10

15

20

25

Atmos. Meas. Tech. Discuss., 7, 36453679, 2014 AtmoSpheriC
www.atmos-meas-tech-discuss.net/7/3645/2014/ Measurement
doi:10.5194/amtd-7-3645-2014

© Author(s) 2014. CC Attribution 3.0 License.

$S900Y UadQ

Techniques

Discussions

Software and database structure to
analyze the relationship between aerosol,
clouds and precipitation: SAMAC

S. Gagné'?, L. P. MacDonald"’, W. R. Leaitch?, and J. R. Pierce'

1Department of Physics and Atmospheric Science, Dalhousie University, Halifax,

B3H 3J5, Canada

2Environment Canada, Downsview, Toronto, M3H 5T4, Canada

3Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
“now at: Department of Atmospheric Science, Colorado State University, Fort Collins, CO
80523, USA

Received: 30 January 2014 — Accepted: 17 March 2014 — Published: 10 April 2014
Correspondence to: S. Gagné (stephanie.gagne @dal.ca)

Published by Copernicus Publications on behalf of the European Geosciences Union.

3645

Abstract

The analysis of aircraft-based measurements of clouds are critical for studies of aerosol
and clouds. Many such measurements have been taken, but it is difficult to com-
pare such data across instruments, flights and campaigns. We present a new open-
source software program, SAMAC (Software for Airborne Measurements of Aerosol
and Clouds), that may enable a more generic approach to the analysis of aerosol-
cloud-precipitation data. The software offers a faster and standardized approach to the
analysis of aircraft measurements of clouds across campaigns. SAMAC is an object-
oriented software program in which a cloud is an object. The cloud objects come with
built-in methods and properties that allow for the quick generation of basic plots and
calculations, which provide a quick view of the data set and may be used to compare
clouds and to filter for specific characteristics. Other researchers are encouraged to
apply the software to their data and to contribute to its improvement. SAMAC can be
downloaded at https://github.com/StephGagne/SAMAC/releases.

1 Introduction

The links between aerosol, clouds and precipitation particles is often referred to as
one of the least understood, and one of the most important processes by which hu-
mans affect the Earth’s climate (IPCC, 2007). Aerosols, clouds and precipitation are
described in Global Climate Models (GCMs) using parametrizations (e.g Nenes and
Seinfeld, 2003; Morrison et al., 2005). The parametrizations are validated and con-
strained using measured data, remote sensing or direct airborne measurements (see
e.g. Zhang et al., 2013) and can even be developed from observations (e.g. Boucher
and Lohmann, 1995). Measurements of aerosols, clouds and precipitation in con-
cert are crucial to better constrain global climate models. Satellite observations are
very helpful in the study of aerosol-cloud-precipitation interactions because they cover
large and diverse geographical areas, but they are not without some biases (e.g. they

3646

Darrel
Comment on Text
This title is a bit confusing.

Darrel
Comment on Text
Analyses are or Analisis is.

Darrel
Comment on Text
Not sure that this should be in the abstract. Suggest replacing with more concrete summary of examples or tools that highlight the advantages of this approach

Darrel
Comment on Text
Please review the whole article for the proper noun/verb tense. Links are or link is, for example.

Darrel
Comment on Text
This doesn't seem to make sense. Measurements are observations.

10

15

20

25

10

15

20

25

generally cannot sample co-located aerosols and clouds). Therefore, airborne in-situ
measurements are a necessary part of the improvement of the aerosol and cloud pro-
cesses in GCMs.

Airborne measurements of aerosol-cloud-precipitation interactions have been per-
formed on different cloud types, and in different areas around the world (see e.g. cam-
paigns such as RICO (Rauber et al., 2013), VAMOS-VOCALS (Wood et al., 2011), or
MASE (Lu et al., 2007)). In many cases, these measurements were performed using
an aircraft tracing a single path through clouds (e.g. Leaitch et al., 1996, Johnson et al.,
2003, Schmid et al., 2003; Sollazzo et al., 2003; Kleinmann et al., 2012). This measure-
ment method makes data analysis difficult because the relevant data are measured at
different time intervals and at different places in 3-D space and subject to variability
in the conditions at the time (e.g. clouds may be in different stages of their life cycle
during sampling). Further, the aerosol effects, while important, may be subtle relative
to other aspects of the cloud life cycle.

Another difficulty of airborne measurement is the lack of standardized instrumenta-
tion, data processing and analysis. While, during a given measurement campaign, all
the clouds are likely to be measured with the same set of instruments, it may not always
be possible to perform the same calculations for all of them. For example, there may be
a vertical profile available for one cloud, but not for the other. From one measurement
campaign to another, the data format and set of instruments used differ widely, es-
pecially across research groups. While we cannot standardize instrumentation across
research groups and time, we can try to standardize data format and improve the ease
of processing.

The creation and use of an open source standardized database structure and soft-
ware will allow researchers from different institutions to compare their measurements
with those of others more easily. Moreover, a basic quantity (e.g. the liquid water path,
LWP) could be calculated using exactly the same technique, making the quantity more
comparable across various clouds, campaigns, and in the literature. Such software
could also improve analysis speed by producing basic plots and calculations so that

3647

the analyst can visualize multiple aspects of the measured clouds rapidly and then
decide on the next analysis steps to take.

For this kind of software and data structure to be efficient, it should be freely available
for all researchers and easy to modify to fit their needs. The software should hence
be written in a free, cross-platform programming language and be open-source. The
advantages of the open-source release of software under version control are:

a. it can be modified by the users in order to better fit their needs;

b. when a user makes a modification that could be useful to others or that makes
the software more flexible, the improvement can be included in the next public
release;

c. when improvements are made to methods (a predefined routine), version control
ensures that the old method can still be retrieved and used if needed. This way,
calculations are reproducible (as long as the software version is mentioned in
publications);

d. although there is a need for a main programmer overseeing the quality and re-
lease of new versions of the software, participative programming under version
control means that improvements can be made gradually by users who need
these improvements, sharing the effort between the main programmer and the
users.

In this paper, we present a data structure for cloud measurement data and analysis
software, SAMAC (Software for Airborne Measurements of Aerosol and Clouds), that
attempts to answer the concerns and fulfil the specifications mentioned above. A first
version of the software has been released for download on GitHub. We first give an
overview of SAMAC’s capabilities after which we cover the thought process and phi-
losophy behind this database and software. We then give instructions and specify the
requirements to use and modify the software. Next, we describe the structure and
functions in the software. The data structure and associated software were built to be
3648

Darrel
Comment on Text
The introduction is too vague with respect to presenting concrete examples of how diverse measurement sets need integrating into something that can be more easily processed, manipulated, visualized, analyzed and eventually published. A specific scientific question that can be addressed with this tool should be illucidated. e.g. how does cloud processing of aerosols change their direct effect on climate. Then the following description of the software can use this as an example. As it is, the presentation lacks focus and come across too much as a manual of software guide with not enough in context to make it interesting and attractive to potential users.

Darrel
Comment on Text
Doesn't need to necessarily be a programmer. A technical/scientific coorinator who directs a programmer is more useful.

10

15

20

25

10

15

20

25

flexible, allow for new subroutines or functions, accommodate many types of instru-
ments, and be easily modified in order to add and handle data from new instruments.
Finally, we illustrate the uses of SAMAC with IPython, an interactive python shell, and
through data from the Canadian SOLAS 2003 campaign (Gagné et al., 2014).

