

Supplement of

Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

V. Moosavi et al.

Correspondence to: V. Moosavi (svm@arch.ethz.ch)

3 Instrumentation for aerosol measurements

Table S1 shows the characteristics of the instruments used for the aerosol pollution
measurements at the background site above the urban canopy (a balcony in a 28th
floor) and transects along the streets of the neighborhood of Rochor investigated in
this study.

8 The DustTrak sensors measure particles size segregated mass-fraction concentrations 9 with a laser photometer, whose readings depends on the ambient himidity and particle 10 properties, such as size distribution, morphology and refractive index. We follow the 11 approach of Ramachandran et al. (2003) to correct the humidy effect using the 12 relative humidity (RH) data measured by the HOBO loggers. Prior to the study, the 13 individual response of each individual sensor to the properties of the particles in the 14 tropical atmosphere of Singapore was evaluated through gravimetric calibrations. 15 Similar to Apte et al. (2011), power-law regression relationships were obtained from 16 comparisons with 24-h PM_{2.5} concentrations determined by gravimetric analysis of 23 colocated filter samples with concentrations ranging from 10 to 80 μ g m⁻³. 17 18 Similarly, the micro-aethalometer readings of black carbon (BC) are sensitive to 19 mechanical shock or vibrations of the instrument. The black carbon data were 20 corrected using software based on the Optimized Noise-reduction Averaging method 21 (ONA) available on the manufacturer website (wwww.aethlabs.com). A second 22 correction was needed to account for the instrument's sensitivity associated with the 23 filter load. Briefly, because BC concentration is measured by changes in the light attenuation on a disposable filter through which sample air is drawn at 100 cm³ min⁻¹, 24 25 concentrations were adjusted using the empirical relationship of Kirchstetter and 26 Novakov (2007) based on the instrument-reported attenuation coefficient. 27 The data collected by the Condensation Particle Counter (CPC), Compact Real-Time 28 Diffusion Charger and Compact Real-Time Photoelectric Aerosol Sensor measuring 29 particle number concentration, active surface area and concentration of particles-30 bound polycyclic aromatic hydrocarbons (pPAHs), respectively, did not require 31 additional corrections. They only passed through a quality assurance in which 32 suspicious data were removed using as reference notes taken during the sampling (e.g. if the CPC does not keep a horizontal position, the internal optical sensor may delivererroneous readings).

35 Prior to each day of measurement, all instruments were synchronized to a computer 36 clock in the laboratory. This ensured that the time stamp was consistent across all 37 instruments. Instruments with removable parts were dismantled and re-assembled for each day of sampling. Upon arrival at the background site, zero calibration procedures 38 39 for the CPCs and DustTrak sensors were carried out. Instruments were then set to log 40 data for 10 min prior to the actual sampling. All instruments were placed side-by-side 41 with inlets close together during these parallel measurement periods. Data from this 42 parallel measurement were later used to correct the instruments at the background site 43 to those used in the transects at street level. The data post-processing after the 44 measurements included a second synchronization. The lag times of each instrument 45 were computed through cross-correlations against the DustTrak sensors to achieve 46 better synchronization across all instruments. Lag times ranged from 2 to 15 s on 47 average. Instruments at the background site were also adjusted to the instruments used 48 for the transects.

- 49
- 50

51	Table S1. Instruments inform	nation

Parameter	Instrument	Accuracy	Lower threshold	Response time	Model	Manufac- turer
Particles size segregated mass-fraction concentration (PM ₁ , PM _{2.5} , PM ₁₀)	Hand-held DustTrak DRX Aerosol Monitor	1 μg m ⁻³	±0.1% of reading or 1 μg m ⁻³	1 sec	TSI 8534	TSI, MN USA
Particle number concentration (particles < 1 µm)	Hand-held Condensation Particle Counter (CPC)	± 20%	1 particle cm ⁻³ (min. particle size 10 nm)	1 sec	TSI 3007	TSI, MN USA
Black carbon	Micro - aethalometer	$\pm 0.1 \ \mu g \ m^{-1}$	1 ng m ⁻³	1 sec	AE51	AethLabs, CA USA
Active surface area	Compact Real- Time Diffusion Charger	$\pm 15\% \text{ of}$ reading $\pm 2 \text{ mm}^{2} \text{ m}^{-3}$	$1 \text{ mm}^2 \text{ m}^{-3}$	10 sec	DC 2000CE	EcoChem Analytics, TX USA
Total pPAHs concentration (particles < 1	Compact Real- Time Photoelectric	\pm 15% of reading \pm 3 ng m ⁻³	1 ng m ⁻³	10 sec.	PAS 2000CE	EcoChem Analytics, TX USA

