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Abstract

Due to the climate effects and aviation threats of volcanic eruptions, it is important to
accurately locate ash in the atmosphere. This study aims to explore the accuracy and
reliability of training a neural network to identify cases of ash using observations from
the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite images were5

obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleu-
tian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaiteìn, southern Chile,
2008; Puyehue-Cordoìn Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014;
and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajec-
tory Model (HYSPLIT) was used to obtain ash concentrations for the same archived10

eruptions. Two back-propagation neural networks were then trained using brightness
temperature differences as inputs obtained via the following band combinations: 12-
11, 11-8.6, 11-7.3, and 11 µm. Using the ash concentrations determined via HYSPLIT,
flags were created to differentiate between ash (1) and no ash (0) and SO2-rich ash (1)
and no SO2-rich ash (0) and used as output. When neural network output was com-15

pared to the test dataset, 93 % of pixels containing ash were correctly identified and
7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly iden-
tified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval
and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show sig-
nificantly less accuracy in the presence of high water vapor, liquid water, ice, or dust20

concentrations. Significant errors are also observed at the edge of the MODIS swath.

1 Introduction

Volcanic eruptions, if large enough, can have a dramatic effect on the climate and the
aviation industry, as highly explosive eruptions can emit large amounts of ash and
SO2 into the troposphere and stratosphere. Due to climate and aviation impacts, the25

knowledge of the location of volcanic ash following an eruption is imperative. Although
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climate effects of eruptions have been mostly attributed to sulfate aerosols, recent re-
search has attempted to quantify climate effects attributable to ash (Langmann, 2014;
Flanner et al., 2014). Volcanic ash acts to reduce the amount of incoming solar radi-
ation, thus modifying Earth’s surface temperature (Langmann, 2013). Ash, in addition
to sulfate aerosols, provides a source of cloud condensation nuclei and ice nuclei,5

increasing the number of cloud droplets, and thus modifies cloud lifetime and precipita-
tion processes (Langmann, 2014, 2013; Twomey, 1977; Albrecht, 1989). Atmospheric
CO2 concentrations can be reduced following volcanic eruptions through ocean fer-
tilization: ash can serve as a source of soluble iron to the ocean, increasing marine
primary production (when iron is the limiting nutrient), leading to a build-up of organic10

carbon (Langmann, 2014, 2013; Achterberg et al., 2013). Ash can also result in sur-
face darkening, snowmelt, and snow insulation (when the ash deposit is thick) (Flanner
et al., 2014).

In order to have a significant climate effect, sulfate aerosols must be injected into the
stratosphere because they will be rapidly removed due to precipitation if only injected15

into the troposphere (Francis and Oppenheimer, 2004). However, a series of smaller
eruptions could have a cumulative climate effect due to the amount of sulfate added to
the atmosphere (Solomon et al., 2011). Sulfate aerosols, formed after SO2 oxidizes to
H2SO4 by homogeneous nucleation/condensation onto other aerosols (Vernier et al.,
2011), increase Earth’s albedo by scattering shortwave radiation. This results in the20

primary effect of large volcanic eruptions: surface and tropospheric cooling and strato-
spheric warming (Kravitz and Robock, 2011). Net heating is observed in the strato-
sphere due to the absorption of infrared radiation by sulfate aerosol. Other effects of
sulfate aerosols are ozone depletion and more downward infrared flux (Robock, 2000).
However, some researchers suggest that some volcanism, specifically flood basalts,25

has led to intense global average warming on a longer timescale than SO2 due to the
residence time of CO2 (Caldeira et al., 1990).

In addition to human health impacts, such as eye irritation and respiratory stress
(Langmann, 2013), volcanic ash poses a serious threat to the aviation industry. Ash can
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melt onto the jet engine turbine and lead to failure if it enters the engine, as the melting
point of ash is around 1100 K while jet engines operate at about 1400 K (Sears et al.,
2013). In addition to engine damage, volcanic ash can also damage cockpit windows
and other airplane surfaces through sandblasting, obstruct the pitot-static system, and
be ingested into the air conditioning and cooling systems (Pavolonis et al., 2013; In-5

ternational Civil Aviation Organization (ICAO), 2007). Due to these physical damage
effects of volcanic ash, the presence of ash in the atmosphere can significantly affect
the economy of the aviation industry.

