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Abstract 10 

 The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) 11 

instrument on board the Canadian satellite SCISAT has beening observing the Earth’s limb in 12 

solar occultation since its launch in 2003. Since February 2004, high resolution (0.02 cm-1) 13 

observations in the spectral region of 750-4400 cm-1 have been used to derive volume mixing 14 

ratio profiles of over 30 atmospheric trace species and over 20 atmospheric isotopologues. 15 

Although the full ACE-FTS level 2 data set is available to users in the general atmospheric 16 

community, until now no quality flags have been assigned to the data in order to guide the users. 17 

This study describes the two-stage procedure for detecting physically unrealistic outliers within 18 

the data set for each retrieved species, which is a fixed procedure across all species. Since the 19 

distributions of ACE-FTS data across regions (altitude/latitude/season/local time) tend to be 20 

asymmetric and multi-multimodal, the screening process does not make use of the median 21 

absolute deviation. It makes use of volume mixing ratio probability density functions, assuming 22 

that the data, when sufficiently binned, are at most tri-modal and that these modes can be 23 
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represented by the superposition of three normal, or log-normal, distributions. Quality flags have 24 

been assigned to the data based on retrieval statistical fitting error, the physically unrealistic 25 

outliers described in this study, and known instrumental/processing errors. The quality flags 26 

defined and discussed in this study are now available for all level 2 versions 2.5 and 3.5 data and 27 

will be made available as a standard product for future versions.  28 

 29 

Introduction 30 

One of the most common techniques for screening out anomalous data from a data set is 31 

to calculate the set’s mean (µ) and standard deviation (σ). Data that are outside the limits of µ ± 32 

k σ, where k is some constant, are deemed to be outliers. Another common, and similar, method 33 

is to use the median and MAD (Median Absolute Deviation) [Leys et al., 2013; Toohey et al., 34 

2010; and references therein], in place of the mean and standard deviation respectively, where,  35 

 MAD = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖(|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑥𝑗)|). (1) 

This method is much less sensitive to extreme outliers, as the presence of outliers typically has 36 

an insignificant effect on the median value. It can be used as an efficient tool in detecting outliers 37 

for data that are normally distributed. However, this technique assumes thatusing this value as a 38 

method of detecting outliers can be ineffective if the data being analyzed are not multi-39 

multimodal and/or are asymmetrically distributed about the median. In the case of data that isare 40 

multimodal or asymmetrically or multi-modally distributed and consists contain of multiple 41 

extreme outliers, it is likely that neither the σ nor the MAD will be an appropriate estimate of the 42 

variation, or scale, of the measurements. In such cases, they should be avoided in the detection of 43 

outliers [Rousseeuw and Croux, 1993]. 44 

In satellite remote sensing of the atmospheric limb, measurements inherently suffer from 45 



 

3 
 

sampling biases. Therefore, isolating geographical/seasonal/local time regions where global 46 

satellite-based data are normally symmetrically distributed and uni-modal can be difficult and/or 47 

tedious. This is due to the fact that the atmosphere doesn’t necessarily behave in a predictable, 48 

periodic manner. Measurements grouped into a given altitude and latitude and month and local 49 

time bin can be driven away from typicalnormal behaviour by any number of factors— (e.g., the 50 

polar vortex, a solar proton event, a sudden stratospheric warming, biomass burning, presence of 51 

polar stratospheric clouds, etc.), thereby altering the “typical” distribution of observed 52 

measurements, and hence the probability density function (pdf) of the trace species 53 

concentration.  54 

The often used method for detecting outliers of employing the MAD does not explicitly 55 

make use of a pdf, but it does make the assumption the pdf is symmetric about the median value. 56 

Other often used methods, such as Peirce’s criterion [Peirce, 1852; Ross, 2003] and Chauvenet’s 57 

criterion [Chauvenet, 1871], explicitly make use of a pdf, however they assume that the pdf is a 58 

Gaussian distribution. It should also be noted that in atmospheric science, the use of pdfs is not 59 

uncommon in tracer and validation studies. Lary and Lait [2006], in their introduction, give 60 

excellent examples of different types of tracer studies; and studies such as Migliorini et al. 61 

