1999b; Veselovskii et al., 2002; Böckmann et al.,
2005).

2.2 Automated, Unsupervised Inversion Algorithm200

HSRL-2 is the motivation for developing the next genera-
tion of inversion methodology that allows us to process a
high volume of data in an unsupervised, automated manner in
real time with significantly enhanced accuracy of the inver-
sion data products. Our ultimate goal is to develop software205

for application with a space-borne version of the multiwave-
length HSRL.

The automated, unsupervised inversion software has
been used for the analysis of the measurements. Details

of the software package and results of simulations stud-210

ies including uncertainty analysis will be presented in
two contributions that are in preparation: D. Müller, E.
Chemyakin, and A. Kolgotin, Automated and Unsupervised
Inversion of Multiwavelength Lidar Data for Airborne and
Space-Borne Applications, Part 1: Microphysical Parame-215

ters and Uncertainties Derived from Simulation Studies, and
D. Müller, E. Chemyakin, and A. Kolgotin, Automated and
Unsupervised Inversion of Multiwavelength Lidar Data for
Airborne and Space-Borne Applications, Part 2: Optical Pa-
rameters and Uncertainties Derived From the Microphysical220

Data Inversion Products. In the following we summarize
the algorithm and some results of the simulation studies.

The mathematical equations that are used for solving
the inverse ill-posed problem are the same used for the
manual version of the inversion algorithm. The manual225

version has been applied in a multitude of studies by dif-
ferent lidar groups since 1997, e.g. (Müller et al., 1998,
2001; Murayama et al., 2004; Balis et al., 2010; Alados-
Arboledas et al., 2011; Noh et al., 2011; Navas-Guzmán
et al., 2013; Nicolae et al., 2013). The equations that con-230

nect the measured backscatter and extinction coefficients
with the underlying microphysical particle properties, i.e.
particle size distribution and complex refractive index,
are solved by the use of 8 triangular-shaped basis func-
tions which are logarithmic-equidistantly distributed in235

an inversion window (Müller et al., 1999a,b). In this study
we set the minimum particle radius of the inversion win-
dow to 30 nm and the maximum value to 8 µm. This size
range was sufficient for the data analyzed in this study.

We use the data of 3β + 2α systems in the way de-240

scribed by Müller et al. (2001) and Veselovskii et al.
(2002). We solve the equations by determining weight
factors for the base functions (triangles) which then al-
low us to reconstruct approximations of the particle size
distributions. The position of the triangles on the radius245

scale and their geometrical width is varied such that we
have several hundred different inversion windows within
which the 8 basis functions are distributed. For an exam-
ple on what this distribution of triangle functions looks
like we refer to Figure 1 in (Müller et al., 1999a). We solve250

the equations for 91 inversion windows and for each in-
version window the inversion is carried out for a grid of
complex refractive indices. The real part varies between
1.325 and 1.8. The step size is 0.025. The imaginary part
varies between 0 and 0.1. The step size is 0.003.255

We apply parallelization in the computations, which
increases data processing speed. For each 3β + 2α data
set we run the algorithm for the error free data and we
carry out 8 runs in which the data are distorted by ran-
dom noise of 15%, see also Veselovskii et al. (2002) and260

Sawamura et al. (2014). Details on error analysis will be
presented by D. Müller, E. Chemyakin, and A. Kolgo-
tin, Automated and Unsupervised Inversion of Multiwave-
length Lidar Data for Airborne and Space-Borne Applica-
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tions, Part 1: Microphysical Parameters and Uncertainties265

Derived from Simulation Studies.
In the manual version of the algorithm we used to av-

erage all individual solutions that fell within a prescribed
value (threshold value) of the discrepancy, as described
by Müller et al. (1999b) and Veselovskii et al. (2002). This270

discrepancy threshold was determined from simulation
studies. We optimized the automated scheme, compared
to the manual version, using simulation studies. We found
that using the 500 solutions with the lowest discrepancies
provide us with better inversions results. Details will be275

presented by D. Müller, E. Chemyakin, and A. Kolgo-
tin, Automated and Unsupervised Inversion of Multiwave-
length Lidar Data for Airborne and Space-Borne Applica-
tions, Part 1: Microphysical Parameters and Uncertainties
Derived from Simulation Studies.280