Parameter	Instrument	Accuracy	Lower threshold	Response time	Model	Manufac- turer
μm)	Aerosol Sensor					
Temperature and relative humidity (RH)	HOBO Pro v2 logger	0.2°C, ±2.5% RH	0.02°C at 25°C, 0.03% RH	l sec	U23-001	Onset Computer Corp., MA USA

52

53 List of Urban Parameters

54 There are three category of urban parameters used in our work.

For the first category, land use, the urban parameters are defined by the area occupied by 17 different types of surface covers and building uses, such as residences, parks, water bodies, open spaces, roads, commercial establishments, schools, worship places, etc. therefore, we have the following sub criteria of land use as follows:

59	1.	Sum-Residential	72	10. Sum-CIVIC-COMMUNITY-
60	2.	Sum-RESIDENTIAL-WITH-	73	INSTITUTION
61		COMMERCIAL-AT-1ST-	74	11. Sum-OPEN-SPACE
62		STOREY	75	12. Sum-PARK
63	3.	Sum-COMMERCIAL	76	13. Sum-BEACH-AREA
64	4.	Sum-HOTEL	77	14. Sum-SPORTS-RECREATION
65	5.	Sum-WHITE	78	15. Sum-WATERBODY
66	6.	Sum-BUSINESS-1-WHITE	79	16. Sum-ROAD
67	7.	Sum-HEALTHMEDICAL-	80	17. Sum-TRANSPORT-
68		CARE	81	FACILITIES
69	8.	Sum-EDUCATIONAL-	82	18. Sum-UTILITY
70		INSTITUTION	83	19. Sum-RESERVE-SITE
71	9.	Sum-PLACE-OF-WORSHIP	84	20. Sum-Commercial

The Space Syntax Method (Hillier et. al., 1976), which is a network analysis method, uses different analytics to measure parameters in the second category, street network indicators. *Connectivity* measures the number of immediate neighbors to a segment. Further, Space Syntax consists of three indicators, namely *Integration*, *Choice* and *Depth*. Integration calculates the numbers of turns that must be made from a street segment to reach all other street segments in the network, using shortest paths. If we consider all the segments from all the segments the radius is selected to be 'n;' however, if one sets a limit on the possible number of turns, then the most integrated
segments are those that have the highest number of connections in the limited number
of. Therefore, it is common to have different integration measures based on different
radii.

96 The second indicator is called Choice, which is a measure in the category of network 97 flow analysis. It measures how a segment is relatively connected to other segments. 98 Similar to integration, there are choices of radius to be analyzed around each 99 individual node of the street network. Further, it is common to use logarithmic value 90 of Choice indicator, which is called Log Choice in our work.

101 Depth measure simply calculates the distance between the centers of each segment to 102 all the other segments. Similarly, we can limit the distance to a radius and count the 103 number of streets nearby to each segment.

104 In Space Syntax methodology, there are different ways of measuring the shortest path. 105 In this work we chose the Angular way, in which the shortest path is the one that 106 minimizes the angle between the origin and the destination. Further, for the choice of 107 radius there are such options as metric distance, angular or segment and segments 108 with length as the weight. Metric distance is the usual distance. Angular radius is 109 based on the angle between points. Segment radius is the limit on the number streets that one can pass starting from a street segment and weighted segment is when one 110 111 consider the length of streets as well as the number of streets. Based on these 112 combinations of indicators with different ways of measuring the radius and shortest 113 paths we used the following features in the category of urban network parameters.

114	1. Connectivity	130
115	2. LogChoice800	131
116	3. LogChoice	132
117	4. T1024-Choice	133
118	5. T1024-Choice-R10000-metric	134
119	6. T1024-Choice-R1200-metric	135
120	7. T1024-Choice-R15000-metric	136
121	8. T1024-Choice-R2000-metric	137
122	9. T1024-Choice-R5000-metric	138
123	10. T1024-Choice-R800-metric	139
124	11. T1024-Choice-Segment-	140
125	Length-Wgt	141
126	12. T1024-Choice-Segment-	142
127	Length-Wgt-R10000-metric	143
128	13. T1024-Choice-Segment-	144
129	Length-Wgt-R1200-metric	

- 14. T1024-Choice-Segment-
- Length-Wgt-R15000-metric
- 15. T1024-Choice-Segment-
- Length-Wgt-R2000-metric 16. T1024-Choice-Segment-
- Length-Wgt-R5000-metric
- 17. T1024-Choice-Segment-Length-Wgt-R800-metric
- 18. T1024-IntegrationN
- 19. T1024-Integration-R10000metric
- 20. T1024-Integration-R1200metric
- 21. T1024-Integration-R15000metric

