
AMTD
8, 10213–10247, 2015

From pixels to
patches

Q. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Meas. Tech. Discuss., 8, 10213–10247, 2015
www.atmos-meas-tech-discuss.net/8/10213/2015/
doi:10.5194/amtd-8-10213-2015
© Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Measurement
Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

From pixels to patches: a cloud
classification method based on bag of
micro-structures
Q. Li1, Z. Zhang1, W. Lu2, J. Yang2, Y. Ma2, and W. Yao2

1Beijing Key Lab of Transportation Data Analysis and Mining, Beijing Jiaotong University,
Beijing, 100044, China
2State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences,
Beijing, 100081, China

Received: 6 July 2015 – Accepted: 7 September 2015 – Published: 5 October 2015

Correspondence to: Q. Li (liqy@bjtu.edu.cn) and W. Lu (wtlu@cams.cma.gov.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

10213

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 10213–10247, 2015

From pixels to
patches

Q. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Automatic cloud classification has attracted more and more attention with the increas-
ing development of whole sky imagers, but it is still in progress for ground-based cloud
observation. This paper proposes a new cloud classification method, named bag of
micro-structures (BoMS). This method treats an all-sky image as a collection of micro-5

structures mapped from image patches, rather than a collection of pixels. And then
it constructs an image representation with a weighted histogram of micro-structures.
Lastly, a support vector machine (SVM) classifier is applied on the image representa-
tion because SVM is appealing for sparse and high dimensional feature space. Five
different sky conditions are identified: cirriform, cumuliform, stratiform, clear sky and10

mixed cloudiness that often appears in all-sky images but is seldom addressed in liter-
ature. BoMS is evaluated on a large dataset, which contains 5000 all-sky images that
are captured by a total-sky cloud imager located in Tibet (29.25◦N, 88.88◦ E). BoMS
achieves an accuracy of 90.9% for 10 fold cross-validation, and it outperforms the
state-of-the-art method with an increase of about 19%. Furthermore, influence of key15

parameters in BoMS are investigated to verify their robustness.

1 Introduction

Clouds play an important role in the hydrological cycle and the energy balance of the
atmosphere–earth surface system because of the interaction with solar and terrestrial
radiation (Stephens, 2005). Cloud type is an important cloud macroscopic parameter20

and plays an essential role in meteorological research. Classification of cloud types is
extensively studied based on both satellites and ground-based weather stations. Cloud
classification is first investigated based on satellite images (Ameur et al., 2004; Tahir,
2011; Hu et al., 2015). Most of these methods apply texture features and classifier
models to distinguish among different cloud types. However, the information provided25

by large-scale satellite images is not sufficient enough and even contains errors some-
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times. For example, these images have too low resolution to capture detailed character-
istics of local clouds; thin clouds and earth surface are frequently confused in satellite
images because of their similar brightness and temperature (Ricciardelli et al., 2008).
By contrast, ground-based cloud observation can obtain more accurate characteristics
for local clouds, and ground-based cloud classification has attracted more and more5

attention (Tapakis and Charalambides, 2013).
Traditionally, cloud type is generally classified by professional observers in ground-

based cloud observation. Human observation, however, is somewhat subjective and in-
consistent. For example, different observers may obtain different cloud types according
to a same sky condition due to different levels of professional skill. Nowadays ground-10

based imaging devices, which take advantage of new embedded hardware technol-
ogy and digital image processing techniques, are commonly applied for automated
cloud observation. A number of sky-imaging systems have been developed in recent
years (Tapakis and Charalambides, 2013). Currently, there are two frequently referred
imaging systems: the first one is the whole-sky imager (WSI) series developed by the15

Scripps Institute of Oceanography, University of California, San Diego. WSIs measure
radiances at distinct wavelength bands across the hemisphere and retrieve cloud char-
acteristics (Shields et al., 1998; Kassianov et al., 2005; Urquhart et al., 2015). The
other imager system is the total-sky imager (TSI) series, which are manufactured by
Yankee Environmental Systems, Inc. TSIs provide color images for the daytime hemi-20

spheric sky conditions and derive fractional sky cover and other useful meteorological
information (Long et al., 2006; Calbo and Sabburg, 2008; Mantelli Neto et al., 2010;
Jayadevan et al., 2015). In addition, a number of other ground-based sky imagers have
also been developed in some other countries and institutes, such as the whole-sky
camera (Calbo and Sabburg, 2008; Heinle et al., 2010) and the total-sky cloud imager25