All in all 573300 individual solutions were generated for
each data point on 17 July 2012 (see, Fig. 2). The data pro-
cessing time was 22 seconds for each optical data point, i.e.
error free and the 8 error runs combined with each of the
91 inversion windows and the grid of 700 complex refractive285

indices. These results were used to produce the profiles of
microphysical properties shown in Figure 3. We obtain mean
values and uncertainties which are defined in terms of one-
standard deviation.

Simulation studies were carried out for the automated ver-290

sion to test the performance. A sensitivity analysis was done
for two different error models in order to test the robustness
of the automated software from the mathematical point of
view and for testing if the knowledge of the error models that
describe the measurement errors of the optical input data is295

significant. One error model is based on extreme error simu-
lations in which each measurement channel is given the max-
imum value of an assumed measurement error, e.g. 5%, 10%,
15%, or 20%. This kind of sensitivity analysis with respect to
measurement errors had previously been done for the man-300

ual inversion algorithm. In the automated version we used
the same measurement error scenarios but we introduced a
Gauss error-distribution model in addition. This means, that
for example for a measurement error of 15% in a measure-
ment channel this 15% measurement error has a Gauss-like305

probability distribution. A weighting of the measurement er-
ror is thus introduced.

To give an impression on the simulation rsults we sum-
marize a few numbers. We tested 2880 optical data sets that
are representative of 48 mono-modal particle size distribu-310

tions: mean radii are between 20 nm and 300 nm. Geomet-
rical standard deviation (mode width) was 1.5, 1.7, 1.9, 2.1,
2.3, 2.5. Effective radii were between 30 nm and 2.44 µm.
We tested real parts of 1.4, 1.5, 1.6, and 1.7 and we will in-
clude 1.3 in the next round of simulations. Imaginary parts315

were 0, 0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.015,
0.02, 0.025, 0.03, 0.035, 0.04, 0.045, and 0.05. We tested
measurement errors in which each channel of the 3β + 2α
system has 5%, 10%, 15%, and 20%. We tested the extreme

error model (Müller et al., 1999b) and the model in which320

the errors have a Gauss-like probability distribution. We also
tested 4 error scenarios in which measurement uncertainties
differ between the different measurement channels.

The preliminary analysis shows the following results. Ef-
fective radius can on average be retrieved to 30% uncertainty.325

Uncertainty of volume concentration can reach 50% but in
most cases stays within 30%. An exact quantification of the
meaning of ”most cases” will be given in our future contribu-
tions. Surface-area concentration can be retrieved to 30% or
better. Number concentration shows an uncertainty of 70%330

or less in approximately 50% of the simulations. Most of the
simulations stay within 100% uncertainty but we find out-
liers. The real part can be retrieved to 0.05 in approximately
50-70% of the cases. The main challenge is the imaginary
part. It is less than 50% in 50% of the simulations. The other335

50% of simulated cases shows uncertainties that can reach
several 100% uncertainty. We are currently analyzing these
cases. We also look into difference of retrieval errors with re-
gard to the use of the two error models applied to the optical
input data.340

We assume that we will not be able to retrieve the imag-
inary part to better than 0.005i. We believe than any better
accuracy is unrealistic in view of the limited optical data set
of 3 β + 2 α data, measurement errors, data averaging in time
and space, errors introduced by the inversion methodology,345

and constraints/assumptions used in the data inversion, as for
example the fact that we cannot retrieve the exact shape of
the particle size distribution. The main question is if there is
a pattern in the uncertainties of imaginary part, e.g., a pattern
in which specific combinations of large/small Ångström ex-350

ponents, high/low lidar ratios, and ratios of lidar ratios show
these high errors of the imaginary part.

3 Results and Discussion

The first phase of TCAP was characterized by outflow of pol-
lution out over the western Atlantic Ocean. Smoke from fires355

that occurred in Canada may have episodically contributed to
this outflow. A description of the air circulation pattern in
the period from 9 July 25 July 2012 is given by Berg et al.
(submitted).