[2004], Lary and Lait [2006], and Wu et al. [2008] have demonstrated that pdfs can be used as a 62 

validation tool, where pdfs as measured by different atmospheric sounders are inter-compared 63 

rather than inter-comparing co-located measurements.       64 

The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer 65 

[Bernath et al., 2005]) instrument, on board the Canadian satellite SCISAT, is a solar 66 

occultation, high spectral-resolution (0.02 cm-1) Fourier transform spectrometer operating 67 

between 750 and 4400 cm-1. ACE-FTS observations are used to derive volume mixing ratio 68 
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(VMR) profiles of over 30 atmospheric trace gases, as well as profiles of over 20 subsidiary 69 

isotopologues of atmospheric species [Boone et al., 2005]. SCISAT was launched in 2003 and 70 

ACE-FTS has been providing consistent measurements since February 2004. Atmospheric 71 

profiles range in altitude from ~5-110 km, depending on the species, with a vertical resolution of 72 

~3-4 km and sampling of 12-6 km. 73 

This study outlines the repercussions of screening data based on the σstandard deviation 74 

or the MAD given non-normally distributed data and discusses a two-step process for detecting 75 

outliers that is currently carried out on the ACE-FTS level 2 data set. All data presented in this 76 

study are ACE-FTS level 2 version 3.5 (v3.5) [Boone et al., 2013] spanning February 2004 to 77 

February 2013, however the same processes have beenare used for detecting outliers in version 78 

2.5 (v2.5) data. The main differences in v3.5 from v2.5 are, 79 

 Amended sets of microwindows for all molecules, and an increase in the number of 80 

allowed interferers in the retrievals; 81 

 Improvement in temperature/pressure retrievals, leading to a reduction in unphysical 82 

oscillations in retrieved temperature profiles; 83 

 Inclusion of COCl2, COClF, H2CO, CH3OH, and HCFC-141b and removal of HOCl and 84 

ClO VMR retrievals. 85 

Physically unrealistic outliers can occur in the ACE-FTS level 2 for a number of different 86 

reasons. Many of these are often caught prior to being added to the level 2 database, such as 87 

outliers due to exceedingly noisy spectra, ice contamination affecting an occultation, and a 88 

variety of processing errors. However, these aren’t always caught by pre-screening, and other 89 

factors, not accounted for in the pre-screening, can contribute to the presence of outliers, for 90 

example, poor statistical fitting or convergence onto an unrealistic solution in the retrieval, 91 
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inaccurate pressure and temperature a priori information.  92 

The outlier detection and subsequent data flagging procedures discussed in this study 93 

have only been performed on the ACE-FTS level 2 data products that have been interpolated 94 

onto a 1-km altitude grid (between 0.5 and 149.5 km) [Boone et al., 2005]. The philosophical 95 

approach for flagging identifying data as potential outliers was one of caution, in that it is better 96 

to keep some “bad” data (likely to be physically unrealistic) than to reject “good”, or “true”, data 97 

(likely to be physically realistic).. As well, iIt was also desired that the approach be consistent for 98 

all subsets of data being analyzed, i.e. tolerance levels, regional limits, etc. should be the same 99 

for all species, for all seasons, at all altitudes. For the remainder of this study, these physically 100 

unrealistic data will be referred to as “unnatural” outliers, and the data that are likely to be 101 

physically realistic yet still seemingly outlying as “natural” outliers. All data that are not 102 

unnatural outliers will be referred to as inliers. 103 

 104 

Detection method and results 105 

All distributions of data discussed in this section represent the February 2004-February 106 

2013 data, and all VMRs are given in parts per volume (ppv). 107 

Global satellite-based measurements of trace gases in the atmosphere typically are not 108 

symmetricallynormally distributed and are often multimodal. Different regions are governed by 109 

different, varying processes, and therefore analysis of the data is typically carried out by 110 

breaking down the data into different altitude, latitudinal, etc. bins. Figure 1 shows all the ACE-111 

FTS H2O data at 17.5 and 35.5 km and the corresponding measurement distributions. For both 112 

subsets of H2O data, inlier limits were determined for µ ±3𝜎 and 𝑚𝑒𝑑𝑖𝑎𝑛 ± 3 MAD × 1.428 113 

(1.428 is the scale factor for the MAD to equal the σa consistent estimate of the variation 114 
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assuming a normal distribution [Rousseeuw and Croux, 1993]). These limits are plotted in Fig. 115 