(Li et al., 2011; Yang et al., 2012, 2015). Most of these sky imagers capture sky con-
ditions with red–green–blue (RGB) color images named all-sky images, and are suc-
cessfully applied to estimate cloud cover. Automatic cloud type classification, however,
is still under development.
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The modern cloud classification methods are often built upon specific cloud charac-
teristics with the help of certain machine learning models, such as k nearest neigh-
bor (KNN), artificial neural networks and support vector machine (SVM). Singh and
Glennen (2005) investigated most well-known texture features for cloud classification,
which recognizes common digital images (without 180◦ FOV) to five different sky condi-5

tions. These features include autocorrelation, co-occurrence matrices, edge frequency,
Law’s features and primitive length. They pointed out that no single feature is sufficient
enough. Calbo and Sabburg (2008) first studied cloud classification for all-sky images.
They represented cloud image by statistical measurements of texture, frequency char-
acteristics of Fourier transform and others. However, this method achieves an accu-10

racy of only 62%. Afterwards, Heinle et al. (2010) categorized all-sky images by KNN
classifier based on a set of statistical features and gray-level co-occurrence matrices
(GLCM). They divided sky conditions into seven types and achieved a high accuracy
for leave-one-out cross validation. Kazantzidis et al. (2012) improved the method of
Heinle et al. by combining traditional features and extra characteristics, such as solar15

zenith angle, cloud coverage and the existence of raindrops in sky images. Recently,
texture features based on salient local binary patterns are applied for cloud classifica-
tion, and achieves competitive performance (Liu et al., 2013; Liu and Zhang, 2015).
Kliangsuwan and Heednacram (2015) proposed a new technique called fast Fourier
transform projection on the x axis, which extracts features by projecting the values of20

logarithmic magnitude of FFT images on the x axis of the frequency domain. Cheng
and Yu (2015) presented a block-based cloud classification method, which divides an
image into multiple blocks and identifies the cloud type for each block based on both
statistical features and distribution of local texture features.

The features, which represent a cloud image with a numerical vector, are essential25

for cloud classification. The features applied in literature for cloud classification can be
roughly divided into three categories: physical, spectral and textural. Physical features
concern the physical properties of a sky condition, such as brightness, temperature,
whiteness and cloud coverage (Kazantzidis et al., 2012). Spectral features describe the
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average color and tonal variation of a cloud image (Heinle et al., 2010; Xia et al., 2015).
Textural features refer to the spatial distribution of pixel intensity within a cloud image,
i.e. homogeneity, randomness and contrast of the gray level differences of the pixels
(Singh and Glennen, 2005; Cheng and Yu, 2015; Liu and Zhang, 2015). Essentially, all
these features are built upon pixels, which are encoded by RGB vectors as showing in5

Fig. 1. They are not sufficient enough for cloud classification considering the following
aspects.

– Physical and spectral features are not accurate themselves, because pixels have
great variation and are easy to be noised. Mathematically, a pixel can be regarded
as an element of a three-dimensional vector set, which has totally 3256 elements10

if each channel of red-green-blue is quantized to 256 levels. Furthermore, the
RGB values are often influenced by cameras and atmospheric interference. So
it is a nontrivial task to accurately measure physical characteristics of clouds.
For example, cloud coverage, which refers to the fraction of the sky obscured by
clouds, depends on the performance cloud detection, but it is difficult to estimate15

cirrus clouds (Li et al., 2012).

– Textural features (such as GLCM) often represent the global appearance of an
image and are sensitive to scale and rotation. All-sky images, however, need rep-
resentation with rotation invariance since cloud may appear in any direction of an
all-sky image. Furthermore, such global textural features would be confused if an20

all-sky image contains multiple types of clouds (Cheng and Yu, 2015).

– These features based on pixels describe low-level visual characteristics of cloud
images, but fail to encode middle-level structural information or high-level con-
cepts. Structural information, however, is more useful for classification (Zhang
et al., 2007). According to Fig. 1, a pixel is just labeled by a RGB vector, but25

a patch can be defined as certain micro-structure, which can be given a mean-
ingful description. In fact, the features based on patches are more popular than
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those features based on pixels in the community of computer vision (Huang et al.,
2014).