Figure 1 shows the flight tracks of the aircraft missions, see360

also Fig. 2 in Berg et al. (submitted). HSRL-2 acquired data
on 11 days between 7 July and 30 July 2012, which includes
the transit flights between NASA Langley Research Center,
VA, and Barnstable Airport (41.67◦ N, 70.29◦ W), MA. The
B-200 flew approximately 3 – 3.5 hours during each of the365

research flights. In this contribution we focus on the mea-
surements carried out on 17, 22 and 25 July 2012.

Optical depths measured with AERONET Sun photome-
ter at Barnstable Airport varied between 0.06 – 0.6 at
500 nm (Level 2.0 data). Maximum daily-mean optical depth370

was 0.46 on 18 July and 0.33 on 17 July, 2012. Another
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AERONET Sun photometer was operated at a coastal station
at 41.3◦ N, 70.55◦ W. Optical depth varied between 0.046 –
0.5 (at 500 nm). Daily-mean optical depth was 0.39 on 18
July and 0.24 on July 17, 2012; level 1.5 data.375

The mean height of the pollution layers did not exceed
4 km above sea level (asl) with few exceptions in some por-
tions of the flight tracks. The G-1 flew inside the pollution
layers at various flight levels, and also carried out spirals
from near sea level to the top of the pollution layers on sev-380

eral occasions. Details of the flight patterns are described
by Berg et al. (submitted). The B-200 flew at 8–9 km asl
and thus always stayed above the pollution layers. For our
comparison we selected only those flight segments during
which the G-1 carried out spirals during or shortly after over-385

flights by the B-200 aircraft. The maximum allowed distance
from the HSRL profile to the approximate center of the spi-
ral was 35 km. The time difference to the beginning or end of
the spiral of the G-1 was at most 22 minutes. The spiral took
about 11 – 12 minutes to complete and covered about 8 km390

on 17 July. In this way we obtain the best possible data from
the G-1 for our comparison study.

Figure 2 shows the example of the HSRL-2 measurement
on 17 July 2012. Most of the aerosol particles were below
3 km asl. A plume reaching heights up to 5 km was encoun-395

tered during a short segment of the flight. Extinction coeffi-
cients remained comparably stable throughout the flight. Op-
tical depth over the ocean generally varied between 0.3 – 0.45
at 355 nm and 0.2 – 0.25 at 532 nm on 17 July 2012.

The extinction-related Ångström exponent was on average400

1.2 – 1.7. The patch-like structure of the backscatter-related
Ångström exponent shows an inhomogeneous structure with
values varying between 1 and 2.5. The lidar ratios at 355 and
532 nm varied on average between 50 – 70 sr in the pollution
layers. The lidar ratio at 355 nm was similar or slightly lower405

to the one at 532 nm. There was no significant decrease of
the Ångström exponent and the lidar ratios near the ocean
surface, indicating that marine particles did not significantly
contribute to the total aerosol load in the marine boundary
layer.410

Figure 3 shows results of the aerosol typing according
to the methodology described by (Burton et al., 2012). The
plume consisted of urban haze and patches of smoke.Berg
et al. (submitted) carried out a detailed analysis of the
air flow pattern on 17 July 2012 and determined the415

most likely origin of the air mass. For this work the au-
thors used the Weather Research and Forecasting (WRF)
model (Skamarock et al., 2008). Two nested domains were
used. The outer domain contained most of North America
and the inner domain contained the southeastern part of420

Canada and the northeastern part of the U.S. The WRF
model results were used as input for backtrajectory com-
putation with the FLEXPART model (Stohl et al., 1998;
Brioude et al., 2013) The airmass analysis shows that on 17
July 2012 the airflow was from Western Canada across the425

Great Lakes to the Atlantic Ocean. Satellite images point at

the presence of smoke particles. We assume that the smoke
mixed with the urban haze over the Northeastern US before
it was transported out over the North Atlantic.