1a and Fig. 1c and highlight two key points: first, using the standard deviation when there are 116 

extreme outliers can allow for the acceptance of data that should clearly be rejectedare most 117 

likely physically unrealistic. Second, using the MAD on multimodal or asymmetrically or multi-118 

modally distributed data can lead to the rejection of physically realistic“good” data. For instance, 119 

as shown in Fig. 1a, the lower cut-off using the MAD of 2.76 ppm clearly excludes the low H2O 120 

concentrations that are observed in Antarctic (austral) spring. As can be seen in Fig. 1b and Fig. 121 

1d, the H2O data at both altitude levels are not normally distributed.  122 

The data can be separated further into bins based on latitudinal regions and local times. 123 

For example, Fig. 2 shows H2O and O3 sunset data at 30.5 and 35.5 km, separated into different 124 

latitude regions (0-30°S, 30-60°S, and 60-90°S), with dashed lines representing best fits to 125 

Gaussiannormal distributions. These regions are representative of bins often used to partition 126 

atmospheric data. Figure 2 exemplifies that using a given bin definition that leads to data with a 127 

symmetric and uni-modal distributionsymmetrically distributed data at one altitude level doesn’t 128 

necessarily lead to a symmetric and uni-modal distribution ofsymmetrically distributed data at all 129 

altitude levels, nor across all species. For instance, in Fig. 2a the 35.5 km O3 distributions in all 130 

three latitude regions are fairly symmetric. However the 35.5 km H2O distribution, ( Fig. 2c), in 131 

the mid-latitudes is highly skewed, and in the high latitudes the distribution is tri-modal., and iIn 132 

Figs. 2b and d we see bimodal, asymmetric distributions for both O3 and H2O in the 30-60°S and 133 

60-90°S regions at 30.5 km. For high-latitude data in many species’ data sets, distributions can 134 

be bimodal due to observing inside and outside of the vortex, and therefore it is not possible to 135 

find sub-regions (based on season, latitude, or local time) that will always exhibit symmetric 136 

distributions.  137 
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Therefore, the ACE-FTS data screening process takes an approach that does not require 138 

the distribution of any subset of data to be symmetric or containting just one mode..  139 

Initially, all data are pre-screened. Any occultation that contains errors due to previously 140 

known issues (e.g. unrealistic N2O concentrations due to a convergence failure for occultations 141 

with low water levels, ice buildup on the detectors during early mission occultations, bad spectra 142 

used in the calibration, level 0-1 processing errors, etc.) are removed prior to analysis. A full list 143 

of known issues is given on the ACE validation website, https://databace.scisat.ca/validation. 144 

Then, for each species, at each altitude level, any data point with an absolute value greater than 145 

10,000 times the median of all absolute values is rejected. Absolute values are used, as ACE-FTS 146 

VMR retrievals are allowed to be negative, and therefore, in some cases the median of the actual 147 

values could be very close to zero. 148 

The screening processes starts by analysing the data’s probability density functionpdfs. 149 

The normalized probability density functionpdf of data subset x, 𝑝𝑑𝑓(𝑥), multiplied by the 150 

number of data points, N, gives you the expectation density function (edf)expected number of 151 

data points at a given value of x, 152 

 𝑒𝑑𝑓𝐸(𝑥) = 𝑁 × 𝑝𝑑𝑓(𝑥). (2) 

The total integral of function 𝐸(𝑥) is the edf is equal to N, and the integral between any two 153 

values of x gives the number of expected data points within that range. For determining unnatural 154 

outliers, we want to find the values of x where the integral between infinity (negative and 155 

positive) and 𝑥𝑙𝑖𝑚 (lower and upper values) is less than 1.expectation distribution. Anywhere that 156 

the integral (from infinity) of the edfexpectation distribution is less than 1 is most likely a 157 

statistical outlier, as no data points are expected to be measured beyond theat those values of 158 

𝑥𝑙𝑖𝑚,𝑥, given the 𝑝𝑑𝑓. Therefore, the criterion for excluding data can be any value of x where 159 
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∫ 𝐸(𝑥′)𝑑𝑥′𝑥