145	22. T1024-Integration-R2000-	181
146	metric	182
147	23. T1024-Integration-R5000-	183
148	metric	184
149	24. T1024-Integration-R800-metric	185
150	25. T1024-Integration-Segment-	186
151	Length-Wgt	187
152	26. T1024-Integration-Segment-	188
153	Length-Wgt-R10000-metric	189
154	27. T1024-Integration-Segment-	190
155	Length-Wgt-R1200-metric	191
156	28. T1024-Integration-Segment-	192
157	Length-Wgt-R15000-metric	193
158	29. T1024-Integration-Segment-	194
159	Length-Wgt-R2000-metric	195
160	30. T1024-Integration-Segment-	196
161	Length-Wgt-R5000-metric	197
162	31. T1024-Integration-Segment-	198
163	Length-Wgt-R800-metric	199
164	32. T1024-Node-Count-R10000-	200
165	metric	201
166	33. T1024-Node-Count-R1200-	202
167	metric	203
168	34. T1024-Node-Count-R15000-	204
169	metric	205
170	35. T1024-Node-Count-R2000-	206
171	metric	207
172	36. T1024-Node-Count-R5000-	208
173	metric	209
174	37. T1024-Node-Count-R800-	210
175	metric	211
176	38. T1024-Total-Depth	212
177	39. T1024-Total-Depth-R10000-	213
178	metric	214
179	40. T1024-Total-Depth-R1200-	
180	metric	
215	And finally for the third category	of urb

41. T1024-Total-Depth-R15000-
metric
42. T1024-Total-Depth-R2000-
metric
43. T1024-Total-Depth-R5000-
metric
44. T1024-Total-Depth-R800-
metric
45. T1024-Total-Depth-Segment-
Length-Wgt
46. T1024-Total-Depth-Segment-
Length-Wgt-R10000-metric
47. T1024-Total-Depth-Segment-
Length-Wgt-R1200-metric
48. T1024-Total-Depth-Segment-
Length-Wgt-R15000-metric
49. T1024-Total-Depth-Segment-
Length-Wgt-R2000-metric
50. T1024-Total-Depth-Segment-
Length-Wgt-R5000-metric
51. T1024-Total-Depth-Segment-
Length-Wgt-R800-metric
52. T1024-Total-Segment-Length-
R10000-metric
53. T1024-Total-Segment-Length-
R1200-metric
54. T1024-Total-Segment-Length-
R15000-metric
55. T1024-Total-Segment-Length-
R2000-metric
56. T1024-Total-Segment-Length-
R5000-metric
57. T1024-Total-Segment-Length-
R800-metric

- And finally, for the third category of urban parameters, building topology, thefollowing parameters were calculated for each grid cell.
- 217 1. Total area covered by buildings
- 218 2. Average buildings' height
- 219 3. The number of corners in the buildings
- 220

221 References for Supplementary Material

- 222 Apte, J. S., Kirchstetter, T. W., Reich, A. H., Deshpande, S. J., Kaushik, G., Chel, A.,
- 223 Marshall, J. D. and Nazaroff, W. W.: Concentrations of fine, ultrafine, and black

- 224 carbon particles in auto-rickshaws in New Delhi, India, Atmos. Environ., 45(26),
- 4470-4480, 2011.
- 226

Hagler, G. S. W., Yelverton, T. L. B., Vedantham, R., Hansen, A. D. A. and Turner, J.

- 228 R.: Post-processing method to reduce noise while preserving high time resolution in
- aethalometer real-time black carbon data, Aerosol Air Qual. Res., 11, 539-546, 2011.
- 230
- 231 Kirchstetter, T. W. and Novakov, T.: Controlled generation of black carbon particles
- from a diffusion flame and application in evaluating black carbon measurement
- 233 methods, Atmos. Environ., 41, 1874–1888, 2007.
- 234
- 235 Ramachandran, G., Adgate, J. L., Pratt, G. C. and Sexton, K.: Characterizing indoor
- and outdoor 15 minute average $PM_{2.5}$ concentrations in urban neighbourhoods, Aeroso Sci. Tech., 37(1), 33-45, 2003.
- 238
- 239 Hillier, B., Leaman, A., Stansall, P., & Bedford, M. (1976). Space syntax.
- 240 Environment and Planning B: Planning and Design, 3(2), 147-185.