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Abstract

The mixing height is a key parameter for many applications that relate surface–
atmosphere exchange fluxes to atmospheric mixing ratios, e.g. in atmospheric trans-
port modeling of pollutants. The mixing height can be estimated with various meth-
ods: profile measurements from radiosondes as well as remote sensing (e.g. optical5

backscatter measurements). For quantitative applications, it is important to not only
estimate the mixing height itself but also the uncertainty associated with this estimate.
However, classical error propagation typically fails on mixing height estimates that use
thresholds in vertical profiles of some measured or measurement-derived quantity.
Therefore, we propose a method to estimate mixing height together with its uncer-10

tainty. The method relies on the concept of statistical confidence and on the knowledge
of the measurement errors. It can also be applied to problems outside atmospheric
mixing height retrievals where properties have to be assigned to a specific position,
e.g. the location of a local extreme.

1 Introduction15

In good scientific practice, uncertainties or errors must be provided for all physical
quantities which are measured or estimated. Unfortunately, for a wide class of estima-
tions it is not straightforward to apply standard error propagation on the result. This is
the case for many applications where thresholds have to be identified in noisy signals.
The aim of this work is to provide a rigorous way to estimate uncertainties for this class20

of operations. This is the general case of the localization of a local property. Examples
of local properties for a signal are maximum and minimum values. A more general ex-
ample can be seen as the property to have a certain value or threshold. This is also the
case for the location of mixing height (MH), which can be defined by local properties of
the data used for its estimation.25
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The top of the mixed layer or MH is the thickness of the layer adjacent to the ground
where any pollutants or constituent emitted within it or entrained from above will be
vertically mixed by convection or mechanical turbulence in a reasonably short time
scale. This time scale is about one hour or less according to Seibert et al. (1998).

The mixed layer is a sub layer of the planetary boundary layer (PBL) which is the at-5

mospheric layer that is closest to the ground. In the PBL, several processes control ex-
change of energy, water and pollutants between the surface and the free atmosphere.
The structure of the PBL is variable as detailed by Stull (1988).

The knowledge of MH has been considered fundamental for modeling dispersion of
pollution since Holzworth (1964). This is because it defines the volume where ground10

fluxes are diluted. In more recent times, a strong effort went to the determination of
fluxes of greenhouse gases from atmospheric mixing ratio measurements (Gurney
et al., 2002; Rödenbeck et al., 2003; Peters et al., 2007. The impact of model errors on
MH estimations is considered one of the primary sources of uncertainties in the inverse
estimates of regional CO2 surface–atmosphere fluxes (Gerbig et al., 2008; Kretschmer15

et al., 2012). The uncertainties or localization error estimated on the MH retrieved from
atmospheric profiles can be used as a a valuable tool to reduce the model uncertainties
as demonstrated in Kretschmer et al. (2014).

This paper introduces a rigorous method to derive uncertainties in the localization of
a property, with a special focus on mixing height retrievals as an example. This allows20

for more quantitative assessments of the quality of retrievals, and can provide useful
information especially when comparing different observation-based retrieval methods
among themselves or with mixing heights diagnosed in wheather prediction models.

In Sect. 2 we introduce the implementation of the parcel method in form of an algo-
rithm as it is used in this work. The mainly theoretical part introducing the error retrieval25

method is described in Sect. 3. An application to other MH retrieval methods in addition
to the parcel method is presented in Sect. 4.
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2 Localizing the mixing height

Several methods for detecting MH are reported in the literature, depending on meteo-
rological conditions and instrumentation used (Seibert et al., 2000). However, in order
to explain our methodology to estimate uncertainties, we use the parcel method as
proposed by Holzworth (1964) for its simplicity. According to Holzworth (1964), vigor-5

ous vertical mixing is driven by thermal convection. The parcel method was defined
by (Holzworth, 1964, Sect. 2) for maximum mixing depths as “maximum mixing depths
were estimated by extending a dry adiabat from the maximum surface temperature to
its intersection with the most recently observed temperature profile.”. Figure 1 provides
a clear example of this method.10

The driving idea is that warmer air in contact with the ground reaches an altitude
where a capping inversion is located. For practical use in convective conditions – when
the impact from wind shear can be neglected – the MH is located at the altitude h
where the virtual potential temperature θv(h) = θvh as defined in Eq. (1) is equal to the
virtual potential temperature θv(0) = θv0 at the surface.15

θv(z) = Te(z)
[
P0

P (z)

]γ
≈ (T (z)+bMR)

[
P0

P (z)

]γ
(1)

where Te is the equivalent temperature or the temperature that the air parcel would
have if all the water vapor would condensate releasing its latent heat. MR is the mass
mixing ratio of water vapor, P (z) is the pressure at altitude z, P0 is a reference pressure,
b represents the ratio of latent heat of vaporization and the specific heat of dry air at20

constant pressure. Taking P0 = P (0) then results in θv(0) = Te(0).
We chose this methodology to estimate MH because it uses a smaller number of en-

vironmental profiles than the Richardson Bulk Number method (RBN). In our numerical
examples, we do not consider humidity, so we will focus on potential temperature θ(z),
which can be obtained from Eq. (1) by setting MR=0.25

Real examples of vertical profiles of virtual potential temperature are presented in
Sect. 4. Here instead we present a synthetically generated profile in Fig. 1.
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We found convenient the use of an analytical function to describe the potential tem-
perature profile, because in this way we can control the more relevant aspects of the
profile, which are the excess temperature at the ground and the uniformity of poten-
tial temperature within the mixed layer. The use of an analytical function helps also to
study effects of spatial resolution and smoothing. The profile θs(z) presented in Fig. 15

can be seen as an almost nutral profile of potential temperature. The black solid curve
represent the ideal signal and the blu area around the signal represent the ±1σ error.
The error an the excess temperature at the ground are chosen together for explanatory
purposes and are not directly related to the pysics of the mixed layer.