Accordingly, we put forward the new cloud image representation, named “bag of
micro-structures” (BoMS). BoMS is constructed on image patches, rather than pixels.
More specifically, an all-sky image is firstly equally divided into patches (maybe with5

overlap), and then each patch is mapped to a micro-structure by vector quantization.
Finally, the image is regarded as a collection of micro-structures just as a textual doc-
ument consists of many words, and its features are encoded by a weighted histogram
of micro-structures. BoMS outperforms the traditional cloud representations based on
two factors: (1) a patch is more informative and robust than a pixel for a cloud image.10

Micro-structures, which are learned offline from an image set, denote general patterns
shared by many image patches, so a label of a micro-structure denotes a higher level
concept compared with a RGB vector of a pixel. (2) The holistic histogram representa-
tion is high dimensional but sparse, so it is discriminative, even linearly separable for
SVM classifier.15

The remainder of this paper is organized as follows. Section 2 describes the dataset
and cloud classes. Section 3 introduces the proposed cloud classification method. Sec-
tion 4 presents experiment results. Finally, Sect. 5 gives our conclusions.

2 Dataset and cloud classes

2.1 Dataset20

Images used for development and evaluation of BoMS were obtained from the total-
sky cloud imager (TCI) (Li et al., 2011), which is located in Tibet (29.25◦N, 88.88◦ E).
The TCI, developed by the Chinese Academy of Meteorological Sciences, is based on
commercially available components. The basic component is a digital camera, which is
equipped with a fisheye lens to provide a field of view larger than 180◦ and is enclosed25

by a weather protection box. The TCI is programmed to acquire images at fixed inter-
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vals, and all images are stored in color JPEG format with a resolution of 1392×1040
pixels. Note that these images are rectangular in shape but the whole sky mapped is
circular, where the center is the zenith and the horizon is along the border. Figure 2
displays an example of such all-sky image. Because the region near circular border
contains certain terrestrial objects, such as trees and buildings on the horizon of the5

TCI, we eliminate the areas out of circle of interest (COI), which is defined by the cen-
ter (cx,cy ) and radius r . We set (cx,cy ) with (718,536) and r with 442. Note that the
defined COI is the exact area for feature extraction and type identification.

We screened the complete image set that was observed during August 2012 to
July 2014 and selected 5000 all-sky images in this work according to our predefined10

cloud classes (see next section). We did our best to ensure that the dataset includes
a large variety of different cloud forms. The dataset contains 1000 independent images
per cloud class.

2.2 Cloud classes

There are different types of clouds with different properties depending on several pa-15

rameters. Traditionally, manual cloud classification takes cloud shape as the basic fac-
tor, together with its development and interior micro-structure. It divides cloud into 29
varieties of 10 genera in three families with high, mid-, and low levels, according to
the “Linnean” system developed by Howard (1803). These are the criteria used by sur-
face observers but they are unsuitable for automatic cloud classification. Calbo and20

Sabburg (2008) defined eight different sky conditions for automatic cloud classification,
while Heinle et al. (2010) considered seven types. Note that there are also other config-
urations of cloud types for automatic cloud classification, and recent reviews are seen
in (Tapakis and Charalambides, 2013).

Stratiform, cumuliform, and cirriform clouds are most common sky conditions, and25

they are primary classes in many cloud classification systems (Tapakis and Charalam-
bides, 2013; Xia et al., 2015). Furthermore, a sky condition obtained by an all-sky
imager often contains multiple types of clouds (Cheng and Yu, 2015). We, therefore,
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define five sky conditions for cloud classification as demonstrated in Table 1. Cirriform
clouds are very wispy and feathery looking; cumuliform clouds are usually puffy in ap-
pearance, similar to large cotton balls; stratiform clouds are horizontal, layered clouds
that stretch out across the sky like a blanket. An image of these classes contains single
cloud type, whereas an image of mixed condition contains more than one cloud type5

together. This configuration of cloud classes is similar to those used by Liu et al. (2011)
and Xia et al. (2015), except for the augmented class of mixed cloudiness, which is
never investigated in literature but mostly occurs in all-sky images.

3 Cloud classification based on bag of micro-structures

In this section, we first briefly introduce the background of BoMS and the pipeline of10

the cloud classification method, and then describe the details of BoMS, including patch
descriptor, dictionary of micro-structures and holistic image representation. At last, the
classifier with SVM is presented.