2 Overview of software capabilities

SAMAC has a number of methods (routines) that allows users to rapidly visualize their
data, execute standard operations, and add practical information to their data. In this
section, we present a brief overview of the software’s features. (More detailed infor-
mation can be found in the subsequent sections, along with the description of more
methods.) To use this software, the measurements must be filled in the cloud object
structure of SAMAC. Guiding software is available with SAMAC but may need to be
modified to fit different data/file formats. Once the data is placed in the cloud structure
of SAMAC, many time-saving methods become available to users.

SAMAC comes with a set of figure-generating methods that include time series, ver-
tical profiles and adiabatic liquid water content. Some examples from these plots can
be found in Fig. 1. A figure, or many figures in certain cases, can be generated using
only one line of code that calls the plotting method. The figure-generating methods
that are available in this version of the software include a time series, maps of the air-
craft trajectory, various size-distribution figures, and different types of vertical profiles
(with altitude as the y axis). More figure-generating methods may be added to the next
versions of the software, depending on the users’ needs.

This software also comes equipped with a suite of calculation methods. For example,
with a single-line command, a user can get the liquid water path, the average size
distribution within a chosen aircraft manoeuvre or flight leg, an average or integrated
precipitation amount, an average cloud droplet number concentration, and more. As
we show in Sect. 5.2, it becomes very easy to make plots that aggregate results from
many clouds, controlling for certain characteristics.

3649

There are also a few interactive methods. One category of method is based on the
user clicking on a figure to provide information to the software. To define the time period
of a manoeuvre (we define a “manoeuvre” as a part of the flight that traces a horizontal
line in cloud (horizontal manoeuvre), a vertical profile, a flight below or above clouds),
the user can either determine the times and insert them manually into the structure
of the cloud instance, or use a specially designed function and click on the beginning
and end time of the manoeuvre on a time series plot (top panel in Fig. 1). The same
principle can be used to define the base and top of a cloud. The clicking principle is also
used in a method created to help mask unphysical, erroneous or dummy data (Fig. 2).
In this method, the points within a rectangle defined by the user become masked after
receiving confirmation. Another category of interactive methods require the user to
answer to questions on the prompt. For example, there is a method to assess the
quality of liquid water content profiles that asks the users to enter quality flags for the
profile.

Overall, we believe that SAMAC will save time for the users, who will be able to use
the ready methods. We also believe that, by establishing an open-source software,
users will be able to increase the transparency and reproducibility of their work. More-
over, using the same methods across the research community will help make results
more comparable and give more consistent results to modellers.

3 Programming techniques

We created and developed SAMAC in order to process measurements of clouds span-
ning over 30 years. The measurements had taken place on several different measure-
ment campaigns with different cloud types and instrumentation. In order to compare
the different clouds with each other, a standard structure and standard calculation
techniques had to be implemented. The structure had to be flexible enough to allow
adding new data in case some instruments’ data had not been foreseen or were not in
the original data set. Another important feature, was that if the original data had to be

3650

Darrel
Comment on Text
The paper needs to be restructured so that it doesn't read like a manual or user's guide. Everyone of the features doesn't need , describing. Instead, illustrate the most important features, and the power of the techniques by one or maybe two specific, scientific examples where by the reader is given a hypothesis that is being tested using a data set that is processed, manipulated and displayed to reach a conclusion using the tools provided by SAMAC.

Darrel
Comment on Text
Put this in the conclusions.

Darrel
Comment on Text
redundant. Just "spanning"

Darrel
Comment on Text
instrument's

10

15

20

25

10

15

20

25

corrected or re-calibrated, all the related calculations would be corrected automatically:
the user wouldn’t need to track down the repercussions of this change, instead it would
be done by the software itself.

It was decided that object-oriented programming would be the best way to satisfy
all these conditions. We define cloud object as the overall class, or type of object, we
used to represent measured clouds, and a cloud instance as a particular individual
cloud of the cloud object class. Each cloud instance of a cloud object is a measured
cloud in which the data (e.g. time, altitude and cloud droplet concentration), and a few
basic subjective cloud characteristics (e.g. environment type and cloud type) would be
stored in a structure. Object-oriented programming also allows for methods associated
with an object. All cloud instances share the data structure and methods associated
with cloud objects. Methods are procedures that can be performed on an object (or
more precisely, on the data in each instance, Beazley, 2009). The method can either
change the instance itself or simply use the data in the instance to return an output.

We have chosen Python as a programming language for SAMAC mainly for these
reasons:

a. Python is a free, open-source, cross-platform, high-level programming language;

b. Python is already used among researchers in the Earth sciences (Lin, 2012);

o

. Python has a very clear, readable syntax (Python Programming Language, 2013);

o

. New scientific programming packages in Python are released on a regular basis
(Yarkoni, 2013)

. Python’s NumPy modules (Numpy, 2013) provides Masked Arrays (Masked Ar-
rays, 2013), which allow for the masking of unphysical or missing/dummy data
without having to delete or overwrite them with flag values. Masks are preserved
through calculations (masked inputs give masked outputs);

o

f. Python’s object-oriented programming allows for many types of methods and
properties bound to the object.
3651

g. Python’s SciPy modules (SciPy, org, 2013) particularly NumPy, Matplotlib and
Pandas are similar to Matlab and R which are two additional programming lan-
guages that are widely used in the Earth sciences. Python also has an interface
module with R: RPy (RPy: A simple and efficient access to R from Python, 2013).

The software as released in its Beta version was tested using Python 2.7.1 with Mat-
plotlib 0.99.3, NumPy 1.5.1, SciPy 0.8.0, and Basemap 1.0.1 on Linux Mint 11; with
Python 2.7.3 with Matplotlib 1.1.1, NumPy 1.6.2, SciPy 0.10.1, Basemap 1.0.5 and
h5py 2.0.1-2 on Linux Mint 14; and with Python 2.7.3 with Matplotlib 1.3.1, NumPy
1.8.0, SciPy 0.13.0, Basemap 1.0.7 and h5py 2.2.0 on OSX 10.9.1 (Build 13B42).

Because the software was designed to handle clouds flexibly (with different instru-
ment types and number of instruments, different aircraft trajectories and series of ma-
noeuvres, etc.), its use by other research groups is possible and encouraged. Once
the data is placed inside the cloud instance, the methods can be applied. The use of
SAMAC by other research groups should save them time on data analysis and make
different quantities more comparable between research groups. Moreover, shared
open-source software makes data analysis more transparent and possible mistakes
are more likely to be spotted and corrected (Barnes, 2010; Merali, 2010).

SAMAC 0.9.2 (Beta) can be downloaded at https://github.com/StephGagne/SAMAC/
releases by clicking on the source code button in your preferred data compression for-
mat. Upon download, make sure to read through the Documentation material in the
package or in the wiki pages, as it includes a description of the SAMAC cloud object
structure, a description of the methods associated with cloud objects, and a guide on
how to create and populate a cloud object. Git is used for version control. To partici-
pate in improving the software, a user needs to have an account on GitHub, pull the
latest version from the repository (https://github.com/StephGagne/SAMAC) by forking
the repository. The users can make changes to their copy of the repository without
affecting the main branch. When the contribution to the code are tested and ready,
the users’ new code can be merged into the main branch by sending the original
author a pull request. For more options and detail, a GitHub tutorial is available at

3652

Darrel
Comment on Text
Comments like this need to be moved to the summary and conclusions.

Darrel
Comment on Text
Admonishments like this, while understandable, can be construed as somewhat condescending and should be removed throughout the paper.