Looking at Fig. 1, we can see how the parcel method works. The MH is located10

at the altitude h where the potential temperature θv(h) equals the ground potential
temperature θv(0). The idealized values depicted by the black curve are affected by
measurement errors. The uncertainty is represented by a blue region around the signal.
Assuming normal errors, the amplitude of the blue region at a fixed altitude represents
the area where we expect a probability of 68 % to measure θv(h). This implies that15

when we attempt to estimate MH on a noisy signal, we will detect an altitude around
the region of interest and not the exact location.

Under steady conditions, we would get an estimated MH and a properly estimated
uncertainty by repeating the measurements many times. However, in the real word,
the conditions are typically not steady and the measurements cannot be repeated of-20

ten enough (if at all) to obtain a statistically consistent set of estimates. Therefore,
a methodology is needed that retrieves the localization error from a single profile. Our
methodology requires the knowledge of the errors of the measured profiles, so that it
is possible to propagate it onto the signals we want to analyze. The error propagation
on potential temperature and on the Richardson Bulk Number profiles are provided in25

the Appendix.
The meteorological quantities observed by radiosondes are: pressure, temperature,

relative humidity, wind speed, and wind direction. The data for the practical examples
used in this work are part of the dataset of radiosonde data of the meteorological
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observatory of Lindenberg in Germany (WMO station 10393). The data are collected
regularly every 6 h. The measurements are extensively described in Beyrich and Leps
(2012). The model of radiosondes used is the Vaisala RS92-SGP (Vaisala, 2015). The
technical specifications of the measurements are described in Table 1.

In practice, the method that is used more widely to produce estimates of MH is the5

so called Richardson Bulk Number method. In Sect. 4 we apply our method to assess
the localization error of two variants of the Richardson Bulk Number method described
by Vogelezang and Holtslag (1996).

2.1 Defining an algorithm for the parcel method

After the choice of a methodology to detect MH on meteorological profiles, we have10

many options for implementing it as an algorithm. Again, the parcel method defines
the MH at the altitude where the virtual potential temperature equals θv(0). From an
operational point of view, the parcel method can be seen in many different ways.

From an abstract point of view – not related to the actual meteorological concept
–, the core of the method is detecting the location where a certain threshold value is15

reached. This is a very common task in signal analysis, commonly called threshold
detection. To implement a threshold detection, one must consider different properties
of the signal. The signal noise is the main source of erroneous and multiple detections,
especially for non-monotonic signals.

As algorithm for applying the parcel method, we decided to use the location of the20

last data point (starting from the bottom) that than is still smaller than θv(0). We think
that this is the closest way to apply the method as described by Holzworth (1964).

From the more physical point of view, the parcel method can be implemented as
the simple parcel method introduced by Holzworth (1964) or by considering an excess
temperature at the ground as calculated by Troen and Mahrt (1986). One advantage of25

using a synthetic profile, is that the we control the excess temperature, so that we do
not need to estimate it.
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Referring to the synthetic profile of Fig. 1, we can apply the algorithm and evaluate
the performances and see the probability distribution of the results. So we created 106

profiles applying to the synthetic profile Gaussian random noise with SD of 0.125 K. In
Fig. 2, we see how the estimated MHs are distributed. Where θv(h) is close to θv(0),
the algorithm has a high probability of retrieving results. In order to reduce chance5

for retrieving MH very close to the ground in conditions closed to neutrality, we added
a constraint to the algorithm in this example: only consider data above 200 m. In general
Holzworth (1964) suggests to use the parcel method in case of vigorous convection.
Instead, the example introduced here presents weak convection or almost neutral con-
ditions. We decided to use this as an example for better illustrating the uncertainty in10

the localization, i.e. in the determination of the MH. However, when applying the algo-
rithms on smoothed data with a three points window, the mode of the distribution of
the results is closer to the expected MH (670 m). The smoothed profiles had reduced
noise, which reduced the probability of a false detection.

We must point out that the parcel method as it is implemented, can be considered15

just an algorithm for threshold detection in a signal. So all the considerations that we
made could be applied to other methods, like for example the Richardson Bulk Number
explained in Sect. 4.

3 Calculating the localization error

So far, we have used a simple Monte Carlo simulation to illustrate the impact of mea-20

surement noise on the error in the retrieved MH. However, for application to large data
sets this is too expensive to perform, and a more analytical method is needed.

In a continuous signal, a property can be defined as local when it occurs in an arbi-
trarily small neighborhood of points. However, real signals are not continuous but rather
discrete data series of ordered points. For such discrete data series, the neighborhood25

concept must be adapted since it is not possible to consider arbitrarily small neigh-
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borhoods. Instead, a neighborhood would be a set of contiguous points. It contains
a reference data point and some other points in its vicinity.

Two measurements can be considered equivalent when their difference is smaller
than their errors. The degree of equivalence is commonly called confidence. Confi-
dence is rigorously defined in several text books. It is used to verify a hypothesis, or,5

in other words, to see if an estimated value agrees with a theoretical expectation. The
most general case is presented in Eq. (2) where the concept is used to check if two
estimated values can be referred to the same quantity.

A local property on an ordered data series can be shared between data points. This
due to the fact that data have errors, which has as a consequence that different data10

values at different points can be differentiated from each other only within a certain
degree of confidence. This sharing of properties by contiguous data points is the key
to define a rigorous concept of localization error.

To give an example, a data point located at 400 m (see Fig. 1) is located in a region
of uniform and constant θv. For such a point, a local property is almost impossible to15

be defined, given the uncertainty of the data. On the other hand, at 700 m altitude the
difference of consecutive values is such that the localization can be easily performed.