When ash and SO2 follow different trajectories, due to their different densities and
the presence of shear, or the change in wind speed and direction with height, and10

atmospheric lifetime (Carn et al., 2002; Sears et al., 2013; Schneider et al., 1999;
Rose et al., 2000; Thomas and Prata, 2011), SO2 cannot reliably be used as a proxy
for ash. Sears et al. (2013) found that sometimes only 10 % of ash was missed when
using SO2 as a proxy for ash, but other times that over 80 % was missed. They go on to
discuss that although not always highly accurate, using SO2 to determine the location15

of volcanic ash is useful.
Previous research determining locations and loadings of SO2 and ash has used one

or a combination of the following satellite instruments: Total Ozone Mapping Spec-
trometer (TOMS), Moderate Resolution Imaging Spectrometer (MODIS), Atmospheric
Infrared Sounder (AIRS), Spinning Enhanced Visible and Infrared Imager (SEVIRI),20

Ozone Monitoring Instrument (OMI), and the Advanced Very High Resolution Radiome-
ter (AVHRR) (Ackerman, 1997; Carn et al., 2009a, 2010; Feltz et al., 2006; Prata
et al., 2007, 2010; Theys et al., 2013; Pavolonis et al., 2006). Most of these meth-
ods are either physical inversions or statistically derived threshold methods. Picchiani
et al. (2011) and Piscini et al. (2014) demonstrate the usefulness of neural networks25

for ash/SO2 detection on a limited set of cases.
Our study aims to further explore the accuracy and reliability of neural networks to

detect both ash-rich and SO2-rich volcanic clouds using the Moderate Resolution Imag-
ing Spectrometer (MODIS), an instrument on-board NASA’s Terra and Aqua satellites.
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In particular, we use a wider range of atmospheric conditions and combine MODIS
analysis with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT,
Draxler and Rolph, 2003) Model for neural network training. The remainder of this pa-
per is structured as follows: chosen study areas are outlined in Sect. 2.1, remote sens-
ing methods used to locate volcanic ash and SO2-rich ash in MODIS observations in5

Sect. 2.2, modeling methods used to determine ash concentrations in Sect. 2.3, and
neural network details in Sect. 2.4. Optimal thresholds for detecting ash are discussed
in Sect. 3.1. The results of this study, including success rate and accuracy of this de-
tection method, can be found in Sect. 3.2.

2 Methods10

To determine if volcanic ash could be automatically detected within MODIS observa-
tions, MODIS data were obtained for seven eruptive events (Table 1) and band differ-
encing was performed to distinguish ash and SO2-rich ash from ambient clouds and
surface features. Ash locations and concentrations were determined using HYSPLIT for
the same eruptive events. The accuracy of using a neural network to detect volcanic15

ash was explored by training a back-propagation neural network with band differences
representing ash, SO2, and surface features as input and ash concentrations as output.

2.1 Study areas

Seven eruptive events with similar plume heights and explosivity were chosen (Ta-
ble 1). These eruptions all had a Volcanic Explosivity Index (VEI) of 3 or 4 and plume20

heights between 12 and 30 km (Global Volcanism Program; hereafter referred to as
GVP). The VEI is on a scale of 0 to 8, where an increase of one indicates an increase
in magnitude by a factor of 10, and is a function of volume of erupted material, eruption
column height, and duration (Newhall and Self, 1982). These eruptive events were cho-
sen because they had similar eruptive column heights, allowing their trajectories to be25
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compared. More information about these specific eruptions can be found in Appendix
A. The focus of this paper will be on four of the seven eruptions: Chaiteìn, Okmok, Ke-
lut, and Sangeang Api. Additional information regarding the other three eruptions has
been provided as Supplement.

2.2 Remote sensing5

Aerosols exhibit varying transmittance in the 8–10 and 10–12 µm ranges, regions
where the atmosphere is nearly transparent (Ackerman, 1997). Because MODIS chan-
nels 29, 31, and 32 cover this spectral range, MODIS images were obtained and band
combinations were applied to determine areas of ash and SO2 in each eruptive col-
umn. Sulfur dioxide is very absorptive in 7.3 and 8.6 µm channels (Prata et al., 2007).10

However, the 7.3 µm channel is not as sensitive to the total SO2 column as the 8.6 µm
channel because the 7.3 µm channel lies within a band that is also sensitive to water
vapor (Sears et al., 2013) (see Fig. 1 in Watson et al., 2004). Band differencing was
used to locate both ash and SO2 in the atmosphere following a volcanic eruption. Ash is
characterized by a negative brightness temperature difference between 11 and 12 µm15