Darrel
Comment on Text
Slang - needs clarifying.

Darrel
Comment on Text
"contributions"

10

15

20

25

10

15

20

25

https://help.github.com/. Use the Issues section to report any bugs you may discover,
or to suggest any improvements. SAMAC falls under the protection of the GNU General
Public License version 3.

4 Object structure and associated methods
4.1 Structure of a cloud instance

As discussed in the methods section, to compare large amounts of clouds with differ-
ent characteristics, we need a standard but flexible data structure. In this section, the
structure of the cloud object, ways to add to the structure, as well as current meth-
ods associated to cloud objects are discussed. The basic structure of a cloud object is
described in Fig. 3.

The structure’s core section is the Basic Aircraft Data. This section includes the
time series from all instruments sharing the same time stamp as the aircraft data (with
exception of the size distributions). The Basic Aircraft Data section could contain, for
example, time, altitude, latitude, longitude, and also other quantities like liquid water
content that happen to share the same time stamp. The titles and units of the data are
also stored in the structure so that it is possible to scan the data for specific quantities
and keep track of the units. The methods are programmed to recognize a number of
tittes and units combinations when looking for certain quantities. If users have data that
do not share the same time stamp as the Basic Aircraft Data, these data can either be
interpolated to a common time stamp or be placed in a section called Extra Data. When
the data needed is not found in the Basic Aircraft Data section, the software scans the
Extra Data section for that data, and uses it if found. If the same data title is found in
both sections, the data found in the Basic Aircraft Data is used.

Another important section is the Size Distribution section. This section is designed
especially to handle size distribution formats and representations, and is separate
from the Basic Aircraft Data section. It stores the aerosol, droplet, or hydrometeor

3653

concentrations as a function of time and size. The time and the average bin sizes
are placed in their own vectors, similarly to the total concentration, mean diameter
and median diameter. Each size distribution has a record of the instrument’s name or
distribution’s name, the concentration’s units and the distribution type (aerosol, cloud
droplet, etc.).

For the aforementioned sections of the structure, it is strongly recommended to save
the name and path of the original files from which the data originated in the cloud
instance itself. Although it can be added in a section created by users, there are plans
to design a section dedicated to this purpose in a later version of SAMAC.

The Times of Manoeuvres section keeps track of the times when the aircraft is ex-
ecuting certain manoeuvres in relation to the cloud. In this section, the beginning and
end time of each manoeuvre is stored: the aircraft being in the area of the cloud (as
opposed to being on its way to or from the airport), being above-, below-, horizontally
in-cloud, and vertical profiles. Because only the start and end times are stored, two
manoeuvre types can take place at the same time without having to keep two copies
of the same data. For example, the last few seconds of a vertical manoeuvre can also
belong to the beginning of an above cloud manoeuvre. Because of this section, it is
easy to isolate a particular manoeuvre to make a calculation, such as calculating the
average aerosol size distribution below-cloud only. This section can be populated man-
ually or using a graphical interface and clicking at the beginning and end time of each
manoeuvre.

The Descriptive Data section is where all the keywords relevant to data analysis are
stored. Such descriptive keywords include the name of the measurement campaign
or project, the type of cloud, the cloud’s environment, the place where the cloud is
situated, etc. This allows for automatically searching and selecting only the relevant
cloud instances for a given analysis project.

Finally, the Other Attributes section contains attributes of the cloud instance that
cannot be calculated without human intervention. Because human intervention requires
time, these attributes are stored in this section to be retrieved whenever needed. This

3654

Darrel
Comment on Text
droplets are hydrometeors.

Darrel
Comment on Text
Unnecessary to discuss future plans at this point.

Darrel
Comment on Text
This is a good example of why the paper needs restructuring and a concrete scientific problem to address to convince the reader of why this code and data structure can be a faster route to a scientific publication.

10

15

20

25

10

15

20

can, for example, include quality flags or classification results. The users should always
review the Other Attributes section when they make a change to the original data and
re-calculate them if needed.

After creating cloud instances by populating the structure, it is recommended to store
the cloud instances in a list of instances and to save that list of cloud instances (we will
henceforth call this list a cloud database). Users can then load the database and modify
the data further or start the analysis of the data set. It is also possible to scan the cloud
database for a selection of clouds (based on some criteria) and compare them easily.

4.2 Format and methods of a Cloud object

The cloud object methods will only work if the data is placed in the right sections of
the structure and in the correct format. The exact format of the data in the structure
is described in Table 1. The complete format description and an example of software
guiding the creation of a cloud instance can be found with the supporting material in
the software download and the wiki pages. Flexibility and the possibility to add new
sections or new data types to the structure is accommodated: a user can create a new
section at any point without disturbing the built-in methods, as long as the existing
sections of the structure are not affected by the modifications.

To speed up the analysis, the cloud object comes with built-in methods and proper-
ties. These methods and properties are executed in a single-line command and return
standard calculations or plots. By using these methods and properties, users can have
a quick overview of their data set. A list of methods and properties included in this ver-
sion of SAMAC along with a short description can be found in Table 2. More detailed
description is available in the software documentation, online.

A method manipulates the cloud instance either to change its content or to give an
output related to this instance. In the case of SAMAC, non-output methods are rather
used to add new data or filter the data that were downloaded from the source files. We
try to avoid deleting or modifying permanently any of the original data using methods
to prevent accidental changes to take place. The users are, however, still capable of

3655

modifying the original data by directly manipulating the cloud instance’s data. There
is also a method meant to filter erroneous or dummy data using NumPy’s masked
arrays. By using masked arrays, the erroneous data is masked (and thus not used
in calculations or plots) yet the data is still stored and can be retrieved at any time
if needed. The output methods in SAMAC are mostly designed to generate standard
plots (e.g. profile plots) and return calculated quantities (e.g. average amount of drizzle
drops). Some methods are also designed to add information to the cloud instance (e.g.
quality flags for adiabaticity).

A property is a special attribute of a cloud instance that is computed only when ac-
cessed. Cloud properties are also given in Table 2. A property is very close to a method,
but generally less elaborate and used for simpler calculations that do not require input.
An example of a property in SAMAC is the liquid water path. The advantage of having
such quantities computed only when they are accessed is that it gets updated when the
original data involved is changed (for example, if the liquid water content was filtered
or re-calibrated).

5 Software use
5.1 Basic use of Python commands with SAMAC

In this section, we give example lines of code to create a cloud instance and use it.
Some samples of code we used to create our own cloud instances from a data file are
available in the download package. SAMAC has so far only been used with IPython, an
interactive shell for Python. We therefore recommend that users install IPython to run
the software, so better support can be provided.

The first step for using SAMAC is to create a cloud instance. The instance is created
using the __init__ method. For example:

import Cloud

3656

10

15

20

25

10

15

20

25

MyFirstCloud=Cloud.Cloud(data, title, units, times, \

sizedists)
where data, title, units, times and sizedists are input variables containing the cloud’s
data in the specified cloud object format (see Table 1 for a list of formats). The first line
imports the cloud class or cloud object, and the second line creates a cloud instance
called MyFirstCloud. These cloud instances should be saved so they can be loaded in
a later session. We have been saving our instances using the pickle module in a single
list of cloud instances that we call a cloud database.