Berg et al. (submitted) analyzed in detail the optical430

properties and the chemical composition of the pollution
particles measured aboard the G-1 aircraft on 17 July
2014. The authors find that organics accounted for 73%
of the mass fraction of non-refractory particles. Sulfates
accounted for 19%. Ammonium and nitrates contributed435

6% and 3% to the mass fraction, see also Fig. 12 of Berg
et al. (submitted). The amount of fresh and aged soot par-
ticles, biomass-burning aerosol particles was measured
using the miniSPLAT single particle mass spectrome-
ter (Zelenyuk et al., 2010). The authors found an in-440

creased level of biomass burning particles and conclude
that the biomass burning smoke originated from long-
range transport from Canada. Seven-day backtrajectory
analysis and fire-spot detection shows that the particles
most likely originated from wildfires in Western Canada,445

see Fig. 13 in Berg et al. (submitted).
We selected the measurement from 16.00 – 16.05 UTC for

the inversion of the optical data into microphysical particle
parameters. Note: the times given in the text and in the plots
are in decimal hours.450

Figure 4 shows the curtain plots for this 5-min flight seg-
ment. We averaged the individual optical profiles in this 5-
min time-segment, and we split the profiles into height layers
of 150 m geometrical depth. We obtained 20 sets of 3β+2α
coefficients, which then were processed with our automated455

algorithm. The data processing including error analysis for
these 20 data points took approximately 6 minutes. We gen-
erated nearly 11.5 million individual solutions from which
2000 solutions were accepted according to the mathematical
and physical constraints used in our algorithm. We then pro-460

duced the profiles of the microphysical particle parameters
from these 2000 solutions.

Figure 4 shows that effective radius does not significantly
vary with height. It is approximately 0.2 µm which is char-
acteristic for urban aerosols and/or smoke, e.g. Müller et al.465

(2007) and references therein. The inversion results agree
within error bars with the in-situ measurements. The sam-
pling volume of the in-situ probe is significantly smaller
than the sampling volume of the lidar. Small scale varia-
tions of particle effective radius cannot be resolved with our470

inversion methodology. Number, surface-area and volume-
concentration obtained from data inversion and in-situ mea-
surements are close to each other.

The analysis was carried out very carefully, considered
cut-off effects of aircraft inlet, calibration curves from475

aircraft instruments, collection efficiency factors of the
in-situ instruments, errors that might arrive from the in-
version, as well as humidity growth factors that need to
be considered in the in-situ measurements.

In general the size range within which in-situ instruments480

collect particles is different from the size range used in the
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data inversion. If the lower radius is changed in the inversion
scheme, for example from a lower to a higher value, effective
radius increases and number concentration decreases. An ex-
ample of how changing the lower radius limit can alter par-485

ticle size parameters is given in Table 1 of Wandinger et al.
(2002). This effect of variable lower and upper limit must be
considered in any kind of study that compares data from re-
mote sensing instruments, which use data inversion methods,
to data from in-situ probes. In our study we compare approxi-490

mately the same lower radius range, i.e., inversion results use
as lower limit approximately 54 nm and the in-situ measure-
ments start measuring at approximately 50 nm radius. With
regard to the upper threshold we used approximately 6 µm
radius for the inversion and 5.35 µm radius for the in-situ495

data.
Figure 5 shows the correlation of the Ångström exponent

measured with HSRL-2 versus effective radius determined
with the inversion algorithm and with the in-situ instruments,
respectively. Figure 6 shows the correlation of effective ra-500

dius, number, surface-area, and volume concentration ob-
tained from the lidar-data inversion and the in-situ measure-
ments. We averaged the in-situ data across 150-m height in-
tervals for this comparison; 17 – 56 data points were aver-
aged in each of the height bins. The plots also show the re-505

sults for the measurements on 22 and 25 July 2012; on these
two days spiral flights of the G-1 were done. The number
of data points that can be used for the comparison is signifi-
cantly smaller on these two days.