(Ackerman et al., 2008). Ice is characterized by a positive brightness temperature dif-
ference between 11 and 12 µm because ice exhibits a lower brightness temperature at
12 µm (Watson et al., 2004). Following methods similar to Ackerman et al. (2008), band
31 (11 µm) was subtracted from band 32 (12 µm) to create a positive brightness temper-
ature difference representing ash. Because SO2 absorbs strongly in the 8.6 µm channel20

but not in the 11 µm channel, band 29 (8.6 µm) was subtracted from band 31 (11 µm)
to create a positive brightness temperature difference representing SO2 (Figs. 1–4).
Visible images were also created for each case by combining band 1 (620–670 nm),
band 4 (545–565 nm), and band 3 (459–479 nm) (Figs. 1-4).
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2.3 HYSPLIT

After band combinations were used to differentiate between ambient clouds, surface
features, ash, and SO2, ash concentrations were determined using the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) Model for Volcanic Ash for the
same archived eruptions (Draxler and Rolph, 2003).5

The NOAA/Air Resources Laboratory HYSPLIT model can be used specifically for
archived volcanic eruptions to determine the transport, dispersion, and ash concentra-
tions of the volcanic plume. For this particular study, National Centers for Environmen-
tal Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis
meteorological data was used. Reanalysis data is composed of atmospheric analysis10

reproduced using historical data (1948-current) (Kalnay et al., 1996). These concen-
trations were then used to create “ash” and “no-ash” classifications, which may or may
not be representative of reality due to HYSPLIT concentration uncertainties. Parame-
ters specified in this model can be found in Appendix B. Concentrations were integrated
over the concentration layer height of 30 or 32 km, depending on the eruption, resulting15

in units of gm−2.

2.4 Neural network

A neural network, or a structure that mathematically identifies relationships between
given inputs and outputs (Hsu et al., 1995), is made up of neurons, which consist of
input signals, a set of weights, activation levels, and threshold functions (Luger and20

Stubblefield, 1998). Neural networks have varying topologies, learning algorithms, and
encoding schemes (Luger and Stubblefield, 1998). This particular study used a back-
propagation learning algorithm for a multi-layer neural network, which propagates error
backwards starting from the output layer through the hidden layers, which connect the
input and output layers (Luger and Stubblefield, 1998).25
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2.4.1 Neural network training

Two back-propagation neural networks were used to determine whether or not ash
or SO2-rich ash was present in a given MODIS pixel. From 120 MODIS granules, 14
cases were chosen where HYSPLIT output was well aligned with satellite observa-
tions (Appendix B). Three masks were applied to each granule to create a selection of5

pixels containing only ash, a selection containing only SO2-rich ash, and a selection
containing all other situations where ash was not present. Both networks were trained
using inputs obtained via the following band combinations: 12-11 µm brightness tem-
perature difference, 11-8.6 µm brightness temperature difference, 11-7.3 µm brightness
temperature difference, and 11 µm brightness temperature. Using the ash concentra-10

tions determined via HYSPLIT, two sets of flags were created to differentiate between
ash (1) and no ash (0), and SO2-rich ash (1) and no SO2-rich ash (0). As validation,
the neural networks used these flag as outputs. The back-propagation neural network
settings used in this study can be found in the Supplement. Dr. René Preusker, Institute
for Space Sciences, Free University of Berlin, Germany, created the software used in15

this study for the training of this particular neural network.

3 Results

3.1 Optimal thresholds

The neural network output was compared to the test dataset output for both the ash-
detection and SO2-rich-ash-detection networks. A Heidke skill score (HSS) was cal-20

culated for all possible ash/no ash and SO2-rich ash/no SO2-rich ash thresholds to
determine optimal thresholds (Fig. 5 and 6). Data used to make these plots has been
provided.

The optimal thresholds for ash retrieval and SO2-rich ash retrieval were 0.48 and
0.47, respectively. The SO2-rich-ash-detection neural network was found to have25
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a higher Heidke Skill score than the ash-detection neural network, and thus less er-
ror (Table 2). Of all data containing volcanic ash, 93 % of pixels are correctly identified
and 7 % are incorrectly flagged (Table 2). Out of the all data containing SO2-rich ash,
almost 100 % are correctly identified (Table 2).