3.1 Overview of the proposed cloud classification method

3.1.1 Review of the bag-of-words model15

The bag-of-words model is a simplifying representation used in natural language pro-
cessing and information retrieval. In this model, a document is represented as the
bag of its words, disregarding grammar and even word order but keeping multiplicity
(Joachims, 1998). The document is first parsed into words. The words are represented
by their stems, for example, “work”, “working”, “works” would be designated by the20

stem “work”. Moreover, a stop list is often used to reject very common words (such as
“the”, “a” and “does”), because they occur in most documents and are not meaningful
enough to discriminate different documents. After that, the remaining words are as-
signed a unique label, and the document is represented by a vector that indicates the
occurrences of these words. Note that each component of the vector is often weighted25

10220

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 10213–10247, 2015

From pixels to
patches

Q. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

in various ways in order to improve their degree of discrimination (Baeza-Yates and
Ribeiro-Neto, 1999). Finally, such vectors are used as features for document classifi-
cation or used to build an index for information retrieval.

3.1.2 Pipeline of the cloud classification method

Inspired by the bag-of-words model, we propose the new cloud classification method,5

which treats a cloud image as a collection of micro-structures, rather than a collection
of pixels. More specifically, the proposed method includes two aspects: learning and
recognition, as shown in Fig. 3. Learning procedure is offline, and carries out two tasks:
learning dictionary of micro-structures and training SVM model. Recognition procedure
analyzes an input image and identifies its cloud class. It includes four main procedures.10

1. Dividing an input image into patches (maybe with overlap), and extracting a de-
scription for each patch according to its appearance. In other words, the input
image is treated as a collection of patches, rather than raw pixels.

2. Assigning patch descriptors to a set of predetermined micro-structures by vec-
tor quantization. Each patch is mapped to a label of certain micro-structure in15

a learned dictionary, so the input RGB image can be transformed into a label ma-
trix. Each element of the label matrix refers to the index of a micro-structure for
its corresponding patch. Accordingly, the image is regarded as a bag of micro-
structures, just as a document is represented by its words.

3. Constructing a holistic image representation based on BoMS. The histogram of20

micro-structures is calculated and used as the feature representation of the input
image.

4. Applying a SVM classifier to identify the category of the input image, whose fea-
ture vector is represented by histogram of micro-structures.

We refer to the quantized patch descriptors as micro-structures, because each25

micro-structure represents a common pattern or appearance shared by many patches.
10221
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Micro-structures for a cloud image play the same role as words for a text document,
though they do not necessarily have an actual meaning as “wispy cloud”, or “puffy
cloud”.

3.2 Cloud representation of BoMS

3.2.1 Patch descriptor based on appearance5

A cloud image is regarded as a collection of multiple local patches, rather than simple
pixels. Image patches should be firstly described by certain feature vectors (named
descriptors) based on their visual appearance. Of course, this descriptor should be
discriminative for cloud patches. We apply statistical measurements of color and con-
trast to describe image patches, because color and contrast are the most important10

appearance features to distinguish cloud patches and others patterns.
Firstly, a cloud image is equally divided into several patches (maybe with overlap).

Given an image I with width w and height h, a patch refers to a square area defined
by the top-left point (px,py ) and size s, 1 ≤ s ≤min(w,h). Furthermore, all patches are
indirectly specified by the sampling step τ. Of course, if τ equals s, cloud images would15

be segmented into grids without overlap. Note that the border patches that are partly
beyond the scope of COI are discarded because they contain nonsense pixels.

Secondly, statistical measurements of color and contrast are extracted as a descrip-
tor for each patch. The mean, standard deviation and skewness of blue component
are considered as used by (Heinle et al., 2010). In addition, similar measurements for20

the ratio of red and blue components are applied as a supplement, since such ratio
is powerful to distinguish cloud from sky (Calbo and Sabburg, 2008). Furthermore,
difference between color components is verified to be useful feature for cloud classi-
fication (Heinle et al., 2010), so improved contrast features based on such difference
are included in the patch descriptor as well. More specifically, the patch descriptor is25

calculated as follows.
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Mean, standard deviation, and skewness of blue component

Color is one of the most important characteristics to distinguish clouds and sky. Es-
pecially, the blue component has the highest discrimination power. So the mean Mb,
standard deviation Db and skewness Sb of blue component are firstly considered in
the patch descriptor. Mb encodes the main color appearance, while Db and Sb partly5

describe the texture characteristics for an image patch.

Mb =
∑s2

i=1
Bi/s

2, (1)

Db =

√∑s2

i=1
(Bi −Mb)2/

(
s2 −1

)
, (2)

Sb =
1

s2 −1

∑s2

i=1

(
Bi −Mb

Db

)3

, (3)

where Bi refers to the intensity value of blue channel for the pixel i in a patch with size10

s.

