Supplement of Atmos. Meas. Tech. Discuss., 8, 5735–5768, 2015 http://www.atmos-meas-tech-discuss.net/8/5735/2015/doi:10.5194/amtd-8-5735-2015-supplement © Author(s) 2015. CC Attribution 3.0 License.

Supplement of

Characterization of trace metals with the SP-AMS: detection and quantification

S. Carbone et al.

Correspondence to: S. Carbone (carbone@if.usp.br)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Figure S1 – Instrument setup to measure trace elements in the laboratory.

 $\label{eq:solution} Figure~S2-Mass~spectrum~obtained~with~Tungsten~and~filament~switched~off~and~laser\\ vaporizer~on.$

Figure S3- Signal measured by the SP-AMS (Hz) versus the mass concentration obtained by the CPC ($\mu g \ m^{-3}$) for each trace element and respective slope values (α).

Figure S4 – Fe mass concentration as a function or rBC concentration measured at the heating station with the SP-AMS. The dashed black line represent the Fe limit of detection for this instrument.

Table S1- Relative atomic mass, isotopic composition, standard concentration, nitric acid concentration and identified isotopes of the trace elements investigated in this study.

Element	Relative atomic mass ^a	Isotopic composition (%) a	Standard concentration (mg L ⁻¹) ^b	HNO ₃ concentration (%, w/w) b	Identified isotopes with the SP-AMS
Na	22.9897	100.00	1000	2	²³ Na ⁺
Al	26.9815	100.00	1000	2	²⁷ Al ⁺
Ca	39.9625	96.94	1000	2	⁴⁰ Ca ⁺ , ⁴² Ca ⁺ , ⁴⁴ Ca ⁺
V	50.9439	99.75	1000	3	51 V +
Cr	51.9405	83.78	1000	2	⁵² Cr ⁺ , ⁵³ Cr ⁺ , ⁵⁴ Cr ⁺
Mn	54.9380	100.00	998	2	⁵⁵ Mn ⁺
Fe	55.9349	91.75	1000	2	$^{54}Fe^{+}, ^{55}Fe^{+}, ^{56}Fe^{+}, ^{57}Fe^{+},$
Ni	57.9353	68.07	1000	2	⁵⁸ Ni ⁺ , ⁶⁰ Ni ⁺ , ⁶¹ Ni ⁺ , ⁶² Ni ⁺ , ⁶⁴ Ni ⁺
Cu	62.9295	69.15	1000	2	63Cu ⁺ , 64Cu ⁺ ,
Zn	63.9291	48.26	1000	2	⁶⁴ Zn ⁺ , ⁶⁶ Zn ⁺ , ⁶⁷ Zn ⁺ , ⁶⁸ Zn ⁺ , ⁷⁰ Zn ⁺
Rb	84.9117	72.17	1000	2	85Rb+, 87Rb+
Sr	87.9056	82.58	1000	2	⁸⁴ Sr ⁺ , ⁸⁶ Sr ⁺ , ⁸⁷ Sr ⁺ , ⁸⁸ Sr ⁺ ,
Ba	137.9052	71.69	1000	2	¹³⁰ Ba ⁺ , ¹³² Ba ⁺ , ¹³⁴ Ba ⁺ , ¹³⁵ Ba ⁺ , ¹³⁶ Ba ⁺ , ¹³⁷ Ba ⁺ , ¹³⁸ Ba ⁺

^a Watson et al., 2004.

^b Sigma-Aldrich standards in nitric acid.