There are several ways to create a cloud instance. All involve the command lines
above, but the way the data is put into it can vary. Along with SAMAC, we provide our
own code that guides the user into finding the relevant data, shaping the data, and cre-
ating the cloud. This piece of code is tailored for our own data format and modifications
will very likely be necessary. Another way would be to prepare the data, title, units,
times and sizedists variables into the specified format and use the “Cloud.Cloud” com-
mand passing those variables as input. Yet another way to create an instance would
be to create an empty cloud instance, and populate it manually afterwards. It is also
possible to use a mix of passing the data directly and populating it afterwards. Post-
populating the cloud can also be done using some of the built-in methods, especially
the method timechange in the case of the variable times, the methods addsizedist and
addsizedistxl for the variable sizedists, and finally the method add2basic for variables
data, title, and units.

The data in the cloud object can be accessed using the name of the cloud and its
address (replacing “c” in Table 1 by the name of the cloud instance). For example, the
manoeuvre times are accessed like this:

MyFirstCloud.times
To calculate, for example, the average value of the total concentration of the first size
distribution in the list of distributions, the data’s address is used as if it was a variable:

Average_value=numpy.mean(MyFirstCloud.sd[0]["total"])
where numpy.mean is an averaging function available in the NumPy extension, and

3657

MyFirstCloud.sd[0]["total”] is the address of the total concentration array for the first
(indicated by 0, because python counts from zero) size distribution.

Properties are special built-in calculations done on data existing in the cloud in-
stance’s structure. They perform tasks very similar to the previous example, with the
difference that the procedure is already coded and can be performed with a one-line
command. For example, the liquid water path in a cloud can be calculated from a ver-
tical profile, integrating the liquid water content over altitude. This could be performed
by executing a few lines of code each time such quantity needs to be calculated. The
calculation is complex enough and the quantity is required often enough to justify the
coding and use of a property. One can obtain the liquid water path using the property
Iwp for each vertical profile in a cloud instance with this line:

LWP=MyFirstCloud.lwp
The liquid water path is stored in the variable LWP.

Methods are usually more complex and may include input variables or options. Meth-
ods are always called using brackets after the method’s name. For example, to create
or modify a cloud’s description section, a user would type:

MyFirstCloud.describe()
and then create or modify the section through questions in the prompt. If input vari-
ables are required, these variables are defined inside the parentheses. For example,
the method plotavsd plots the average size distribution for a given manoeuvre and
instrument. The method that generates this plot must then be called like this:

MyFirstCloud.plotavsd(prof="verticloud’,scan=2,inst="FSSP96’)
to get the average size distribution of the 3rd (indicated with scan=2) vertical profile
(verticloud), for the FSSP96 (Forward Scattering Spectrometer Probe).

In the case where input variables are required but default values are already de-
fined in the method, the user can choose to define those variables (and change
them) or not. For example, the default for plotavsd is already defined in the method
and is prof="belowcloud’, scan=0, inst="PCASP’. If a user wants to see the average

3658

10

15

20

25

10

15

20

25

size distribution for the first below cloud manoeuvre from the PCASP (Passive Cavity
Aerosol Spectrometer Probe), it would be enough to type this line:
MyFirstCloud.plotavsd()
but this line would also work:
MyFirstCloud.plotavsd(prof="belowcloud’,scan=0,inst="PCASP’)
Input variable definitions and default inputs are explained in the help section of each
method. To read the description for method plotavsd, a user can request help using
this line:
help(MyFirstCloud.plotavsd)

5.2 Example use from the Canadian SOLAS 2003 campaign

The first measurement campaign on which the software was tested was the Canadian
SOLAS 2003 campaign (Leaitch et al., 2010). In this section, we will use examples
from that campaign to illustrate how SAMAC can speed up the analysis of cloud-related
data. In this version of the software, methods and properties, as well as the structure
were designed to study the aerosol-cloud-precipitation interaction, but we would like to
emphasize that it would cost little effort to add sections to the structure or add methods
and properties to fit other types of studies.

Time series and map plots are available from methods overview and mapcloud re-
spectively (Fig. 4). The time series can be used once the cloud instance has been
created to quickly review the measurements. The map shows the path of the measure-
ments performed at any moment, superposed to the ocean and land map. A colour-
coded time tracker is implemented in both methods for easy comparison.

For optimal use, some structure modifying methods should be used early after the
creation of a cloud instance. For example, the methods defheight and defBGheight
guide the user into defining the cloud base and cloud top by simply clicking on vertical
profile plots. It is recommended to use methods describe, defheight and defBGheight,
Iwcflag, and MaskData to create a description section, define the cloud base and top,
evaluate the adiabaticity of the vertical profiles and remove erroneous or unphysical

3659

data, respectively. The method timechange can be used after the creation of the cloud
instance to correct or add times of manoeuvres. See Table 2 for more methods that
modify the cloud instance.

One of the advantages provided by SAMAC is that standard plots can be quickly
generated using methods, leaving more time for users to work on science. For example,
users may want to see the vertical profiles of cloud instances to guide their analysis.
Such profiles can be generated with a single-line command using the method vprof,
which plots each vertical profile in a separate figure, or wholeprof, which plots the data
from the entire measurement period of the cloud instance, with altitude on the y axis
(Fig. 5). Many other plot-making methods are provided (see Table 2 for a full list of the
9 methods with a figure output).

Standard calculations are also built in the analysis software. These are especially
useful when a user wants to compare clouds to each other. Adding calculating meth-
ods is relatively easy. To make the most of community use of SAMAC, once new meth-
ods are coded by users, they should be committed and added to future versions of the
software. There are already 18 methods that calculate new quantities from the cloud
instance’s available data. One useful calculating method is the property Iwp which re-
turns an array with the liquid water path for every vertical profile in a cloud. Examples of
other useful calculating methods are avsizedist, which calculates the average size dis-
tribution (average concentration as a function of particle size) for a given manoeuvre, or
avCDNC, which calculates the average cloud droplet number concentration weighted
according to the liquid water content in a vertical profile. Other intermediate methods
calculate values that are later used by other methods. Examples of such intermediate
methods are belowprof (which finds measurements below cloud, in or under a vertical
profile) and adlwc (which returns the adiabatic liquid water content).

Using these methods, a user could easily plot, for example, the liquid water path as
a function of the in-cloud cloud droplet number concentration for all vertical profiles
of stratiform, marine clouds using only a few lines of code. Assuming the user has

3660

Darrel
Comment on Text
exactly, and more emphasis is needed in this paper on the science.

10

15

20

25

10

15

20

25

a number of cloud instances stored in a cloud database called CloudList, these few
lines would generate a figure like Fig. 6.
index=[i for i, ¢ in enumerate(CloudList) if \
c.desc["cloudtype"]=="stratiform" and \
c.desc["environment"]=="marine"]
LWPs=list(); CDNCs=list();
for i in index
for j in range(len(CloudList[i].times["verticloud")):
LWPs.append(CloudList[i].lwpl[j][0])
CDNCs.append(CloudList[i].avCDNC(scan=j))
plot(CDNCs,LWPs,’bo’)
xlabel(’Cloud Droplet Number Concentration (cm$ “{-319))
ylabel('Liquid Water Path (g m$ “{-31%))
This code could be refined, for example by getting the units automatically from the cloud
instances or by verifying if all cloud instances in the list have the same units. Plotting
of complex quantities is simplified by the use of methods and properties, and the list of
clouds can easily be scanned for cloud instances with selected characteristics.