−∞
 or ∫ 𝐸(𝑥′)𝑑𝑥′∞

𝑥
𝐸(𝑥) is less than or equal to 1. This is similar to Peirce’s criterion 160 

[Peirce, 1852; Ross, 2003] and Chauvenet’s criterion [Chauvenet, 1871], which both assume a 161 

normally distributed probability density functiondf. The tolerance level can be varied to suit the 162 

desired acceptance level of possible outliers. For ACE-FTS data, a tolerance level, determined 163 

empirically, of 0.02510-4 is used, which corresponds to a 97.599.99% confidence of an excluded 164 

data point being an outlier—i.e., any value 𝑥lim where ∫ 𝐸(𝑥′)𝑑𝑥′𝑥

−∞
𝐸(𝑥) < 10−4 i or 165 

∫ 𝐸(𝑥′)𝑑𝑥′∞

𝑥
 is less than 0.025 is rejected.  166 

This method, however, requires determining an analytical solution for the data’s 167 

edfexpectation distributions. For each of the 50+ ACE-FTS retrieved species, at each altitude 168 

level, the data is separated into sunset and sunrise occultations, in order to separate into similar 169 

local conditions, as well as into four different latitude regions: 60-90°S, 0-60°S, 0-60°N, and 60-170 

90°N. Due to the SCISAT orbital geometry, the majority of ACE-FTS measurements are at high 171 

latitudes, and therefore each latitudinal bin has roughly the same number of profiles. The 172 

distribution of each subset is then fit to a Gaussian mixed distribution, using three Gaussian 173 

distributions. This assumes that the data is at most tri-modally distributed. Since it is not 174 

uncommon for distributions of atmospheric measurements to be log-normal, the fit is done in 175 

log-space. The fit is performed using the Matlab statistical toolbox, which uses an Estimation 176 

Maximization algorithm [McLachlan and Peel, 2000]. In an effort to avoid fitting to extreme 177 

outliers an ad-hoc “Olympic”-style method is employed, whereby the data set’s five lowest and 178 

five highest values are excluded in the fit. Figure 3 shows the O3 distribution at 30.5 km in the 179 

60-90°S and 60-90°N regions, along with the fitted expectation distributiondfs and the three 180 

Gaussian distributions derived in the fit for both cases. It should be noted that prior to fitting a 181 

data subset to a Gaussian mixed distribution, profiles affected by previously determined issues 182 
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either with the instrument or with the data processing have been excluded, and extreme outliers 183 

are screened out by assuming that any data points with absolute values greater than 10,000 times 184 

the median of the subset’s absolute values are outliers. 185 

Figure 4 shows three examples of ACE-FTS sunset data distributions—NO2 at 60-90°S 186 

and 30.5 km, CH4 at 0-60°N and 17.5 km, and N2O at 60-90°N and 20.5 km—and the 187 

corresponding fitted expectation distributiondfs. These were chosen in order to illustrate typical 188 

results for commonly used ACE-FTS data. The average root-mean-square error (RMSE) between 189 

the expectation distributiondfs and actual distributions, over all species and data subsets, is 6% 190 

and has a 1 σ deviation of 2%. In the case of rare extreme events present in the data, which tend 191 

to be under-sampled in ACE-FTS data, the effect on the distribution can be to skew a tail end of 192 

the distribution, driving the shape of the tail away from Gaussian. An additional ad hoc method 193 

has been implemented to ensure that no “true” data is excluded in the screening process when 194 

rare extreme events occur that are not properly accounted for in the fit. For each subset, the 195 

standard deviation is calculated for the inlying data, where 𝐸(𝑥) > 10−4. This standard deviation 196 

we will call 𝜎𝑖𝑛. Original upper and lower limiting values, 𝑥𝑙, are calculated, where 𝐸(𝑥𝑙) =197 

10−4, and both the upper and lower limiting values are extended by 𝜎𝑖𝑛. Hence, 𝑥𝑙𝑖𝑚
𝑢𝑝 = 𝑥𝑙