Mean, standard, and skewness of the ratio of red and blue components

The ratio of red and blue components is a popular feature used to classify cloud from
sky, because a clear sky scatters more blue than red light and appears blue, whereas
clouds scatter blue and red light with similar extent and appear white or grey (Calbo15

and Sabburg, 2008). So the mean Mt, standard deviation Dt and skewness St of the
ratio values are adopted as supplements for the measurements of blue component.
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Mt =
∑s2

i=1
Rti/s

2, (4)

Dt =

√∑s2

i=1
(Rti −Mt)

2/
(
s2 −1

)
, (5)

St =
1

s2 −1

∑s2

i=1

(
Rti −Mt

Dt

)3

, (6)

where Rti (= Ri/Bi ) represents the ratio of red component and blue component.

Contrast between color components5

Heinle et al. (2010) pointed out that DGB (referring to difference between green and
blue) and DRB are the most weighted features. Essentially, such difference is a simple
measurement for color contrast, but it ignores the intensity level of each component.
For example, the DRB of a dark cloud would be same with that value of a bright cloud,
but they are different according to their appearance. So we define contrast as the nor-10

malized difference between color components.

C1 =
Mr −Mg

Mr +Mg
, (7)

C2 =
Mr −Mb

Mr +Mb
, (8)

C3 =
Mg −Mb

Mg +Mb
, (9)

where Mr, Mg and Mb refer the mean values of red, green and blue component in the15

image patch, respectively.
Consequently, each patch can be represented by a nine-dimension feature vector:

D =<Mb,Db,Sb,Mt,Dt,St,C1,C2,C3 > . (10)
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A sampled collection of such descriptors are used to construct a micro-structure dictio-
nary (see the following section). Note that each dimension of D is normalized to [0,1],
in order to eliminate the effect of magnitude.

3.2.2 Learning dictionary of micro-structures with k means algorithm

Dictionary of micro-structures is one of the most important aspects of BoMS, and it5

is learned offline by the k means algorithm (Han et al., 2006). First, a large number
of image patches are equally sampled from the dataset, and their descriptors are ex-
tracted to form a collection. Second, the descriptor collection are clustered by k means
algorithm, and divided into k clusters. Finally, the centroids of these clusters are re-
garded as micro-structures, and form the micro-structure dictionary. A micro-structure10

represents a specific local pattern shared by all patches assigned to it. Figure 4 shows
examples of the image patches that belong to particular clusters.

K-means clustering is a method of vector quantization, which is popular for cluster
analysis in data mining. Given a set of patch descriptors {D1,D2, · · ·,Dn}, where each
descriptor is a nine-dimension real vector, k means algorithm groups the n descriptors15

into k(≤ n) sets S = {S1,S2, · · ·,Sk} by minimizing the sum of squared Euclidean dis-
tances between descriptors and their corresponding centroids. The objective function
of k means is formulated as follows:

arg
S

min
k∑
i=1

∑
D∈Si

‖D−µi‖
2, (11)

where µi represents the centroid of cluster i . Given an initial set of k centroids20

{µ0
1,µ0

2, · · ·,µ0
k}, k means algorithm proceeds by alternating between assignment step

and update step.
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– Assignment step. It assigns each descriptor to its nearest cluster centroid, and
obtains grouped clusters as follows:

Sti =
{
Dp

∣∣∣∣∥∥Dp −µti∥∥2 ≤
∥∥∥Dp −µtj∥∥∥2

,∀j ,1 ≤ j ≤ k
}

.

– Update step. It recalculates the centroids of these new clusters. A new centroid is
update as follows:5

µt+1
i =

1∣∣Sti ∣∣
∑
Dj∈Sti

Dj .

The algorithm is regarded as converged when the assignments no longer change or the
number of iteration is reached the predefined value. After the algorithm is converged,
the dictionary is constructed and denoted as V = {µ1,µ2, · · ·,µk}, where µi refers to the
prototype of micro-structure with label si . The number of clusters k determines the size10

of the dictionary, which can vary from hundreds to thousands.

3.2.3 Image representation based on BoMS

Image representation refers to the characteristics of an all-sky image, and is encoded
by a numeric feature vector. It is the core issue for cloud classification since it is used as
input for the classifier. Image representation is different from the patch descriptor, but is15

built on patch descriptors as showing in Fig. 5. Inspired by the bag-of-words model, we
bring forward the “bag of micro-structure” model to extract the image representation.