6 Conclusions

We present a new software package, SAMAC, designed for the analysis of cloud mea-
surement data using the programming language Python. The use of SAMAC by the
aerosol-cloud-precipitation research community can speed-up the analysis of cloud
data and facilitate intercomparisons among datasets and within and among research
groups. Through the release of this software as an open-source project, the quality
of the software may be improved from the evaluation by other researchers, and the
existing methods and the diversity of methods may be improved by user coding ac-
cording to their needs. Moreover, by sharing this software, all users save on coding
time. In addition to describing the structure of the cloud object and the methods and

3661

properties associated with it, a few examples of potential usage of this software shows
how complex quantities can be accessed with only a few lines of code.

Although we recognize the need for further improvements, at its current stage,
SAMAC is advanced enough for other groups to profit from its use. Reciprocally,
SAMAC will benefit from a larger base of users with different needs capable of con-
tributing to the software. Contribution to the software should cost little effort other
than harmonizing the user’s code to the existing code and will centralize aerosol-
cloud-precipitation measurement handling, and make results more comparable to other
users’ results.

Detailed instructions on how to use and/or contribute to this software can be found
on SAMAC'’s wiki pages at https://github.com/StephGagne/SAMAC/wiki. There is a dis-
cussion board (Issues) to discuss needed improvements and direction of future devel-
opment, ask for help, or report bugs.

Acknowledgements. The authors would like to thank David Delene from University of North
Dakota for his constructive comments on an early version of this software. NSERC'’s Visiting
Fellowships in Canadian Government Laboratories Program is acknowledged for Stéphanie
Gagné’s funding. The NSERC USRA program is acknowledged for Landan MacDonald’s fund-

ing.

References

Barnes, N.: Publish your computer code: it is good enough, Nature, 467, p. 753, 2010.

Beazley, D. M.: Python Essential Reference, 4th Edn., Developper’s Library, 2009.

Boucher, O. and Lohmann, U.: The sulfate-CCN-cloud albedo effect: a sensitivity study with two
general circulation models, Tellus B, 47, 281-300, 1995.

Delene, D. J.: Airborne data processing and analysis software package, Earth Science Infor-
matics, 4, 29-44, 2011.

Gagné, S., MacDonald, L., Earle, M., Leaitch, W. R., and Pierce, J. R.: Effect of the aerosol size
distribution on clouds and precipitation — results from the Canadian SOLAS 2003 and NARE
1993 aircraft campaigns, in preparation, 2014.

3662

10

15

20

25

30

10

15

20

N
a

GitHub Help: available at: https://help.github.com/, last access: January 2014.

Hunter, J. D.: Matplotlib: a 2-D graphics environment, IEEE Computer Society, 9, 90-95, 2007.

Kleinman, L. I., Daum, P. H., Lee, Y.-N., Lewis, E. R., Sedlacek lll, A. J., Senum, G. I,
Springston, S. R., Wang, J., Hubbe, J., Jayne, J., Min, Q., Yum, S. S., and Allen, G.: Aerosol
concentration and size distribution measured below, in, and above cloud from the DOE G-
1 during VOCALS-REX, Atmos. Chem. Phys., 12, 207-223, doi:10.5194/acp-12-207-2012,
2012.

Leaitch, W. R., Banic, C. M., Isaac, G. A., Couture, M. D,, Liu, P. S. K., Gultepe, I., Li, S.-M.,
Kleinman, L., Daum, P. H., and MacPherson, J. I.: Physical and chemical observations in
marine stratus during the 1993 North Atlantic Regional Experiment: factors controlling cloud
droplet number concentrations, J. Geophys. Res., 101, 29123-29135, 1996.

Leaitch, W. R., Lohmann, U., Russell, L. M., Garrett, T., Shantz, N. C., Toom-Sauntry, D.,
Strapp, J. W., Hayden, K. L., Marshall, J., Wolde, M., Worsnop, D. R., and Jayne, J. T.
Cloud albedo increase from carbonaceous aerosol, Atmos. Chem. Phys., 10, 7669-7684,
doi:10.5194/acp-10-7669-2010, 2010.

Lin, J. W.-B.: Why Python is the next wave in Earth Sciences Computing, B. Am. Meteorol.
Soc., 93, 1823-1824, doi:10.1175/BAMS-D-12-00148.1, 2012.

Lu, M.-L., Conant, W. C., Jonsson, H. H., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.:
The Marine Stratus/Stratocumulus Experiment (MASE): aerosol—cloud relationships in ma-
rine stratocumulus, J. Geophys. Res., 112, D10209, doi:10.1029/2006JD007985, 2007.

Masked Arrays — NumPy v1.8 Manual: available at: http://docs.scipy.org/doc/numpy/reference/
maskedarray.html, last access: December 2013.

Matplotlib Python Plotting: Matplotlib 1.3.1 documentation, available at: http:/matplotlib.org/,
last access: December 2013.

Merali, Z.: Why scientific programming does not compute, Nature, 467, 775-777, 2010.

Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A new double-moment microphysics pa-
rameterization for application in cloud and climate models. Part |: Description, J. Atmos. Sci.,
62, 1665-1677, 2005.

Nenes, A. and Seinfeld, J. H.: Parameterization of cloud droplet formation in global climate
models, J. Geophys. Res., 108, 4415, doi:10.1029/2002JD002911, 2003.

NumPy: available at: http://www.numpy.org/, last access: December 2013.

Python Programming Language: Official Website, available at: http://www.python.org, last ac-
cess: December 2013.

3663

Rauber, R. M., Zhao, G., Di Girolamo, L., and Colén-Robles, M.: Aerosol size distribution, par-
ticle concentration, and optical property variability near Caribbean trade cumulus clouds:
Isolating effects of vertical tranport and cloud processing from humidification using aircraft
measurements, J. Atmos. Sci., 70, 3063—3083, doi:10.1175/JAS-D-12-0105.1, 2013.

RPy: A simple and efficient access to R from Python, available at: http://rpy.sourceforge.net/,
last access December 2013.

SciPy.org: SciPy.org, available at: http://www.scipy.org/, last access: December 2013.

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and
Miller, H. L.: IPCC, 2007: Climate Change 2007: the Physical Science Basis, Contribution
of Working Group | to the Fourth Assessment Report of IPCC, Cambridge University Press,
Cambridge, UK and New York, NY, USA, 996 pp., 2007.

Wood, R., Mechoso, C. R., Bretherton, C. S., Weller, R. A., Huebert, B., Straneo, F., Al-
brecht, B. A., Coe, H., Allen, G., Vaughan, G., Daum, P, Fairall, C., Chand, D., Gallardo Klen-
ner, L., Garreaud, R., Grados, C., Covert, D. S., Bates, T. S., Krejci, R., Russell, L. M.,
de Szoeke, S., Brewer, A., Yuter, S. E., Springston, S. R., Chaigneau, A., Toniazzo, T., Min-
nis, P., Palikonda, R., Abel, S. J., Brown, W. O. J., Williams, S., Fochesatto, J., Brioude, J.,
and Bower, K. N.: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment
(VOCALS-REX): goals, platforms, and field operations, Atmos. Chem. Phys., 11, 627-654,
doi:10.5194/acp-11-627-2011, 2011.

Yarkoni, T.: The homogenization of scientific computing, or why Python is steadily eating other
languages’ lunch, available at: http://www.r-bloggers.com/the-homogenization-of-scientific-
computing-or-why-python-is-steadily-eating-other-languages-lunch/, last access: 2 Decem-
ber 2013.

Zhang, K., Liu, X., Wang, M., Comstock, J. M., Mitchell, D. L., Mishra, S., and Mace, G. G.: Eval-
uating and constraining ice cloud parameterizations in CAM5 using aircraft measurements
from the SPARTICUS campaign, Atmos. Chem. Phys., 13, 4963-4982, doi:10.5194/acp-13-
4963-2013, 2013.