𝑢𝑝 +198 

𝜎𝑖𝑛 and 𝑥𝑙𝑖𝑚
𝑙𝑜𝑤 = 𝑥𝑙

𝑙𝑜𝑤 + 𝜎𝑖𝑛. Figure 5 shows the inliers and unnatural outliers as determined by 199 

the expectation distributiondfs for the subsets shown in Fig. 4. As can be seen, not all subsets 200 

contain many extreme outliers, e.g. NO2 at 30.5 km (Fig. 5a), which only has one detected 201 

outlier. When there are obvious outliers, this method does exclude the most extreme outliers, 202 

although perhaps not all unnatural outliers. For instance, several (potentially) anomalously low 203 

values, near 0.75 ppm, in the CH4 data (Fig. 5b) remain as inliers. This is in part due to the 204 

relatively lax tolerance level of 10-40.025, which is more likely to leave in outliers than if a larger 205 
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value (but still less than 1) wereas chosen. 206 

It should be noted that screening using the expectation distributiondf is a hard-limiting 207 

filter., Therefore, using it in the manner described above which doesn’t necessarily reject data 208 

that are non-physically anomalous for a given season. To screen the data of for this type of 209 

moderate outlier, the 15-day running mean (𝜇15)median and a 15-day running standard deviation 210 

(𝜎15)variation scale are calculated for each subset, excluding outliers as determined from the 211 

expectation distributiondfs. Even on a 15-day timescale, ACE-FTS subset data can have 212 

distributions that are bimodal. In many cases, the primary mode is sampled much more 213 

frequently than the secondary mode, and therefore, without careful consideration, data within the 214 

secondary mode can be erroneously screened as unnatural outliers. To avoid this, we need a 215 

variation scale that is sensitive to outliers (unlike the MAD), but not overly sensitive to outliers 216 

(like the σ). For this we define a variation scale that is similar to the MAD, only more sensitive 217 

to outliers—the MeAD, 218 

 MeAD = 𝑚𝑒𝑎𝑛𝑖(|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑥𝑗)|). (3) 

Any data point with a value outside the bounds of 𝑚𝑒𝑑𝑖𝑎𝑛𝜇15 ± 105.5 ×  σMeAD15 are 219 

considered to be unnatural outliers. The value of 105.5 was empirically found to maximize the 220 

number of discovered unnatural outliers without rejecting obvious natural outliersly “true” data. 221 

If outliers are detected, they are removed from the data, and a new running mean and standard 222 

deviation are calculated for the inlying data in order to determine if there are any more outliers. 223 

This process is iterated until all data points are determined to be inliers. The mean and standard 224 

deviation are used instead of the median and MAD, as it is assumed that the subsets have already 225 

been screened for extreme outliers. Figure 6 shows the inliers and outliers as determined by the 226 

15-day running values for the subsets shown in Fig. 4. Clearly this step catches moderate outliers 227 
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that were not detected using the expectation distributiondfs, although still not all anomalous data 228 

have been screened out. The potentially anomalous values near 0.75 ppm in the CH4 data (Fig. 229 

6b) still remain as inliers. Stricter tolerance criteria in either the expectation distributiondf or 230 

running standard deviationMeAD screening process would allow for these data to be screened 231 

out; however, they were found to lead to screening out “true” datanatural outliers in other subsets 232 

of data, which would be discordant with our philosophical approach. Going back to the original 233 

case of H2O at 17.5 km (Fig. 1a), an example of the difference between using the MeAD as 234 

opposed to the MAD in the second step is shown in Fig.7. However, now the focus is on only the 235 

Antarctic data. The unnatural outliers and remaining inlying data for Antarctic H2O at 17.5 km 236 

are shown for the two different approaches. Fig.7a shows the results when using limiting values 237 

of 𝑚𝑒𝑑𝑖𝑎𝑛15 ± 10 ×  MeAD15, where the significant majority of the data points screened as 238 

unnatural outliers are likely to be physically unrealistic for their local conditions. Using the 239 

limiting values of 𝑚𝑒𝑑𝑖𝑎𝑛15 ± 10 ×  MAD15, Fig. 7b, leads to many more outliers being 240 

detected as unnatural outliers. Upon inspection, many of these erroneous “unnatural” outliers are 241 

most likely being erroneously rejected, especially in late 2009 where ACE-FTS is most likely 242 

routinely observing dehydrated air masses. In both cases, outliers were detected in the sunrise 243 

and sunset data sets separately.  244 

In order to explore the response to periodic extreme events and to trends, Fig. 87 shows 245 

the final inliers and unnatural outliers in all ACE-FTS HCN data at 9.5 km, which exhibits 246 

periodic increases that could correspond to biomass burning events [e.g. Crutzen and Andreae, 247 