Firstly, an all-sky image is divided into several patches (see Sect. 3.2.1), and each
patch maps to certain type of micro-structure in the dictionary. Assume that the image
is divided intom patches denoted as {D1,D2, · · ·,Dm}. Di (1 ≤ i ≤m) is a nine-dimension20

vector and maps to certain micro-structure label si (∈ [1,k]) by searching for the nearest
micro-structure among the dictionary V . Thereby, the descriptor set {D1,D2, · · ·,Dm} is
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transformed into a label set {L1,L2, · · ·,Lm}, whose value for each element refers to the
index of certain micro-structure. The label set is composed of many micro-structures,
just as a document consist of words.

After that, we transform the image, which is denoted as a label set, into a represen-
tation suitable for the learning algorithm. We apply an attribute-value representation5

for all-sky images. Basically, each distinct micro-structure si corresponds to a feature,
assigned with the value ti that counts the number of occurrence for micro-structure si .
In order to highlight some important micro-structures, we apply a weighting strategy
and represent the image by a vector:

F = 〈t1,t2, · · ·,tk〉. (12)10

ti (1 ≤ i ≤ k) refers to the weighted frequency of micro-structure si , and is calculated by

ti = ni log
N
Ni

, (13)

where ni is the number of occurrences of micro-structure si in the image, Ni is the num-
ber of documents containing si , and N is the number of images in the whole dataset.
In essence, two major factors in the weighting strategy are tf (term frequency) and idf15

(inverse document frequency) (Baeza-Yates and Ribeiro-Neto, 1999). The intuition is
that tf weights micro-structures higher if they occur more often in an image, while idf
downweights micro-structures that appear often in the dataset because these micro-
structures do not help to discriminate between different images.

This representation is analogous to the bag-of-words model for document in terms of20

form and semantics. Micro-structures reveal characteristics of local patterns for all-sky
cloud images, just as words convey meanings of a document. Note that both represen-
tations are sparse and high dimensional.

10227

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 10213–10247, 2015

From pixels to
patches

Q. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.3 Classifier with SVM

Support vector machines are based on the structural risk minimization principle from
computational learning theory (Vapnik, 2000). Basically, the SVM classifier learns a hy-
perplane that separates two-class data with maximal margin. The margin is defined as
the distance of the closest training sample to the separating hyperplane. Given a train-5

ing set X and corresponding class labels Y that takes value ±1, SVM finds a decision
function:

f (x) = sign(wTx+b),

where w and b refer to the parameters of the hyperplane.
The SVM applies two strategies to address the dataset that is not linearly separa-10

ble. Firstly it introduces a regularization term which penalizes misclassification of sam-
ples in proportion to their distance from the hyperplane, and this regularization term is
weighted by the parameter C. Secondly a mapping Φ is considered to transform the
original data space of X into another feature space. The feature space may have a high
or even infinite dimension. Because SVM can be formulated by the terms of scalar15

products in the mapped feature space, it is avoidable to directly define such mapping
by introducing the kernel function K (u,v) =Φ(u)T ×Φ(v). In the kernel formulation, the
decision function can be written as

f (x) = sign(yiαiK (x,xi )+b), (14)

where xi is a feature vector from the training set X and yi is the label of xi . The param-20

eters αi are learned by SVM, and they are typically zero for most i . The feature vectors
xi corresponding to nonzero αi are known as support vectors.

In the cloud classification method, the input features refer to the BoMS representation
in Eq. (12). We take the one-against-all approach for the multi-class problem. That is,
there are 5 classes for all-sky images, so we train 5 SVM classifiers. Classifier model25
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i distinguishes images between category i and all the other 4 categories. Given a test
image, we assign it to the class with the largest SVM output.

There are two reasons motivating us to select SVM rather than other methods, such
as KNN, artificial neural networks. On the one hand, the image representation based
on BoMS is high dimensional vector (more than 100 dimensions in our experiments).5

SVM has the potential to handle large feature spaces because it embraces overfitting
protection, and it is more efficient for space and time compared with KNN. On the
other hand, the image representation of BoMS is sparse. In other words, the feature
vector contains only few entries which are not zero. SVM is proven to be well suited
for problems with dense concepts and sparse instances (Melgani and Bruzzone, 2004;10

Tong and Koller, 2002).

4 Results and discussion

In this section we evaluate the performance of BoMS, compared with the baseline
(Heinle et al., 2010), and investigate the effect of the key parameters in BoMS.