The correlation shown in Fig. 5 is comparably high for510

effective radius obtained with our inversion algorithm. Fig-
ure 6 shows a larger scatter of the correlation of effective
radius between effective radius from the inversion method
and from the in-situ measurements. This result has to be
expected despite the high quality of the data we used from515

both methods. We compare data products from two different
methods, i.e. Ångström exponents from HSRL-2 and parti-
cle size from in-situ measurements. Several reasons can be
the cause for the weaker correlation, e.g. 1) there is no per-
fect collocation in measurements space and time of the two520

instruments; 2) in-situ instruments dry the particles before a
humidity correction is applied, even though a humidity cor-
rection did not seem necessary in the present case; 3) the in-
situ measurements were taken with considerably higher ver-
tical resolution (spirals) than the Ångström exponents mea-525

sured with HSRL-2, and subsequently averaged to the ver-
tical resolution that was used in the data inversion of the
HSRL-2 measurements; 4) the atmospheric volume observed
by the lidar is considerably larger than the measurement vol-
ume of the in-situ instruments, and thus averaging effects of530

the observed air volume may play a role, too. The weaker
correlation between effective radius measured with the in-
situ instruments and the Ångström exponents measured with
HSRL-2 (Fig. 5) may also explain the weaker correlation of
the data products shown in Fig. 6.535

Mean values of effective radius from data inversion are on
average lower than effective radius from the in-situ measure-
ments, see Fig. 6. The same holds true for number concen-
tration. We find the opposite behavior for surface-area and
volume concentration. In view of the fact that this is the first540

test of our automated software with experimental data and
in view of the various error sources involved in both meth-
ods we consider this comparison satisfactory. A more de-
tailed comparison study will include data from three more
field campaigns that took place in 2013 and 2014.545

We computed uncertainty bars for the data points available
from both methods (150-m height intervals). Uncertainties of
number concentration are 34%±15% and 30%±13% from
in-situ and from data inversion, respectively. Uncertainties
of surface-area concentration are 39%±17% and 14%±7%550

from in-situ and data inversion. Uncertainties of volume con-
centration are 52%±20% and 21%±7%. Effective radius
shows uncertainties of 38%±15% and 12%±2%.Tthe error
bars for effective radius from the inversion are propagated
from surface and volume error bars assuming no correlation,555

which may lead to overestimates of the uncertainty. This is
a very simplified presentation of the uncertainties from both
methods. We have only few data points available, the errors
distribution is not Gauss-distributed, and there are some out-
liers.560

4 Conclusions

We presented the first results of aerosol measurements with
NASA Langley Research Center’s High Spectral Resolution
Lidar, HSRL-2. We used HSRL-2 data to test the perfor-
mance of our newly developed automated, unsupervised in-565

version algorithm with experimental data for the first time.
HSRL-2 and the inversion software are being used to investi-
gate the possibility of operating a 3 backscatter + 2 extinction
HSRL in space. Such an instrument could be part of NASA’s
ACE (Aerosol-Cloud-Ecosystems) mission.570

We analyzed the measurements from 17 July, 22 July,
and 25 July 2012 which were made during the first In-
tensive Observation Period (7 – 30 July 2012) of the De-
partment of Energy (DOE) Two-Column Aerosol Project
(TCAP). TCAP took place over the Atlantic Ocean off575

the coast of Cape Cod, MA. Particle effective radius
and Ångström exponents indicate that urban haze and/or
biomass-burning smoke was observed (Müller et al.,
2007; Alados-Arboledas et al., 2011; Nicolae et al., 2013).
Chemical analysis carried out aboard the G-1 aircraft580

and simulations with the WRF model and backtrajec-
tory analysis also point at the presence of urban haze and
smoke particles (Berg et al., submitted). We find satisfac-
tory correlation of our data products to in-situ measurements
of particle size distributions measured aboard the DOE G-1585

aircraft.
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The lidar microphysical retrievals are not as detailed as
those made in-situ aboard the G-1 aircraft. However, the cur-
tains of horizontally and vertically resolved microphysical
information enable characterization of the aerosol properties590

above and below the G-1 flight altitude, and hence character-
ization of the entire column. In particular, the lidar curtains
of these aerosol properties will be important for TCAP radia-
tive closure studies. The data from HSRL-2 can be used for
studies of aerosol direct and indirect effects, investigations of595

aerosol-cloud interactions, assessment of chemical transport
models, and air quality studies.