3664

Table 1. Cloud object structure description. The first column shows the address of a certain
data, the second its name, the third a more detailed description and the fourth the format.

Address Name Description format
c.data Main (basic) data Table including time series of a selection of quan- 2-D numpy array or masked array
tities. All the data should share the same time col- [numpy.ma.core.MaskedArray or numpy.array].
umn. These data would usually include time, aircraft Each quantity is in a row vector.
positioning and cloud-related data.
c.dttl Titles to the main Titles or quantity description associated with the 1-D list. The number of items should correspond to
data main data the number of rows in c.data.
c.dunit Units to the main Units associated with the main data 1-D list. The number of items should correspond to
data the number of rows in c.data.
c.orient Orientation of the Tells whether the main data is organized in rows or string
main data columns.
c.extradatanum Number of extra Number of extra data added after initialization in the integer
data extradata section of the cloud structure (i.e. data
that was not the same length as the main data or
added later).
c.extradata Extra data Extra time series data that has a different time stamp list of items containing extra data in the same format

c.extrattl

c.extraunit

c.sdin]

c.sd[n]["data”]

c.sd[n]["bins"]

c.sd[n]["time"]

Titles to the extra
data

Units to the extra
data

Size distribution
section

Size distribution
unit

Size distribution
concentration
Size distribution
sizes

Size distribution
times

from the main data.

Titles associated with the extra data

Units associated with the extra data

Section in which all the size distributions are stored

Size distribution structure for one instrument

Size distribution concentration as a function of time
and size. The concentration must be in dN/dlogDp
format

Mean particle diameter sizes for the distribution

Times at which the size distribution was recorded

as the main data

list of lists of items containing titles for extra data in
the same format as the titles to the main data

list of lists of items containing units for extra data in
the same format as the units to the main data

list of size distributions. Each size distribution unit
can be accessed using c.sd[number] where number
goes from 0 to the number of size distributions in the
cloud instance.

dictionary. n is the position of the size distribution in
the list of size distributions sd.

2-D numpy array. The shape is number of size bins
(as rows) per number of time entries (as columns)
1-D numpy array. The array should be as long as the

number of rows in c.sd[n]["data”]

1-D numpy array. The array should be as long as the
number of columns in c.sd[n]["data”]

Table 1. Continued.

3665

Address Name Description format
c.sd[n][" Distname”] Size distribution Name of the size distribution, either an instrument string
name name or a more descriptive name such as "aerosol”
of “cloud droplets”
c.sd[n]["units”] Size distribution units of the size distribution’s concentration string
units

c.sd[n]["medp”]

c.sd[n]["mdp"]

c.sd[n]["total"]

c.sd[n]["sourcefile”]

c.sd[n]["sdtype”']

c.times

c.times["cloud”]

c.times["abovecloud”

c.times["belowcloud"]

c.times["horicloud”]

c.times["verticloud”]

c.descedit

Median diameter

Mean diameter

Total particle num-

Median particle diameter for this size distribution

Mean particle diameter for this size distribution

Total particle number concentration for this size dis-

1-D numpy array. The array should be as long as the
number of columns in ¢.sd[n]["data”]

1-D numpy array. The array should be as long as the
number of columns in c¢.sd[n]["data”]

1-D numpy array. The array should be as long as the

ber concentration tribution number of columns in c.sd[n]["data”]
Size distribution Source file for the size distribution’s data string

source file

Size distribution Type of particles measured in this size distribution string

type (Aerosol, Cloud droplet, or Precipitation)

Manoeuvre times

Period measuring

Periods vertically in

cloud

Number of descrip-

tions

Times at which the cloud measurement and ma-

noeuvres start and end

a cloud started and ended

"] Periods above Times at which the measurements above the cloud
cloud started and ended
Periods below Times at which the measurements below the cloud
cloud started and ended
Periods horizon- Times at which the measurements horizontally in
tally in cloud the cloud started and ended

cloud started and ended

Times at which the measurements of the cloud

Times at which the measurements vertically in the

Number of times the method describe has been

dictionary. All times in the entire structure should be
in days since 1 Jan of year 0 (1 Jan of year 0 at noon
would be written 1.5)

numpy array. Shape is 1 per 2. Start time at [0,0]
and end time at [0,1].

numpy array. Shape is N per 2. Start time at [N, 0]
and end time at [N, 1] where N is the (N - 1)th mea-
surement leg above cloud.

numpy array. Shape is N per 2. Start time at [N, 0]
and end time at [NV, 1] where N is the (N — 1)th mea-
surement leg below cloud.

numpy array. Shape is N per 2. Start time at [N, 0]
and end time at [N, 1] where N is the (N - 1)th mea-
surement leg horizontally in cloud.

numpy array. Shape is N per 2. Start time at [N, 0]
and end time at [N, 1] where N is the (N - 1)th mea-
surement leg vertically in cloud.

integer

used to either create or edit the Descriptive Data

section.

3666

Table 1. Continued.

Address Name Description format
c.desc Descriptive Data Section where qualitative or descriptive data is dictionary
stored
c.desc[”campaign”] Campaign Name of the campaign or project where the data string
was measured or created
c.desc["date”’] Date Date on which the cloud was measured string, YYYYMMDD
c.desc["time"] Time of cloud The time at which the cloud measurement started. string, HH:MM
c.desc[”cloudtype”] Type of Cloud Type of cloud observed (e.g. Stratiform, convective, string
etc.)
c.desc["environment”’] Environment Environment in which the cloud was situated (e.g. string
Maritime, desert, tropical forest, etc.)
c.desc["flight#"] Flight number Flight or simulation number or name string
c.desc[’humanplace”’] Place Place above which the cloud was measured. The string
place should be recognizable by humans (e.g., a city
name)
c.desc["warmcold"”] Cloud temperature ~ Warm, cold (ice), or mixed clouds string
c.desc[landwater”] Surface Surface type below the cloud: land, water or both. string
c.desc["layered”] Layered Describes if there is a knowledge of other layers of string
cloud above or below the measured cloud
c.props Other Attributes Section in which properties needing human input dictionary
are stored after initialization
c.props[”height”] Height Cloud base and top height for all vertical profiles list of numpy arrays. For each vertical profile there

(lower and upper estimates) is a height entry (in the same order). Each entry is
an array of shape 4 by 1 that includes the lowest
and highest estimate for cloud base and lowest and
highest estimate for cloud top.

c.props|[”BGheight”]

Best guess height ~ Cloud base and top height for all vertical profiles

(best guess)

list of numpy arrays. For each vertical profile there is
a best guess height entry (in the same order). Each
entry is an array of shape 2 by 1 with the best guess
for cloud base and cloud top.

c.props["Iwcflags”]

LWC flags Flags reflecting the quality of the LWC profile com-

pared to the adiabatic LWC

list of numpy arrays. For each vertical profile there is
a LWC profile quality entry (in the same order). Each
entry is an array containing all the flags pertinent to
the profile.

3667

Table 2. List of methods and properties available in SAMAC 0.9.2. The name of the method or
property is found in the first column, followed by a short description, a list of inputs and, in the
last column, a list of outputs.