We apply 10-fold cross validation to estimate the performance of classification meth-15

ods. The dataset is randomly partitioned into 10 equal sized subsets. One single subset
is retained for validation and the remaining 9 subsets are used as training data. The
cross validation process is then repeated 10 times. During the cross validation, each
subset is used exactly once as validation, meanwhile each image in the dataset is
also used for validation exactly once. Finally, the measure of performance is defined by20

accuracy (Ac), which is given by

Ac =
Correctly classified image number

Total image number
. (15)

We conduct each experiment three times and take average values as final results.
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4.1 Performance of BoMS

Table 2 demonstrates the confusion matrix of BoMS method, in which the patch size s
equals 12 with a step τ = 6 and the dictionary size k equals 500. The kernel of SVM
selects linear kernel function, and the regularization C is set to 62.5, which is optimized
by a search strategy.5

According to Table 2, clear sky is the easiest class to be identified with an accu-
racy of 99.5%, and it is just a little confused with cirriform because some cirrus is very
thin and similar with clear sky. On the contrary, mixed cloudiness is the most difficult
class for recognition with a low accuracy of 79.5%, and it is misclassified to all other
classes. This result is not difficult to be understood since mixed sky condition contains10

multiple cloud types, and its distribution of micro-structures is easy to be confused with
the others. Figure 6 displays some misclassified images of mixed cloudiness. Strati-
form obtains a good accuracy as well, because it is notably different from cirriform and
cumuliform according to color and contrast.

4.2 Performance comparisons with the baselines15

In order to verify the leverage of BoMS, we compare its classification performance with
the following three methods:

– F12+kNN. It is the original method proposed by Heinle et al. (2010), and it is
acted as the baseline in this comparison. We set k with 9 by a optimized search
procedure, and set the weight vector of features with [1,1,1,1,1,1,2,1,2,2,3,1]20

that is suggested by Heinle et al. (2010).

– F12+SVM. This method applies the 12-dimension features used in (Heinle et al.,
2010) but replaces kNN with SVM, in order to investigate the influence of classifier.
The kernel of SVM selects linear kernel as well.
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– BoMSF12. This method applies the framework of BoMS, but its patch descriptor
is replaced by Heinle’s 12-dimension features, rather than 9-dimension features
described in Sect. 3.

Table 3 presents the comparison results. BoMS outperforms all other methods. Es-
pecially, BoMS outperforms F12+KNN with regards to all five classes, and achieves5

increase of 19% for overall accuracy. There are two main differences between BoMS
and F12+KNN: feature representation and classifier model. What does make sense
for such improvement? We first compare F12+KNN and F12+SVM, and observe that
F12+SVM does not obtain improvement. This result indicates that SVM does not lead
to better performance just based on traditional features. The comparison between10

F12+SVM and BoMSF12 shows that BoMSF12 is notably better than F12+SVM. So
it can be deduced that the image representation based on BoMS contributes to the
excellent performance.

4.3 Parameter analysis

In the framework of BoMS, patches are the fundamental objects, and they are mainly15

determined by patch size s. What is the influence of parameter s?
Figure 7 displays the accuracy curve of BoMS according to different s. Note that the

sampling step τ is set to s/2 in this experiment. Generally, most of these results are
exciting with accuracy greater than 86%, and smaller patch size can result in better ac-
curacy. Especially, we get the best performance when set s with 12. This result reveals20

that structure information of image patches is significant for cloud classification, but
patches with too small size maybe do not encode enough structure information, mean-
while large patches have too great variations to construct efficient micro-structures.

The patch number of an all-sky image is partly determined by sampling setp τ. Sam-
pled patches would be overlapped if τ is smaller than s, and a smaller τ results in more25

patches. Our experiment results show the accuracy of classification is robust for τ, and
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it is the best choice to set τ with s/2, regarding to the accuracy and computational
complexity.

The dictionary of micro-structures are another core factor for BoMS, and its size k
not only determines the dimension of the image representation, but also influences
the classification performance. Figure 8 displays the accuracy curve of BoMS accord-5

ing to different dictionary size k. Generally, BoMS achieves stable performance with
an accuracy greater than 88%, when dictionary size k is more than 300. Especially,
BoMS obtains the best performance with k = 500. We can account for this result with
two aspects. Firstly, a small dictionary of micro-structures just contains limited distinct
patterns, since one micro-structure represents one common pattern that is shared by10

many image patches. As a result, the BoMS with small dictionary is not discrimina-
tive enough for cloud classification. Secondly, the dictionary would be saturated with
micro-structures when its size is large enough, and a proper micro-structure would be
divided into multiple sub-patterns if the dictionary size further increases. However, such
sub-patterns cannot promote classification performance.15

Moreover, the dimension of BoMS equals with size k. In other words, larger dictio-
nary size results in higher dimension of cloud representation. Consequently, a medium
dictionary size is a good choice, considering the computational complexity.