1990; Pommrich et al., 2010]; as well as all SF6 data at 19.5 km, which exhibits a clear positive 248 

trend throughout the time series [e.g. Rinsland et al., 2005; Brown et al., 2011]. Even in these 249 

instances of extreme events and a significant trend in the data, the outlier detection method 250 
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outlined here is ablerobust enough to keep the natural outliersdata as inliers. The top panels (a 251 

and d) in Fig. 87 shows all data points and demonstrates the extreme unnatural outliers (red dots) 252 

that can occur within the ACE-FTS data set. The middle panels (b and e) shows the same data as 253 

the top panels, however without the more extreme unnatural outliers in order to better view the 254 

data; and the bottom panels (c and f) shows the data with all unnatural outliers removed.  255 

In the overwhelming majority of instances where the ACE-FTS VMR data exhibit a 256 

sudden and/or extreme change in the distribution, the unnatural outlier detection method 257 

described above does not screen out these events. Sudden stratospheric warmings cause there to 258 

be strong descent in the northern high-latitude upper atmosphere. This leads to anomalously 259 

large concentrations of NO and CO in the upper stratosphere-lower mesosphere, near 50 km [e.g. 260 

Manney et al., 2008; Randall et al., 2009]. Figure 9a8 shows the time series of the final inliers 261 

and outliers in all ACE-FTS NO and CO data at 55.5 km and 50.5 km, respectively. It can be 262 

seen that  Again, the detection method is robust enoughable to keep the majority of data during 263 

these extreme events as inliers. Anderson et al. [2012], using in situ aircraft measurements, 264 

demonstrated that in the summer there can be H2O intrusions from the upper troposphere into the 265 

lower stratosphere at Northern mid-latitudes. As can be seen in Fig. 9b, the final inlying ACE-266 

FTS data in the summer Northern mid-latitudes, in the lower stratosphere, do exhibit large 267 

increases in H2O concentrations. [Manney et al., 2011] showed that the Microwave Limb 268 

Sounder (MLS) on the Aura satellite observes decreases in lower stratospheric HCl 269 

concentrations in the Arctic vortex each spring; and in the spring of 2011, HCl concentrations 270 

were anomalously low for a prolonged period. Figure 9c shows the final inlying ACE-FTS HCl 271 

data in the Arctic, which are consistent with the MLS findings. No instances have been found in 272 

which the unnatural outlier detection system outright rejects these types of phenomena. When 273 
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sudden, extreme changes do occur, the rejection of potential natural outliers has been minimized, 274 

and the result of which is that the rejection of the detected unnatural outliers has an insignificant 275 

effect on the mean. In a couple extreme cases, NO data in early 2004 at 55.5 km (Fig. 8a-c), 276 

seven data points were flagged as extreme outliers that could potentially be “true” data; and 277 

similarly in early 2011 CO data at 50.5 km (Fig. 8d-f), eight data points may have been 278 

erroneously flagged. Out of all subsets of all 50+ species/isotopologues, these were the most 279 

extreme instances of apparent rejection of true data. The disadvantageown side of not screening 280 

out rare extreme events, however, is that this method is less likely to catch sporadic systematic 281 

instrument or processing errors. Therefore, continual monitoring of both the rejected and non-282 

rejected data statistics is necessary to determine if any such errors have occurred. 283 

Table 1 shows what percentage of ACE-FTS level 2 v3.5 profiles contain at least one 284 

detected outlier (by either stepmethod). For any given species, if all profiles that contained at 285 

least one outlier are rejected, less than 6% of the total number of profiles will be omitted. 286 

 287 

Conclusions 288 

A two-step process has been developed in order to screen all ACE-FTS level 2 data for 289 

physically unrealistic outliers. The first step fits an expectation distributiondf, the superposition 290 

of three Gaussian distributions, to actual distributions. This fit is done in log-space. Data in the 291 

tails of the distributions where the probability of finding a data pointthat have corresponding 292 

expectation values that are is less than the subset tolerance level are determined to be extreme 293 

unnatural outliers. The second step iteratively takes the 15-day running median and standard 294 

deviationMeAD and screens for moderate seasonal unnatural outliers. At each iteration, dData 295 

that are further than 105.5 times the MeADstandard deviation from the median are determined to 296 
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be moderate outliers. 297 