The formal description of the method requires the introduction of some symbols. An
ordered data series yi where i ∈ {1, . . .,N} is associated with a series of locations xi
and with a series of errors εyi .20

When a local property in a signal can be defined, there are two choices to define its
location: the local property can be located exactly at a data point or between two data
points. The second possibility will not be discussed. Instead, for simplicity, we assume
that the localization is located at the first data point that defines the interval where the
property is detected.25

The general assumption of the method is that the measurement errors are known,
and they are normally distributed and uncorrelated. We focus on data points that have
neighbors on both sides – not the end points of a series.
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3.1 Definitions

The method relies on one main idea: (a) the results of an algorithm are expected to
fall in a neighborhood of the true location, and (b) this neighborhood can be seen as
a set of data points that have similar values within the errors of the measurements. The
similarity of values is measured with the quantity commonly called confidence.5

3.1.1 Confidence

The confidence ζ of two values yi and yj with errors εyi and εyj , respectively. It is
expressed as

ζ (fi , fj ) =
|yi − yj |√
ε2
yi
+ε2

yj

. (2)

Equation (2) is a modification of Welch’s t test (Welch, 1947, their Eq. 25). Instead of10

the errors of the estimated mean used by Welch (1947), we used the measurement
errors.

Welch’s t test and other similar tests are typically used to evaluate hypotheses. In
this particular case, we try to verify the null hypothesis that two estimations yi and yj
are equal by taking their difference.15

For a normal distribution, confidence intervals are typically defined as a distance
in units of the SD σ: 68.27 % for ±1σ, 95.45 % ±2σ, and 99.73 % for ±3σ. If yi and
yj are normally distributed, the denominator of Eq. (2) is equivalent to the SD of the
distribution yi − yj . The function ζ (yi ,yj ) can then be interpreted as an absolute dis-

tance in units of
√
ε2
yi
+ε2

yj
. This provides a natural scale for accepting or rejecting the20

hypothesis:

1. optimal confidence: ζ (yi ,yj ) ≤ 1
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2. good confidence: 1 < ζ (yi ,yj ) ≤ 2

3. acceptable confidence: 2 < ζ (yi ,yj ) ≤ 3

4. bad confidence: ζ (yi ,yj ) > 3

3.1.2 Discrete neighborhoods

Given a series of locations xi where i ∈ {1, . . .,N} N ∈N, a discrete neighborhood or5

simply a neighborhood of a point xm of the series is defined as the set Vxm that respects
the following relation

Vxm = {xm−l1 , . . .,xm+l2 : m− l1 ≥ 1, m+ l2 ≤ N ∈N}. (3)

This reflects the idea that the neighborhood Vxm of a point xm extends from a point
xm−l1 to the left of xm to a point xm+l2 to the right of xm. The neighborhood must include10

at least one point in each direction, so l1, l2ge1.
To estimate a local property in an ordered data series yi , we consider the value ym

at a specific data point xm and the values at data points in a neighborhood around the
specific point {ym−l1 , . . .,ym+l2}.

3.1.3 Confidence neighborhood15

By merging the concept of the discrete neighborhood expressed in Eq. (3) with the one
of confidence expressed in Eq. (2), we can define the key tool for our methodology: the
confidence neighborhood.

To refer to confidence neighborhoods, we use the following notation: Uγ,y (xm) is the
confidence neighborhood of the data point located at xm, with the respective data se-20

ries yi of the property y , and the confidence threshold γ.
We take a monotonic series of locations xi ∈R with an associated ordered data

series of values yi ∈R and corresponding errors εyi with i ∈ {1, . . .,N}. Given a real
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constant γ > 0, we define the confidence neighborhood of xm as the neighborhood of
data points Uγ,y (xm) that respects the following relation:

Uγ,y (xm) =
{
xm−1,xm,xm+1

}
∪
{
xj : ζ (ym,yj ) ≤ γ

}
(4)

where confidence ζ is defined by Eq. (2). Uγ,f (xm) is the contiguous set of locations
surrounding the point xm that share the relation of confidence to the specific point f (y)5

with respect to the constant γ.
Referring to the test function presented in Fig. 1, we can estimate Uγ,θv(hi )(hm). Ac-

cording to the algorithms defined in Sect. 2.1, the MH is hm = 670 m. In the first panel
of Fig. 3, U3,θv(hi )(hm) extends downward to an altitude of 0 m above ground. The con-
fidence intervals are larger for larger values of γ. From the example, we can also see10

that they are not symmetric with respect to hm. This asymmetric behavior arises from
the fact that θv(h) is nonlinear.

In Fig. 3, the different amplitudes of the confidence neighborhoods reflect the idea
that the algorithm could provide MH at any altitude below the true one. This is expected
when considering the probability density function for the raw data in Fig. 2.15

This definition of confidence neighborhood is more than a mathematical abstraction.
On the physical point of view it reflects the idea of probability to obtain an estimation
of a local property starting from a signal which has its own uncertainties. Qualitatively,
some properties of the distributions of results can also be inferred. In particular, the
skewness or asymmetry of the distributions is captured by differences the leftward l120

and rightward l2.
Smoothing the data with a window of three points produces a profile whose error

is σθs(z) ≈ 0.072k. It is 1/
√

3 times the error of the original profile σθs(z) = 0.125k. The
effect of noise reduction by smoothing can be clearly seen in the first and second panel
of Fig. 3. In this example, the skewness of the distribution of the results can still be seen25

from the confidence neighborhoods at various values of γ. It is also clear that on signals
with smaller errors the localization of a property is more precise.
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3.1.4 Strict confidence neighborhood