5 Conclusions

This study presents the new cloud classification method based on bag of micro-20

structures, whereas most state-of-the-art methods (Heinle et al., 2010; Liu and Zhang,
2015; Kliangsuwan and Heednacram, 2015; Cheng and Yu, 2015) apply traditional
features based on pixels. In this method, an all-sky image is treated as a collection
of micro-structures just as a document is consisted of words, and it is represented by
a high-dimension histogram of micro-structures. Subsequently, the SVM classifier is25

used to identify cloud type of the all-sky image. A large dataset is constructed with ac-
tual all-sky images captured by an all-sky camera, and evaluation is carried out to verify
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the performance of BoMS. The experiment results demonstrate that BoMS achieves
a high accuracy of 90.9%, and it outperforms the state-of-the-art method proposed by
Heinle et al. (2010). Moreover, the experiments on the influence of key parameters,
including patch size s and dictionary size k, are carried out to verify the robustness of
BoMS.5

We will extend our research in future from the following aspects. Firstly, we will ex-
tensively investigate different patch descriptors and find out more efficient patch rep-
resentation for BoMS. Secondly, we are going to study topic models for cloud images
in order to reduce the dimension of cloud representation and further improve classi-
fication accuracy. Lastly, we will conduct research to establish a configuration of sky10

conditions, which is suitable for automatic cloud classification system.
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Table 1. Sky condition classes proposed in this work.

Sky condition classes Description Cloud types

Cirriform Thin clouds that are wispy and feathery-like Ci, Cc, Cs
Cumuliform Thick clouds that are puffy and cotton-like Cu, Cb, Ac
Stratiform Layered clouds that stretch out across the sky St, As, Sc, and Ns
Clear sky Clear sky without cloud No clouds
Mixed cloudiness Mixed sky conditions with more than one

cloud types that cover the sky more than 20%
Co-occurrence
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Table 2. Confusion matrix of BoMS.

Ground truth Classified

Cirriform Cumuliform Stratiform Clear sky Mixed Ac
cloudiness

Cirriform 0.872 0.011 0.013 0.023 0.081
Cumuliform 0.013 0.920 0.007 0.001 0.059
Stratiform 0.008 0.005 0.965 0.000 0.022
Clear sky 0.005 0.000 0.000 0.995 0.000
Mixed cloudiness 0.077 0.092 0.035 0.001 0.795 0.909
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Table 3. Comparison of BoMS and baselines according to accuracy of each class.

Methods Cirriform Cumuliform Stratiform Clear sky Mixed cloudiness Overall

F12+KNN 0.438 0.780 0.892 0.939 0.515 0.713
F12+SVM 0.525 0.843 0.922 0.904 0.274 0.694
BoMSF12 0.853 0.896 0.952 0.997 0.736 0.887
BoMS 0.872 0.920 0.965 0.995 0.795 0.909
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Patches:
1: described as thin cloudy
2: described as whitish patch 

1
2

Pixels:
1: described as <53, 95, 137>
2: described as <53, 95, 137>

2
1

Figure 1. Sketch of the difference between pixels and patches. A pixel is encoded by a RGB
vector, whose values are easy to be noised, and a pixel itself is little meaningful. Meanwhile,
a patch is more meaningful than a pixel, and can be mapped to certain micro-structures, which
are explainable with words.

10240

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/10213/2015/amtd-8-10213-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 10213–10247, 2015

From pixels to
patches

Q. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 2. An all-sky image example used in this work (3 October 2012, 17:30 GMT+8). The
area marked by the red circle refers to the circle of interest.
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Figure 3. The pipeline of the cloud classification method based on BoMS.
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Figure 4. Samples of image patches randomly selected from certain clusters. All images in
a cluster are assigned with an identical label of micro-structure.
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Figure 5. Image representation based on micro-structures, in which patch descriptors are
grouped to construct micro-structure dictionary, and histogram of such micro-structures in an
image is used as its representation.
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(a) Mixture to cirriform (b) Mixture to cumuliform

(c) Mixture to stratiform (d) Cirriform to clear sky

Figure 6. Some misclassified all-sky images.
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Figure 7. The curve of overall accuracy of BoMS with different patch size.
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Figure 8. The curve of overall accuracy of BoMS with different dictionary size.
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