Using these methods to screen the ACE-FTS data for unnatural outliers, a flagging 298 

system has been implemented to give ACE-FTS level 2 data users a guide for how best to use the 299 

data. Each VMR data point in each profile is flagged with an integer from 0-9. Table 2 gives the 300 

definition for each flag value. Any data with a 0 flag areis recommended for use. In previous 301 

versions, data users were recommended that they filter out data where the percent error (the 302 

retrieval statistical fitting error divided by the retrieved value) is either greater than 100% or less 303 

than 0.01%; for legacy reasons, these data have been given a flag value of 1. It is recommended 304 

that data points with a corresponding flag greater than 2 be removed before any analysis is 305 

performed. This screening method alone may be adequate when only looking at one altitude 306 

level, however, profiles that contain an outlier at a given altitude level may also be compromised 307 

at lower altitude levels. Therefore it is recommended that any profile that contains a flag between 308 

4 and 7 (inclusive) be removed before analysis. However, screening the data using these flags 309 

should be done with caution when investigating middle to upper atmospheric NO, CO, and CO 310 

isotopologues. 311 

At certain altitude levels for a given species, the data can be either noisy, with a 312 

significant number of negative values, or have a strong negative bias. In either case, since the 313 

ACE-FTS retrieval allows for negative concentrations, it is possible for valid data to have values 314 

close to zero, both positive and negative. When values are systematically near zero, the percent 315 

error becomes extremely large. Therefore, in these situations, screening the data based on the 316 

percent error may introduce a bias in the data. As such, before analysis, removing data that has a 317 

corresponding flag value of 1 is only recommended at altitude levels where the overwhelming 318 

majority of data points have a VMR valueare greater than zero. 319 
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Since the outlier detection methodology was approached with a philosophy that it is 320 

better to leave in unnatural outliers than to remove natural outinliers, there are outliers that have 321 

gone un-flagged—especially in data sets that are inherently noisy and at low altitudes (below 322 

~10 km). Level 2 data users should use the defined quality flags as a starting point for screening 323 

the data and be aware that some unnatural outliers may still exist that could be screened out prior 324 

to analysis. It is recommended that f data users arelso avoid using the MAD in any attempts to 325 

further screen the ACE-FTS level 2 data, for best results it is advised that they ensure that the 326 

distribution of the data they are screening is not multimodal nor heavily skewed. 327 

The flag values for all v2.5, v3.0, and v3.5 are now available for download on the ACE-328 

FTS website, and v2.5 flag values data are available upon request from the lead author and will 329 

soon be made available for download on the ACE-FTS website. It is currently expected that 330 

similar flags will be a standard product within the level 2 data of all future products. 331 
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Tables 411 

Table 1 – Percent rejection of ACE-FTS level 2 v3.5 profiles that contain one or more detected 412 

unnatural outlier (either by running MeADmean or expectation distributiondf).  413 

Species % reject Species % reject Species % reject 

C2H2 1.5471 HCFC141b 1.822.03 C17O 1.9567 

C2H6 1.891 HCFC142b 1.6681 C18O 2.5421 

CCl2F2 2.1009 HCl 2.189 O13CO 4.463.98 

CCl3F 1.5366 HCN 2.2650 O13C18O 1.3009 

CCl4 1.6781 HCOOH 1.952.09 OC17O 1.3324 

CF4 1.832.35 HF 1.4653 OC18O 4.9059 

CFC113 1.3350 HNO3 2.2565 H17OH 2.9574 

CH3Cl 2.1139 HNO4 2.349 H18OH 3.082.91 

CH3OH 2.4083 N2 2.0862 HDO 2.7670 

CH4 2.8195 N2O 3.964.29 15NNO 2.3928 

CHF2Cl 2.2935 N2O5 2.156 N15NO 2.3734 

ClONO2 1.768 NO 4.5091 NN17O 1.8877 

CO 4.0310 NO2 2.2234 NN18O 2.9194 

CO2 5.3970 O2 1.812.23 O17OO 3.032.98 

COCl2 2.0837 O3 2.2440 O18OO 1.9795 

COClF 1.2935 OCS 1.452 OO18O 1.8573 

COF2 1.3126 SF6 2.252.31 O13CS 2.1720 

H2CO 3.043 13CH4 3.002.98 OC34S 1.922.04 

H2O 3.8197 CH3D 2.012.17     

H2O2 2.743.16 13CO 3.082.94    

414 
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Table 2 – Definition of flag values associated with ACE-FTS level 2 data 415 