When an algorithm defines a location xm, we already know that other nearby points
could have been chosen if the random noise had manifested differently. The points
that have higher probability to be chosen would all share the property that caused the
choice. In the given definition of confidence neighborhood, we looked only at the points5

that respect the equivalence relation Eq. (2) with the single data point ym. Because
of this simple definition, the confidence neighborhood in the first panel of Fig. 3 tends
to grow also to points with a rather low probability – at least for higher values of γ.
However, if we assume that the selected location xm has a confidence neighborhood
in wich the true value is located. In this neighborhood all the points can be considered10

candidates. This lead to the definition of strict confidence neighborhood: a neighbor-
hood where all points must respect the equivalence relation Eq. (2) between each other
(not only with ym). The strict confidence neighborhood Usγ,y (xm) is the neighborhood
of xm that satisfy Eq. (2) for all of its points:

USγ,y (xm) =
{
xm−1,xm,xm+1

}
∪
{
xi : ζ (yi ,yj ) ≤ γ∀i , j ∈ [m− l1, . . .,m+ l2]

}
. (5)15

According to the definition in Eq. (4), the confidence neighborhood has to include the
point itself as well as its direct neighbors. Therefore, l1 and l2 have to be greater or
equal to 1 – even if there is no confidence between ym−1, ym, and ym+1.

Comparing confidence neighborhoods and the strict in Fig. 3, USγy (hm) is much more
symmetric than Uγy (hm) also for larger values of γ. This is due to the stronger constraint20

for the strict confidence neighborhood, as can bee seen in Fig. 4.

3.1.5 Practical determination of the strict confidence neighborhood

Despite the definition of confidence neighborhood, the strict confidence neighborhood
is not always unique. This can be understood by examining the process that is used to
estimate it.25
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We start from the first three points xm−1, xm, and xm+1. If they do not match the confi-
dence relation for the chosen γ, the strict confidence neighborhood contains only these
three points. Otherwise, if they do match the confidence relation, an iterative process
can be used to see if other contiguous points can be added to the neighborhood. This
can be achieved by checking for couples of points directly left and right of the borders5

of the neighborhood. These are checked to see if they match the confidence relation
with the neighborhood. Each element of the couple can agree with the already defined
confidence neighborhood. However, it can also be the case that the two points do not
agree with each other.

When checking for couples of points that agree with all the other points, but not with10

each other, a choice must be made and one of the two points must be rejected. Reject-
ing a point means that the confidence neighborhood stops to grow in that direction. For
the other direction, one can still add points as long as the confidence relation remains
satisfied. A practical way to determine which one of two conflicting data points should
be kept is to select the one that has a better confidence with ym. This is the criterion15

that we adopted.

3.2 From confidence neighborhood to localization error

The width of the confidence neighborhood is a measure for the quality of a localization.
In particular, the introduced left width l1 and the right width l2 give quantitative infor-
mation about the range of possible results of an algorithm. Moreover, l1 and l2 provide20

a qualitative estimation of the skewness of the distribution of possible results.
In Fig. 3, we showed the confidence neighborhood for the true MH. That was possi-

ble because we know the true MH for the synthetic profile that we used. Now we want
to focus on the confidence neighborhood of the results retrieved from a localization al-
gorithm working on noisy data. We expect that the result should fall into the confidence25

neighborhood of the true MH.
One way to measure localization error would be to use the SD of the output distri-

bution of a Monte Carlo. However, the Monte Carlo distribution overlap well with the
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confidence neighborhoods for different values of γ in Fig. 3. Because the output dis-
tributions are not necessarily normal, the mean result of the Monte Carlo is not the
most likely one. By definition, the mode (maximum value) of the distribution has the
maximum probability.

As measure for uncertainty we used the squared root of the second moment about5

the mode. This for normal distributions it is also called SD. So we can calculate the
square root of the second order moment about the mode of the distribution of the
results.

3.2.1 Localization error

The second order moment expresses clearly the uncertainty of the localization. How-10

ever, its calculation requires to perform a Monte Carlo experiment. Moreover, it de-
pends strongly on the algorithm used. If the data have reasonably small errors and the
algorithms provide a useful estimate of the target quantity, the results will have good
confidence with respect to the true target quantity.

The confidence neighborhoods as from Eq. (4) for γ ≈ 2 and the second order mo-15

ment of the distribution correspond at least qualitatively. Therefore, we could use the
second order moment about a retrieved location xm to give a first definition of the lo-
calization error σxm :

σxm =

√√√√ 1
l1 + l2

∑
xk∈Uγ,y (xm)

(xm −xk)2 (6)

where l1 and l2 are the left and right extensions of the confidence neighborhood20

Uγ,y (xm) defined in Eq. (4).
This definition of σxm is subjected to the choice of the confidence threshold γ. From

studying many cases of Monte Carlo results, we found that for practical purposes the
use of γ = 2 will provide reasonable uncertainties (Kretschmer et al., 2014). Note that
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here, we use the strict confidence neighborhood for the localization error, which is less
subject to the choice of γ (Fig. 3).

For our final definition of localization error, we take Eq. (6) and substitute Uγy (xm) with
the strict definition USγy (xm). Then we consider which value of γ is most representative
of the distribution of the results. Clearly γ = 3 captures the most of the results as we5

can see in Fig. 5. This is true for the example: in particular, 97 % of the results are
captured.

With γ = 3 and the strict confidence neighborhood our final definition of the localiza-
tion error σxm is

σxm =

√√√√ 1
l1 + l2

∑
xk∈US3,y (xm)

(xm −xk)2. (7)10

The strict confidence neighborhood USγy (xm) is in general more symmetric than the
simple confidence neighborhood. However, it can still be unbalanced in case of very
poor localization, for example when the property is located on a region where the signal
is uniform within the uncertainties.