Name Description Inputs Outputs
Methods Methods are called using parentheses at the end of the method’s name. E.g. c.cloudplot() or c.cloudplot(Rtime=1)
overview Plots the time series of altitude, particle concentration, droplet interact: interactive mode, ~ Figure
concentration, liquid water content and drizzle concentration on Rtime: time format option
one subplot with possibility of offsetting and magnifying each
data. Plots the latitude and longitude on a second subplot. The
plot includes a manoeuvre tracker and a time tracker.
mapcloud Plots the trajectory of the probe over a map, one subplot zoomed interact: interactive mode Figure
out and one zoomed in includes a time tracker. The size of the
dots indicates the liquid water content.
add2basic Adds data to the basic aircraft data, if the new data shares the newdata: the new data to None. The method modi-
same time vector, or adds it to c.extradata if they have a different be added, fies the cloud instance.
time vector. newttl: new titles,
newunit: new units
describe Prompts the user to create a description section or modify the None None. The method modi-
current description. fies the cloud instance.
plotsd Plots the size distribution (colour plot) for a selection of instru- Rtime: time format option Figure(s)

ments, and scans, as a function of time.

addsizedistxl Adds a size distribution from an excel file to the size distribution None None. The method modi-
section. fies the cloud instance.
addsizedist Adds a size distribution from a text file to the size distribution None None. The method modi-
section. fies the cloud instance.
vprof Plots the vertical profile(s) of a cloud instance: altitude on the interact: interactive mode Figure(s)
y axis and liquid water content, total concentration from various
size distribution instruments, relative humidity, drizzle concen-
tration, temperature, theta Q, effective radii from various instru-
ments.
wholeprof Plots the liquid water content, total concentration from various interact: interactive mode Figure

size distribution instruments, relative humidity, drizzle concentra-
tion, temperature, theta Q, effective radii from various instruments
of a cloud instance on the x axis and altitude on the y axis.

3668

Table 2. Continued.

Name Description Inputs Outputs
defheight Prompts the user to define a range for the cloud base and top for None None. The method modi-
every vertical profile by clicking on a figure. fies the cloud instance.
defBGheight Prompts the user to enter a best guess cloud base and top for None None. The method modi-
every vertical profile by clicking on a figure. fies the cloud instance.
Iwcflag Prompts the user to assign quality flags for liquid water content None None. The method modi-
profiles in each vertical profiles by comparing to the adiabatic fies the cloud instance.
liquid water content.
timechange Prompts and guides the user to redefine or add manoeuvre times. Rtime: time format option ~ None. The method modi-
fies the cloud instance.
MaskData Masks data that the user selects by drawing a square on a plot None None. The method modi-
or filtering for outliers. fies the cloud instance.
avsizedist Returns the average size distribution concentration and sizes. prof: chosen manoeuvre, 2-D NumPy Array
num=(n-1)th manoeuvre
of the chosen type,
Inst: instrument
plotavsd Plots an average size distribution. prof: chosen manoeuvre, Figure
num=(n-1)th manoeuvre
of the chosen type,
Inst: instrument
plotallavsd Plots the average size distribution for all instruments, with possi- prof: chosen manoeuvre, Figure
ble exceptions. num: (n-1)th manoeuvre
of the chosen type,
Interact: interactive mode,
Exc: excepted instru-
ments
belowprof Finds the probe passages below cloud, below vertical profiles. None List of dictionaries
Also find points where the plane was in the same area as the
vertical profile (below-, above-, and in-cloud).
Table 2. Continued.
Name Description Inputs Outputs
hrzplot Plots the altitude, liquid water content, droplet and aerosol total interact: interactive mode, Figure(s)
concentration, theta @, temperature, updraft velocity and its run- Rtime: time format option
ning standard deviation as a function of time during a horizontal
manoeuvre. One plot is made for each horizontal manoeuvre.
precipincloudTF Tells whether there is precipitation in-cloud (horizontal or vertical ~abovesize: drizzle bigger Boolean
manoeuvres). than this size
totalprecip Returns the integrated precipitation number concentration for abovesize: drizzle bigger Float
a vertical profile. than this size,
scan: (n-1)th vertical pro-
file
totalvolprecip Returns the integrated precipitation volume concentration for abovesize: drizzle bigger Float
a vertical profile. than this size,
scan: (n-1)th vertical pro-
file
precipconc Returns the integrated precipitation number concentration in- abovesize: drizzle bigger Float
cloud for a vertical profile. than this size,
Scan: (n-1)th vertical pro-
file,
minlwe: minimum liquid
water content to be con-
sidered in-cloud
avCDNC Returns the weighted average cloud droplet number concentra- abovesize: droplets Float
tion (weighted according to the liquid water content) in a vertical above this size,
profile. uppersize: droplets below
this size,
Inst: instrument,
Scan: (n-1)th vertical pro-
file
vpinfo Computes statistical information about a quantity from the main param: name of the quan- Dictionary

data for vertical profiles.

tity in the main data

3670

Table 2. Continued.

Name Description Inputs Outputs
effrad Computes the effective radius for a given instrument during the inst: instrument, 1-D NumPy Array
entire cloud period. bindist: are the size bins
distributed linearly or log-
arythmically
path3d Plots a 3-D view of the probe’s path None Figure
writeouthdf5 Creates an hdf5 programming language-independent backup file fName: name of the file to Hdf5 file
for the cloud where all the data is saved. be saved
fdir: path of the directory
in which the file should be
saved
Properties Properties are called directly. E.g. c.lwp
Iwp Calculates the liquid water path for each vertical profile. X Numpy Array
adlwe Returns the altitude and corresponding adiabatic liquid water x List of 2-D NumPy Arrays
content.
thickness Computes the maximum and minimum estimated cloud depth for x Dictionary of lists of
each vertical profile. NumPy Arrays
tempinfo Special case of vpinfo over the whole cloud. (Does not handle the x Dictionary
extradata module.)
presinfo Special case of vpinfo use over the whole cloud. (Does not handle x Dictionary
the extradata module.)
precipblwTF Tells whether there is precipitation below cloud. X Dictionary of booleans
precipblwvpTF Tells whether there is precipitation below cloud, below a vertical x Dictionary of lists of
profile. booleans
turbhrz Returns the average updraft velocity standard deviation and the x List of lists of lists
distance over which the average was calculated. Also returns the
corresponding indexes for the used stretches of measurements.
angles Returns the time, vertical angle and horizontal angle of the air- x List of 1-D NumPy Arrays
craft or probe.
3671
5
P -4— Time series
- — Altitude (km)
Ptcl conc (log/cm-3)
2L 1|+ + Dropl conc (logicm-3)
1 — LWC (log)
ol 1 Drizzle>100 (log/l-1)
« + Drizzle=200 (log/l-1)
-1 18:28 18:36 18:43 18:50 18:57 19:04 19:12 19:19
Average size dist for verticloud no. 0 on 20031013 & 19.24
FS5P124 - verticloud no. o &0 ' N ~ (Seutn Mr_lau!}_tmw_xl
{sso Average size |
- 1500 5 . pdistribution fog |
£ F | Al \'w" e Y
£ ! i \
§ 5w multiple
] | Maps of & mutp 1
the instruments |
1300 = - L}
: ; . during a given b
. . I I L., | aircraft's gag .
18:27:38 18:27,56 18:26:13 16:26:30 15:28-48 18:29:05 18:29:22 . - FssP300| Manoeuvre
Tima (oays) trajectory s FEEPL2M |9
v+ F55896 .
c—. - — Flight map o I .

w ut W W 10 size=hi
Concantration {(aN/dlogDakm '}

Size
distribution as
a function of ..,
time for one
instrument <™~
during a gi\ren&\N
manoeuvre

Situation

<
ime {black bo white)

s

=" Measured
s (blue) and i«

adiabatic fe
wen (red) LWC

40

TTW G W B W AW W & 1w X

Fig. 1. Figures generated by a selection of methods available in SAMAC. On the first row, the time series shows
a selection of data as a function of time (more detail on the time series in Fig. 4a). On the left-hand side figure of
the middle row is a size distribution as a function of time during a vertical profile manoeuvre. The colour represents
the concentrationand the black line the altitude. On the righthand side, the average size distribution is plotted for
a selection of instruments for one manoeuvre. The maps on the bottom row show a general situation map and a
zoomed-in trajectory of the aircraft in the cloud (more detail on the maps in Fig. 4b). Finally, the figure in the lower right

corner displays a profile of the measured and adiabatic liquid water contents.