 416 

Flag value Definition 

0 No known issues with data 

1 Percent error is not within 0.01-100%,  and no other category of flag applies 

2 Not enough data points in the region to do statistical analysis, and percent error is 

within 0.01-100%  

3 Not enough data points in the region to do statistical analysis, and percent error is 

not within 0.01-100% 

4 Moderate unnatural outlier detected from running MeADmean, percent error 

within limits 

5 Extreme unnatural outlier detected from expectation distributiondf, percent error 

within limits 

6 Unnatural Ooutlier detected and percent error is outside of limits 

7 Instrument or processing error 

8 Error fill value of -888 (data is scaled a priori) 

9 Data fill value of -999 (no data) 

  417 
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Figures 418 

 419 

Fig. 1 – ACE-FTS level 2 v3.5 H2O data (left) and corresponding distributions (right). Top panel 420 

shows all data at 17.5 km, and the bottom panel shows all data at 35.5 km. 421 
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Fig. 2 – 2004-2013 ACE-FTS VMR distributions for sunset occultations (symbolsdots) in the 425 

Southern hemisphere and corresponding best fits to normal distribution (dashed lines). (a) O3 at 426 

35.5 km, (b) O3 at 30.5 km, (c) H2O at 35.5 km, (d) H2O at 30.5 km.  427 
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Fig. 3 – Sunrise ACE-FTS O3 VMR distributions at 30.5 km (blue circles) and fitted expectation 431 

distributiondfs (dashed black lines) for (a) 60-90°N, and (b) 60-90°S. Dotted green lines are the 432 

fitted Gaussian distributions in calculating each of the expectation distributiondfs, and the fitted 433 

distributions have been normalized to the measured VMR distributions. 434 
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Fig. 4 – Sunrise ACE-FTS VMR distributions (blue circles) and fitted expectation distributiondfs 437 

(black dashed lines) for (a) NO2 at 30.5 km in the latitude region 60-90°S; (b) CH4 at 20.5 km, 0-438 

60°N; and (c) N2O at 20.5 km, 60-90°N. Dotted green lines are the fitted Gaussian distributions 439 

in calculating each of the edfs, and the fitted distributions have been normalized to the measured 440 

VMR distributions. 441 

442 
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Fig. 5 – Sunrise ACE-FTS data for the same data subsets as Fig. 4. Red circles are data that have 445 

been determined to be unnatural outliersoutlying data as per the expectation distributiondfs, and 446 

blue dots are the inlying data. 447 
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Fig. 6 – Sunrise ACE-FTS data for the same data subsets as Fig. 4. Red circles are data that have 451 

been determined to be unnatural outliers outlying data as per the 15-day running median and 452 

MeADstandard deviation, and blue dots are data that have been determined to be inliers.  453 
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Fig. 7 – All Antarctic ACE-FTS data for H2O at 17.5 km. Red circles are data that have been 457 

determined to be unnatural outliers following two different methods (sunrise and sunset data 458 

were analyzed separately), and blue dots are data that have been determined to be inliers. (a) 459 

Unnatural outliers determined using the 15-day running MeAD, (b) Unnatural outliers 460 

determined using the 15-day running MAD. Unnatural outliers as determined by the edfs are not 461 

shown and were not used in the analysis. 462 
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Fig. 87 – The final inlying data (blue dots) and unnatural outliersoutlying (red dots) data for all 466 

ACE-FTS HCN data at 9.5 km (left) and SF6 data at 19.5 km (right). The top panel shows all 467 

data, the middle panel is the same as the top panel only zoomed in for clarity, and the bottom 468 

panel is all data excluding the unnatural outliers. 469 
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Fig. 98 – The final inlying data for (blue dots) and outlying (red dots) data for all ACE-FTS (a) 473 

Arctic NO data at 55.5 km, (bleft) mid-latitude  and COH2O data at 1450.5 km, and (cright) 474 

Arctic HCl at 18.5 km. The top panel shows all data, the middle panel is the same as the top 475 

panel only zoomed in for clarity, and the bottom panel is all data excluding the outliers. 476 
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