3.2.2 Symmetry of the localization error15

In general, a confidence neighborhood can be asymmetric if the signal does not depend
on the location in a linear way. Especially if there is no change in signal towards one
side of xm, the confidence neighborhood will extend into that region. Instead, a con-
fidence neighborhood estimated on a linear trend extends almost equally into both
directions.20
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The localization error as defined in Eq. (7) has two distinct contributions: e1 from the
points before xm and e2 from the points after.

σ2
xm

=
1

l1 + l2

∑
xk∈[xm−l1 ,...,xm]

(xm −xk)2 +
1

l1 + l2

∑
xk∈[xm,...,xm+l2 ]

(xm −xk)2

=e2
1 +e

2
2

(8)

In the example shown in Fig. 5, the localization error σxm is 10.9 m, while the contri-
butions from either side are e1 = 8.6 m and e2 = 6.7 m.5

3.3 Localization depending on multiple data series

Often a local property can be defined as a location where more than one condition
must be fulfilled. The localization might depend on different data series defined on the
same series of locations xi . In this case, we define the confidence neighborhood as the
intersection of the respective confidence neighborhoods of each data series. So in the10

end, the confidence neighborhood for multiple data series is identical to the smallest
confidence neighborhood of xm for these data series. This definition also holds for strict
confidence neighborhoods.

3.4 Effects of signal resolution and smoothing

The location vector xi can be unevenly spaced. In the previous examples, we used15

a fixed resolution of 3 m. However, the resolution of a radiosonde profile usually varies
with altitude. To assess how the resolution affects the localization error, MC simulations
were performed on signals at various spatial resolutions dz.

The results clearly show that the resolution has an impact (Fig. 6). In particular,
for higher resolutions the chosen algorithm underestimates MH. The skewness of the20

distribution is kept for different resolutions. Reducing the resolution increases the lo-
calization error. This is true for all resolutions starting from 1 to 100 m. The localization

5120

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/5105/2015/amtd-8-5105-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/5105/2015/amtd-8-5105-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 5105–5146, 2015

Error estimation for
localized signal

properties

G. Biavati et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

error for 0.1 m is larger because the mode in this case is located closer to the region of
an almost constant signal.

Note that in 2.1 we decided to use the first location xi that satisfies the algorithm,
not an intermediate point. Therefore, for the coarse resolution of 100 m most of the
probable MH are located within 600 to 700 m, although xm = 600 m was chosen.5

From the example of the rightmost panel of Fig. 3, we have already seen some of
the effect of smoothing. It drastically reduces the size of the confidence neighborhoods
and the spread of the possible results. This is because smoothed profiles have smaller
errors as can be easily inferred from standard error propagation (Eq. A1). If the signal
has an uncorrelated and constant error σy0

and the running average is performed on N10

samples, the resulting error for the smoothed signal is σy0
/
√
N.

There are two main effects when running averages are used before an algorithm is
applied:

– the increased window size reduces the localization error.

– the median of the results changes.15

Both effects can be seen in Fig. 7. To better appreciate the effects of smoothing, we
have chosen a very high-resolution synthetic profile with dz = 0.1 m. It is clear that
the smoothing affects the median like the reduction of resolution. Simultaneously, it
reduces the localization error of the median.

From Fig. 7, we can see that this reduction of localization error is limited. Increasing20

the window size beyond N > 501 which corresponds to a smoothing interval of ±25 m,
does not reduce the localization error any further. When exceeding reasonable limits,
the smoothing affects the algorithm output negatively. This is because it modifies the
signal and corrupts it for large windows.
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4 Application to mixing height retrievals

The estimation of MH comes with many dubious aspects. The first problem is the choice
of a method to detect MH. The second problem is the choice of an algorithm to apply
the method. It is well known (Vogelezang and Holtslag, 1996; Seibert et al., 2000;
Beyrich and Leps, 2012) that different methods produce different results in most cases.5

There are a few exceptions, like when the vertical profiles look like examples from a text
book (Beyrich and Leps, 2012).

In this context, we do not want to evaluate the uncertainties that MH has due to the
choice of a method. This was done successfully by Beyrich and Leps (2012) by com-
paring the results of various methods to detect MH. We just estimate the uncertainty10

on an individual retrieval.
The retrieved uncertainty can be used for several purposes, e.g. to compare two

different methods to see the degree of confidence by using Eq. (2).
Kretschmer et al. (2014) successfully used the qualitative localization error (Eq. 6)

to filter data. The observations of the symmetry of Uγ(xx) were used to reject the worst15

MH estimates performed on the Integrated Global Radiosonde Archive (IGRA) (Durre
Imke et al., 2006) over Europe. The retrieved MH errors where then used to propagate
the errors in a geostatistical interpolation that extended the observations to a grid over
his domain.

As a practical application, we used the described methods to retrieve the uncertain-20

ties of MH from radiosonde data. Together with the already introduced parcel method,
we applied two variants of the Richardson Bulk Number (RBN) method as described
by Vogelezang and Holtslag (1996).

4.1 Richardson Bulk Number methods

Vogelezang and Holtslag (1996) analyzed three methods for stable and neutral condi-25

tions. All of them imply the use of different dimensionless profiles. However, in this work
we use only the first two methods proposed by Vogelezang and Holtslag (1996). The
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third method they propose is not applicable in this work because it requires additional
data sources not available from the radiosonde data itself. The dimensionless profiles
we analyzed are defined by the symbols Rib and Rig.

The first definition Rib should be used under stable conditions when wind is weak:

Rib(θv0,θvh,h,Vh) =
gh
θv0

θvh −θv0

V 2
h

(9)5

where θv0 and θvh are the virtual potential temperatures at the surface and at the top,
respectively, g is the gravitational acceleration, and Vh is the wind speed. The variable
h is the altitude above the ground, which is about 112 m a.s.l. for Lindenberg.