3672

4295 L

in a vertical
|[*"" manoeuvre .
B

CER Ty
i igem

| Juedeq uoissnosiq | J1aded uoissnosiq

Jaded uoissnosiq

Jaded uoissnosiq

| Juedeq uoissnosiq | Jeded uoissnosiq

Jaded uoissnosiq

Jaded uoissnosiq

- Figure 30 - + x

ﬁ g ﬂ ﬁ @ E y x=731502 y=1.78786

Fig. 2. This is an example of an interactive method. In this case, the method asks the user to
choose a data type to display. The user can then choose to use an automatic outliers removal
tool or to zoom in and select the points that need to be masked with a few clicks of the mouse.
Here, the points in the red rectangle will be masked when the user confirms it.

3673

Campaign Titles
Basic Aircraft Data Units
Date
Descriptive Data as function of time
Cloud Type Data (e,0. time, altitude,

temperature, etc)
Times
series Data as function of time

(different time stamp from
the Basic Aircraft Data)

Environment

Flight no.

Place
Titles
Cloud Mode Extra Data

(warm, mixed, cold)
Etc.

Units
Measurement type

Instrument name
Size -
Distributions e
. Times

Concentrations

Whole Cloud

Above Cloud
Total concentration

Below Cloud Times of

Manoeuvres Units
Horizontals
Cloud height
Verticals
Quality flags

Other Attributes
Etc

Fig. 3. Basic structure of the cloud object. All main sections are created upon initialization of
a cloud instance (except for the Descriptive Data section, which is created using the method
describe).

3674

Jadedq uoissnasiq | Jeded uoissnosiq | Jaded uoissnosig | Jeded uoissnosiqg

Jladed uoissnosiq | Jeded uoissnosig | Jededq uoissnosig | Jeded uoissnosig

-

43.00

42,95

42.90

[}
-
3

o = N W N u

242.85F

Altitude (km)
« Ptcl conc (log/cm-3)

- Drizzle>100 (log/I-1)

Dropl conc (log/cm-3)
LWC (log/g/m3)

Drizzle>200 (log/I-1)

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

Alt M=1; 0=0
Ptcl M=10; 0=0
Drop M=100; O=
LWC M=1000;

2d100 M=

=)

it
42.80 |4

« Latitude
» Longitude

42.75

42.70

i i i
0.790 0.795 0.805

Time

i i i
0.770 0.775 0.780 0.785 0.800

Fig. 4a. Qualitative view of the aircraft’s altitude, the measured particle and cloud droplet total
concentrations, the liquid water content and drizzle drop concentration in the upper subplot, and
the aircraft’s latitude and longitude on the lower subplot. All the data in the upper subplot can
be magnified and/or offset (values of which are indicated in the rounded box on the right hand
side of the plot). At its bottom, a colour-coded time tracker is inserted. The lower subplot shows
the latitude (left axis) and longitude (right axis) of the aircraft or probe. At its top, the colours
indicate which manoeuvre the aircraft is making (magenta= vertical, cyan = below cloud, black=
horizontal in cloud and yellow= above cloud).

3675

Flight map:
size=lwc
color=time (black to white)

Situation / .
= / 42.95°N
44°N
w*’f] 42.9°N
' = AW
42.85°N
42°N
\\ 42.8°N
41°N \
A0° N —57W 66°W 65°W 64°W 63°W Uy !) 42.75°N
\\SZ
65.1°W 65°W

Fig. 4b. Path of the aircraft or probe while the cloud instance was being measured. The subplot
on the left shows a zoomed-out map and the subplot on the right shows a zoomed-in situation,
with the size of the points corresponding to the liquid water content and the colour correspond-
ing to the time tracker in the time series (a).

3676

Jaded uoissnosiq | Jaded uoissnosiq

Jaded uoissnosiq

Jaded uoissnosiq

| Juedeq uoissnosiq | Jeded uoissnosiq

Jaded uoissnosiq

Jaded uoissnosiq

20031013 @ 18:24 - South of Nova Scotia
(Whole cloud profile)

RH (%) Temperature (C), ThetaQ (C)
160060 6[5 7‘9‘7‘5‘8‘0 8§ 99 9‘5 100 160(}5 Zp 2§ 39 3‘5 49 4§ 50 55

1400 1400

1200 1200

1000 1000

— LWC

— FSSP124

- - FSSP96

— FSSP300

- - PCASP

-- RH

* x Drizzle 2dc >100um
* * Drizzle 2dc >200um
— Temperature

— ThetaQ

5

Altitude (m)
4]
o
o

600 600

400 400

200

0 R 0 ‘ ‘ ‘
10° 102 10" 10° 10* 10% 10° 10" 102 10° 10* 10

Aero & CDNC Conc. (cm-3), LWC (g/m?) Drizzle Conc. (I-1)

Fig. 5a. Two methods that display the vertical profile of a cloud. In this cloud instance, the
aircraft made three vertical profiles (in addition to two below-cloud manoeuvres, two above-
cloud manoeuvres and one in-cloud horizontal manoeuvre). (a) was created using the method
wholeprof and displays the liquid water content, FSSP total concentrations, PCASP total con-
centration, relative humidity, drizzle concentrations above 100 and 200 microns, as well as
temperature and theta Q for all the manoeuvres as a function of altitude on the y axis.

3677

20031013 @ 18:24 - South of Nova Scotia
(vert. scan #0)

RH (%) Temperature (C), ThetaQ (C), De (um)
coJ0_75 80 85 90 95 100 0 10 20 30 40 50 60 70 80
550} 550 I% * ow 1T— 1wc
! ' — FSSP124
500+ 500 —: ! 1 -- FSSP96
| i R — FSSP300
1
E 450} 450! * | - PCASP
v - -~ RH
kel 1 .
2 | * * % Drizzle 2dc >100um
= L b i
< 400 400p | ¢ { * = * Drizzle 2dc >200um
: s * — Temperature
3501 1 3s0() A3 * 1 — ThetaQ
: § : * — Deff (FSSP124)
3001 1 00l P * | -~ Deff (FSSP96)
< A= . — Deff (FSSP300)
ol = 7 { - e -~ Deff (PCASP)
10° 102 10" 10° 10' 10% 10° 100 10° 10° 10* 10°
Aero & CDNC Conc. (cm-3), LWC (g/m?) Drizzle Conc. (I-1)

Fig. 5b. was created using the method vprof and displays the same quantities as (a) as well
as the eff ective radii of the FSSPs and PCASP for the first vertical profile only, as a function of
altitude on the y axis.

3678

Fig. 6. Figure resulting from the example code at the end of Sect. 5.2. Here, we plotted the
liquid water path as a function of the cloud droplet number concentration. Many other useful
figures can be plotted using all the available methods and properties.

3679

