Supplement of Atmos. Meas. Tech. Discuss., 8, 5735–5768, 2015 http://www.atmos-meas-tech-discuss.net/8/5735/2015/doi:10.5194/amtd-8-5735-2015-supplement © Author(s) 2015. CC Attribution 3.0 License. ## Supplement of ## Characterization of trace metals with the SP-AMS: detection and quantification S. Carbone et al. Correspondence to: S. Carbone (carbone@if.usp.br) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. Figure S1 – Instrument setup to measure trace elements in the laboratory. $\label{eq:solution} Figure~S2-Mass~spectrum~obtained~with~Tungsten~and~filament~switched~off~and~laser\\ vaporizer~on.$ Figure S3- Signal measured by the SP-AMS (Hz) versus the mass concentration obtained by the CPC ($\mu g \ m^{-3}$) for each trace element and respective slope values (α). Figure S4 – Fe mass concentration as a function or rBC concentration measured at the heating station with the SP-AMS. The dashed black line represent the Fe limit of detection for this instrument. Table S1- Relative atomic mass, isotopic composition, standard concentration, nitric acid concentration and identified isotopes of the trace elements investigated in this study. | Element | Relative
atomic
mass ^a | Isotopic composition (%) a | Standard
concentration
(mg L ⁻¹) ^b | HNO ₃
concentration
(%, w/w) b | Identified isotopes with the SP-AMS | |---------|---|----------------------------|---|---|--| | Na | 22.9897 | 100.00 | 1000 | 2 | ²³ Na ⁺ | | Al | 26.9815 | 100.00 | 1000 | 2 | ²⁷ Al ⁺ | | Ca | 39.9625 | 96.94 | 1000 | 2 | ⁴⁰ Ca ⁺ , ⁴² Ca ⁺ , ⁴⁴ Ca ⁺ | | V | 50.9439 | 99.75 | 1000 | 3 | 51 V + | | Cr | 51.9405 | 83.78 | 1000 | 2 | ⁵² Cr ⁺ , ⁵³ Cr ⁺ , ⁵⁴ Cr ⁺ | | Mn | 54.9380 | 100.00 | 998 | 2 | ⁵⁵ Mn ⁺ | | Fe | 55.9349 | 91.75 | 1000 | 2 | $^{54}Fe^{+}, ^{55}Fe^{+}, ^{56}Fe^{+}, ^{57}Fe^{+},$ | | Ni | 57.9353 | 68.07 | 1000 | 2 | ⁵⁸ Ni ⁺ , ⁶⁰ Ni ⁺ , ⁶¹ Ni ⁺ ,
⁶² Ni ⁺ , ⁶⁴ Ni ⁺ | | Cu | 62.9295 | 69.15 | 1000 | 2 | 63Cu ⁺ , 64Cu ⁺ , | | Zn | 63.9291 | 48.26 | 1000 | 2 | ⁶⁴ Zn ⁺ , ⁶⁶ Zn ⁺ , ⁶⁷ Zn ⁺ , ⁶⁸ Zn ⁺ , ⁷⁰ Zn ⁺ | | Rb | 84.9117 | 72.17 | 1000 | 2 | 85Rb+, 87Rb+ | | Sr | 87.9056 | 82.58 | 1000 | 2 | ⁸⁴ Sr ⁺ , ⁸⁶ Sr ⁺ , ⁸⁷ Sr ⁺ , ⁸⁸ Sr ⁺ , | | Ba | 137.9052 | 71.69 | 1000 | 2 | ¹³⁰ Ba ⁺ , ¹³² Ba ⁺ , ¹³⁴ Ba ⁺ ,
¹³⁵ Ba ⁺ , ¹³⁶ Ba ⁺ , ¹³⁷ Ba ⁺ ,
¹³⁸ Ba ⁺ | ^a Watson et al., 2004. ^b Sigma-Aldrich standards in nitric acid.