The second definition Rig is more appropriate for stable conditions with high winds:

Rig = Rig(θvs,θvh,h,uh,vh,us,vs,zs)10

=
g(h− zs)
θvs

θvh −θvs

(uh −us)2 + (vh − vs)2
(10)

where the subscript s denotes a reference level. The variables v and u are the two
horizontal wind components.

The reference level as used by Vogelezang and Holtslag (1996) is located on a mete-
orological tower, not on the radiosonde itself. They studied the effects of using different15

reference levels but observed no larger changes as long as the chosen reference level
is close to 20 m. In this work, we did not have tower data available, so we used the
second data point of each radiosonde profile as the reference level, which was located
at approximately 20 m above ground.

To locate the MH, an appropriate critical or threshold value for Ri has to be selected.20

The MH is located where this threshold value is reached. A typical value for the thresh-
old for the first method Rib is 0.25 (Seibert et al., 2000). For Rig, we used a critical
value of 0.28 taken from Vogelezang and Holtslag (1996, their Table I).
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The critical number for Rig was taken from Vogelezang and Holtslag (1996, their
Table I) considering a general case with a reference level of 20 m. We followed Vo-
gelezang and Holtslag (1996) using as reference layer the data taken closest to 20 m
above the ground.

Examples of the profiles of Rib and Rig are plotted in Figs. 8 and 9.5

4.2 Localization error for a dataset of high-resolution radiosonde profiles

As introduced in Sect. 2, we applied our methodology to a subset of a well known
dataset (Beyrich and Leps, 2012): the month of June 2010 at the meteorological obser-
vatory of Lindenberg, Germany. During this time period, the presence of many different
meteorological conditions allowed us to see the behavior of the localization error.10

Using the radiosonde data, we calculated θvz, Rib(z), and Rig as defined by Eqs. (1),
(9), and (10).

The following steps were taken to describe the process that we used to estimate σxm :

1. Propagate the errors using Eqs. (A4), (A9), and (A10).

2. Use the algorithm presented in Sect. 2.1 for threshold detection.15

3. Estimate the US3,y(xm) as defined in Sect. 3.1.5 for the retrieved MHs.

4. Use Eq. (7) to calculate σxm .

The result of such an analysis are presented in Fig. 10.

5 Discussion

The methodologies for retrieving MH should be applied in proper meteorological condi-20

tions. The use of a wrong methodology directly results in a large localization error. This
is clear from the time series of results in Fig. 10. For the radiosonde data collected at
18:00 UTC, the error bars are clearly larger than for other times of the day. Usually at
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18:00 UTC at Lindenberg station, the atmospheric profiles experience a transition from
convective over neutral to stable conditions. This makes the parcel method unusable
and also affects the Richardson number methods. The problems related to 18:00 UTC
MH retrieval are well known at this site. In particular, Beyrich and Leps (2012) found
the largest differences between different MH retrieval methods for that time of the day.5

Another reason for high uncertainties is that the wind speed might not be strong
enough to justify the use of either Rib or Rig. Low wind speed combined with uncer-
tainties in wind speed translates into large uncertainties in Rib and Rig, as wind speed
appears with large exponents in the denominators of Eqs. (A9) and (A10). This can
be clearly seen in Figs. 11 and 12. If the virtual potential temperature has only small10

changes with altitude, the parcel method will not produce a good localization.
We consider the points with small error bars in Figs. 8 and 9. Here the error is similar

to the one encountered studying the effects of resolution in Sect. 3.4. In particular,
our dataset has a varying resolution with a mean of about 30 m. Looking at Fig. 6,
we see that the expected error (47 m) for a good localization is very similar to what15

we obtained for the well-developed convective case in Fig. 8. The uncertainty for well-
localized points in our dataset is generally around 40 m.

In the examples for bad localization (Figs. 11 and 12), both wind speed and tem-
perature contribute to the large localization error (red error bar). However, we must
distinguish between the cases of Figs. 11 and 12 because the large resulting errors20

are of different nature. The case of Fig. 11 shows a strongly asymmetric confidence
neighborhood, while the one presented in Fig. 12 is fairly symmetric.

The values of e1 and e2 are plotted in Figs. 11 and 12 as black error bars. In the
asymmetric example of 20 June 2010, 18:00 UTC, the contribution to σxm comes mostly
from the e1 component. So if we would repeat the measurement, we would expect most25

of the values from below the retrieved MH and only few from above. For the symmetric
example of 6 June 2010, 18:00 UTC, the components e1 and e2 are much more similar
in magnitude for all the retrieval methods.
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In fact, a more symmetric error or confidence neighborhood can allow us to use the
localization error like an ordinary Gaussian error. However, when the distribution of the
results is not Gaussian, the retrieved localization errors must be used with care. In
particular, the e1 and e2 contributions should be considered separately.

6 Conclusions5

We defined a rigorous method for evaluating uncertainties on estimated quantities
where standard error propagation cannot be used. It is particularly useful when a com-
plex algorithm is necessary to find the location of a certain property and a Monte Carlo
approach is too expensive. We call this uncertainty of a localization the localization er-
ror σxm . Its definition descends from the statistical concept of confidence (Eq. 2) which10

is considered in this work as a relation of equivalence of data points. To reach the
mathematical definition of localization error in Eq. (7), we defined the strict confidence
neighborhood in Eq. (5) as a contiguous set of equivalent data points.

Our work has proved to be a useful tool for qualitative analyses, and in particular for
filtering data by quality of the retrieval (Kretschmer et al., 2014). When the confidence15

neighborhood is symmetric, the localization error can be considered analogous to the
SD. Like the SD, the interval defined by the localization error will include the largest
part of possible results if the measurements were to be repeated.

Depending on the actual signal, the interval defined by the localization error may be
strongly asymmetric. In such a case, the expected distribution of possible results is not20

Gaussian, and the distribution will have non-negligible skewness. The correct use of
the localization error then requires to consider the left and right contributions to σxm
separately.