We continue to investigate the quality of our inver-
sion data products. Additional data are available from the
DISCOVER-AQ campaigns that took place in California in600

January – February 2013, in Texas in September 2013, and in
Colorado in July – August 2014. We will further improve the
quality of other data products like the imaginary part of the
complex refractive index that allows us to compute profiles
of the absorption coefficient and the single-scattering albedo.605

We will study the accuracy of retrieving these optical param-
eters as wavelength-dependent quantities.

Acknowledgements. The authors thank the NASA Langley B-200
King Air flight crew for their outstanding work supporting research
flights. Support for the HSRL-2 and RSP flight operations on TCAP610

was provided by the DOE ARM program: Interagency Agreement
DE-SC0006730. Support for data analysis was provided in part by
the DOE Atmospheric System Research (ASR) program. Support
for the development of HSRL-2 was provided by the NASA Science
Mission Directorate, ESTO, AITT, and Radiation Science Program.615

We thank C. Flynn, R. Wagener, L. Gregory, and P. Russell at the
Barnstable AERONET station for providing data. The AERONET
data at MVCO are provided by H. Feng and H. M. Sosik.

References

Alados-Arboledas, L., Müller, D., ad F. Navas-Guzmán, J. L. G.-R.,620
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Fig. 1. Flight tracks of B-200 King Air during TCAP 2012. Flight days are given in the legend. Each flight took approximately 3.5 - 4 hours

Fig. 2. Curtain plot of the HSRL-2 measurement on 17 July 2012, 15.12 – 15.55 UTC. The time axis is in decimal hours. The distance flown
during this time is shown on the bottom x-axis. Shown are the mean values of the profiles of (a) the extinction coefficient at 532, the lidar
ratios at (b) 532 and (c) 355 nm, (d) the extinction-related and (e) the backscatter-related Ångström exponent at 355/532 nm. Each profile is
based on a 10-s signal-sampling rate. The vertical resolution is 150 m.

Fig. 3. Curtain plot of aerosol typing of measurement from 16.00 – 16.05 UTC on 17 July 2012. Aerosol typing was carried out according to
the scheme described by (Burton et al., 2012).
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Fig. 4. (Top) Curtain plots of an 5-minute flight segment that was used for the data inversion. (Bottom) Microphysical parameters retrieved
from the inversion method (red) and from the G-1 in-situ measurements (black) on 17 July 2012. The measurement time was 16.00 –
16.05 UTC for the inversion results and from 15.45 – 15.56 UTC for the in-situ data. The lidar measurements were obtained 2 km from the
approximate G-1 spiral center. The inversion results represent height intervals of 150 m. The in-situ data were taken with considerably higher
spatial resolution. Error bars of the individual in-situ data points are composed of two types, counting and sizing. The error bars denote
one-standard deviation.

Fig. 5. Correlation of Ångström exponents measured with HSRL-2 versus effective radius (in µm) obtained from data inversion (boxes) and
versus effective radius from in-situ (open stars); 17 July (black), 22 July (red), and 25 July (blue).
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Fig. 6. Correlation between inversion results and in-situ results for effective radius, number concentration (1/cm), surface-area concentration
(µm2/cm3), and volume concentration (µm3/cm3) on 17 July (black), 22 July (red), and 25 July (blue). Error bars denote one-standard
deviation and describe the variation of the data points in the 150-m thick layers that were used in the data inversion. Each data point has
its own uncertainties and it follows from the measurement uncertainties (in-situ) and data inversion errors. The average uncertainty of each
of the four data products is mentioned in the text. Effective radius uncertainties are propagated from volume and surface-area uncertainties
without taking potential correlation into account and therefore may be overestimated. The three data points of the in-situ measurements
shown in Figure 5 (effective radius above 0.31 µm) are not shown in this figure.