Our methodology was applied to compare different methods for retrieving mixing
height from radiosonde data. This was not done to provide a better algorithm, or to25

perform a general study on the best way to estimate mixing height. We rather provided
a tool that can be used to better and more quantitatively compare different algorithms.
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All the methodologies described in the literature provide values of MH without a spe-
cific error estimate. Instead, the uncertainty was estimated on the basis of the spatial
and temporal variability of large datasets or by comparing results of different methods.
Our goal was to estimate a reasonable uncertainty for one singular estimate of MH
that depends only on the signals used and their uncertainties. The uncertainties that5

we retrieve this way are consistent with the climatological results of Beyrich and Leps
(2012).

Our method is not limited to mixing height retrieval or atmospheric science at all. It
can be applied to many problems where data points in a signal have to be localized:
for example to find minima or maxima, or values exceeding a certain threshold. The10

localization error provided by our method can be used for error propagation in almost
the same way as SD. It opens the possibility to check hypotheses by use of Welch’s t
test Welch (1947) or similar methods also for small data sets.

Appendix

The errors of meteorological quantities retrieved by measured ones like potential tem-15

perature, virtual potential temperature and the different Richardson Bulk number pro-
files formulations are here exposed.

A1 Error propagation

When combining different measurements yk where K ∈ 1, . . .,M into a derived quantity
f (y1, . . .yM ), the proper way to calculate the error of the retrieved quantity εf is the20

following:

εf =

√√√√ ∑
k∈{1,...,M}

ε2
yk

(
∂f
∂yk

)2

(A1)

where εyk is the error of the measurement of yk .
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A2 Potential temperature

Potential temperature represent the temperature that an air parcel would have if adia-
batically translated from a certain pressure level P to a reference level P0.

θ(z) = T (z)
[
P0

P (z)

]γ
(A2)

where γ is the adiabatic lapse rate5

σ2
θ(z) = σT (z)2

[
P0

P (z)

]2γ

+σ2
P (z)

γ2P 2
0 T (z)2

(
P0
P (z)

)2γ−2

P (z)4
+σ2

P0

γ2T (z)2
[
P0
P (z)

]2γ−2

P (z)2
(A3)

In this error formulation we are considering that the adiabatic lapse rate has no error.
the value P0 and its error σP0

is provided for sake of generalities, but in general P0 is
fixed to 1000 hPa and has no error.

A3 Virtual potential temperature10

Virtual potential temperature represent the temperature that an air parcel would have
if adiabatically translated from a certain pressure level P to a reference level P0 and all
the water vapor condensed, so that the all condensation latent heat is released. If no
liquid water content is considered follow the definition:

In order to retrieve the error propagation formula in this case we can use Eq. (A3)15

substituting the temperature and its error with Te and its error

σ2
Te

(z) = σ2
T (z)+σ2

MR(z)b2 (A4)

Before we give a formulation on the error on the MR we have to point out that the
coefficient b is not really a constant being the water vapor’s latent heat of condensation

5128

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/5105/2015/amtd-8-5105-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/5105/2015/amtd-8-5105-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 5105–5146, 2015

Error estimation for
localized signal

properties

G. Biavati et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

temperature dependent, but in this context we are keeping it constant and neglecting
any error associated with its value.

Radiosondes are measuring relative humidity, so MR must be calculated from this
quantity. This task can be performed calculating the water vapor pressure directly from
RH an pressure after the estimation of water vapor saturation pressure.5

MR(z) =
e(z)

P (z)−e(z)
=

RHesat(z)

P (z)−RHesat(z)
(A5)

where e(z) is the water vapor pressure at the altitude z. The relative humidity in this
expression and following is intended divided for 100 and esat(z) is the saturation pres-
sure of water vapor. For this last quantity many empirical formulations can be found as
function of temperature. Due to the large number of expressions we have chosen to10

refer to the Bolton’s approximation (Bolton, 1980).

esat = 6.112e17.67T/(T+243.5) (A6)

where T is expressed in ◦C and pressure in hPa. For this expression the error propa-
gation is

σ2
esat

= σ2
T 37.357

[
17.67

T +243.5
− 17.67T

(T +243.5)2

]2

e
35.34T
T+243.5 (A7)15

Propagating the errors on the MR expression we obtain

σ2
MR(z) =σ2

esat

[
RH

P −RHesat
+

RH2esat

(P −RHesat)2

]2

+σ2
RH

[
esat

P −RHesat
+

RHe2
sat

(P −RHesat)2

]2

+σ2
P

RH2e2
sat

(P −RHesat)4

(A8)

substituting Eq. (A7) in this last expression we obtain an expression on the error of MR
that consider only the quantities directly measured by the RS92-SGPD.
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A4 Error propagation on bulk Richardson number methods

The Eq. (9) gives us the following expression for the errors:

σ2
Rib

=σ2
θv0
g2h2

(
1

θv0V
2
h

−
θv0 −θv

θ2
v0V

2
h

)2

+σ2
θv

g2h2

θ2
v0V

4
h

+σ2
hg

2 (θv0 −θv)2

θ2
v0V

4
h

+4σ2
V g

2h2 (θv0 −θv)2

θ2
v0V

6
h

(A9)

Must me noticed that the variable h is is defined as the difference between the mea-
sured altitude over mean sea level and the altitude of the balloon release area, for this5

reason on an non uniform terrain the uncertainty on this quantity can be relevant. Prop-
agation of the Rig add to Eq. (A9) also the dependence on the wind direction used to
calculate the wind components, as well the errors on the reference levels.

σ2
Rig

=σ2
θvs
g2

{
h− zs

θvs
[
(uh −us)2 + (vh − vs)2

] + (h− zs)(θvh −θvs)

θ2
vs
[
(uh −us)2 + (vh − vs)2

]}2

+σ2
θvh
g2 (h− zs)

2

θ2
vs
[
(uh −us)2 + (vh − vs)2

]2 +σ2
hg

2 (θvh −θvs)
2

θ2
vs
[
(uh −us)2 + (vh − vs)2

]210

+σ2
zs
g2 (θvh −θvs)

2

θ2
vs
[
(uh −us)2 + (vh − vs)2

]2 +σ2
uh
g2 (2uh −2us)

2(h− zs)
2(θvh −θvs)

2

θ2
vs
[
(uh −us)2 + (vh − vs)2

]4
+σ2

vh
g2 (2vh −2vs)

2(h− zs)
2(θvh −θvs)

2

θ2
vs
[
(uh −us)2 + (vh − vs)2

]4 +σ2
us
g2 (2uh −2us)

2(h− zs)
2(θvh −θvs)

2

θ2
vs
[
(uh −us)2 + (vh − vs)2

]4
+σ2

vs
g2 (2vh −2vs)

2(h− zs)
2(θvh −θvs)

2

θ2
vs
[
(uh −us)2 + (vh − vs)2

]4 (A10)
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Table 1. Vaisala RS92-SGP (Vaisala, 2015) sensors specifications in range pressure of 1080–
100 hPa.

RS92-SGP

Quantity range error
Pressure 1080–100 hPa 0.2 hPa
Temperature −90–+60 ◦C 0.1 ◦C
Relative humidity 0–100 % 2.5 %
Wind Speed 0.15 ms−1

Wind Direction 2 ◦
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Figure 1. Idealized profile of potential temperature θs(z). The tiny black line represents the pro-
file and the blue area around represent an hypothetical measurement error of ±0.125 K. The
cyan line is the potential temperature of standard atmosphere. The horizontal black line repre-
sents the MH and the vertical dotted line the temperature at the ground. The spatial resolution
used in this plot is 10 m.
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Figure 2. Results of a Monte Carlo for the parcel method as detailed in algorithms presented
in Sect. 2.1. The first panel presents the probability density function of the Monte Carlo using
directly the data. In the second panel the results are for data smoothed with a window of three
points instead. The algorithms were applied to the synthetic profile of Fig. 1 after application
of random noise. The numbers of runs performed is 1 000 000. The probability density is pre-
sented in logarithmic scale to allow the view of results far from the expected MH. The expected
MH is presented as a black horizontal line.
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Figure 3. For the synthetic profile θs(z) introduced in Fig. 1 and calculated with spatial res-
olution of 3 m. The first panel presents confidence neighborhoods as from Eq. (4) for various
thresholds γ; second panel presents the confidence neighborhoods for the smoothed profile
θs(z); third panel: strict confidence neighborhoods as from Eq. (5); forth panel: strict confi-

dence neighborhoods as from Eq. (5) for the smoothed profile θs(z); fifth panel: probability
density function of the Mote Carlo results for the algorithm introduced in Sect. 2.1 for raw
data (red) and smoothed (blue). The confidence neighborhoods are depicted as green areas
following the color scale on the right. The horizontal black line represent the location on the
MH = hm = 669 m for this spatial resolution.
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Figure 4. This diagram shows the difference between confidence neighborhood (above) and
strict confidence neighborhood (below). The lines connecting the points represent where the
relation of confidence Eq. (2) must be met for a fixed γ. The red points are included within the
confidence neighborhood of every kind even if they do not respect the relation of confidence
with xm.
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Figure 5. Left panel: the strict confidence neighborhoods USγθs (xm) and the true MH as a hori-
zontal black line. For color scales for different γ values see Fig. 3. Right panel: the distribution
of the Monte Carlo output as a probability density function (pdf). The blue line is the median
of the distribution, the dashed lines define the localization error of the median as from Eq. (7),
and the solid lines represent the square root of the second order moment about the median of
the distribution.
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Figure 6. Probability density functions of 5 MC performed 100 000 times each. From left to right
we created θs(z) with following resolutions: dz = 0.1, 1, 10, 30, and 100 m. On each plot, the
median of the distribution xm and its localization error as defined in Eq. (7) is printed.
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Figure 7. Probability density functions of 6 MC performed 100 000 times each. For this example
we used a fixed spatial resolution of 0.1 m. The different smoothing window with size N is
indicated at the top of each panel, and the median of the distribution xm and its localization
error as defined in Eq. (7) is printed.
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Figure 8. Profiles used for estimating MH on 24 June 2010, 12:00 UTC. The θv, Rib and Rig
are depicted surrounded by a blue region that represents the error of the profile. The vertical
dashed lines represent the threshold that locates the MH. The estimated MH with localization
error is shown in red.
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.

Figure 9. Profiles used for estimating MH on 3 June 2010, 06:00 UTC. The plot is analogous
to Fig. 8
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Figure 10. Time series of MHs calculated with three methods: blue is the Parcel Method (PM),
green the Rib, and red the Rig. It presents the results obtained from the raw data without
smoothing. The error bars represent the localization error calculated with Eq. (7).
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Figure 11. Potential temperature, Rib and Rig profiles at Lindenberg weather station on 20 June
2010, 18:00 UT.The propagated errors are depicted as light blue areas around the profiles. On
each plot, the localization error σxm is depicted as a red error bar. Black bars represent the
distinct contributions e1 and e2 to σxm .
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Figure 12. Potential temperature, Rib and Rig profiles at Lindenberg weather station on 6 June
2010, 18:00 UTC. The propagated errors are depicted as light blue area around the profiles.
On each plot, the localization error σxm is depicted as a red error bar. Black bars represent the
distinct contributions e1 and e2 to σxm .
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