3.2 Neural network output5

Using the optimal thresholds determined by the Heidke skill score test, MODIS gran-
ules for the specified eruptions were fed to the neural network to create new images
locating areas of ash, no ash, SO2-rich ash, and no SO2-rich ash (Figs. 1–4). The
scales associated with the neural network output in Figs. 1–4 are representative of
certainty of the presence of ash or SO2-rich ash in that pixel, where a greater number10

represents a greater likelihood that ash is present.
Referring back to the corresponding RGBs in Figs. 1–4, the neural network output in

those figures differentiates the pink/red areas, representing ash in the RGBs, from the
ambient environment and SO2, and also differentiates the bright yellow, representing
SO2-rich ash in the RGBs, from the ambient environment and ash. In addition, when15

ash and SO2 are collocated or when SO2 is located above ash, ash will appear bright
yellow in RGBs created using the band combinations. This is due to the strong SO2 ab-
sorption in 8.6 µm combined with the lack of absorption in 11 and 12 µm. Chaitén, one
of two mid-latitude eruptions analyzed in this study, is represented in Fig. 1. Four days
before this particular image was captured by MODIS, Chaitén erupted with a 21 km20

plume that drifted to the southeast, east, west, and northeast (GVP). A second erup-
tion occurred on 6 May 2008, 12:32 UTC, about 2.5 h prior to this image. At first glance,
it would appear that the neural network is greatly overestimating ash east of the vol-
cano. However, there are no high meteorological clouds in this region, as seen in visible
image in Fig. 1, and previous eruptions from days earlier contributed a significant por-25

tion of ash to the atmosphere. It is likely that the neural network is detecting low-level
ash from previous eruptions to the east of the volcano (Fig. 1). A strong signal is also
observed to the east-northeast of the volcano, likely from the previous plinian column
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erupting from this volcano on 2 May 2008 (Fig. 1). The neural network detected little
SO2 (Fig. 1), as this particular eruption was not characterized by high SO2, emissions
(Lara, 2009; Carn et al., 2009b).

The eruption of Okmok, Aleutian Islands, is unique because it was phreatomagmatic,
or characterized by high water content (GVP). This eruption incorporated ground water5

and water inside the caldera (GVP). The RGB in Fig. 2 does not contain the bright
red/pink signature usually observed for ash, although a 15 km plume is reported (GVP)
and an ash signature is clear in the visible image. When high amounts of water are
incorporated into ash clouds, they lose their ash signature and begin to appear more
like meteorological clouds than ash clouds (Prata, 2009), which explains why the neural10

network is not discerning the volcanic cloud in this particular case. There is also no
SO2-rich ash detected because a SO2 signature is not present with this eruption at this
time.

Neural network output for the eruption of Kelut is shown in Fig. 3. This particular im-
age was captured by MODIS about 3 h after the initial eruption. The 17 km plume was15

observed drifting northeast, northwest, and west (GVP). Upon analysis of the RGB
(Fig. 3), it is difficult to differentiate the ash cloud from surrounding meteorological
clouds. As this volcano is located in the tropics, characterized by high atmospheric
water vapor concentrations, this is not surprising. Kristiansen et al. (2015) found this
volcanic cloud difficult to detect within the first several hours of eruption due to the thick-20

ness of the ash cloud combined with the high amounts of ice coating within surrounding
meteorological clouds. However, the SO2 signal is easily distinguishable from the am-
bient environment in both the RGB (Fig. 3) and the neural network output (Fig. 3).

The volcanic cloud that erupted from Sangeang Api about 18 h after the initial erup-
tion is depicted in Fig. 4. The initial plume was observed drifting west at 3 km altitude25

and east-southeast at 15.2 km altitude (GVP). A bright pink ash signal is observed to
the east-southeast in the RGB, and the same signal is observed as brown in the visi-
ble image (Fig. 4), collaborating weekly reports (GVP). However, a pink signal is also
observed over West Australia. This is most likely dust from the deserts of Australia, as
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dust has similar radiative properties to volcanic ash. No SO2 signal is observed in the
RGB (Fig. 4). The neural network distinguishes ash from the ambient environment, but
overestimates in the presence of dust (Fig. 4). The neural network correctly places no
SO2 signal in this particular observation (Fig. 4).

4 Discussion5

In this study a neural network-based algorithm was developed to detect volcanic ash
and SO2-rich ash using MODIS observations. Based on the test and training data, the
neural was able to detect ash and SO2 with a high accuracy. In particular, the combi-
nation of SO2 and ash was easily detected by the neural network. However, the neural
network shows significantly less accuracy when the volcanic cloud is characterized10

by high water or ice content or when surrounded by water or ice-rich meteorological
clouds. As water, ice, and water vapor can act to mask the ash signal, the accuracy
of ash retrievals is highly dependent on the amount for water vapor in the atmosphere
(Watson et al., 2004). Because of this, the neural network is likely to have a higher
accuracy in dry atmospheres. High, ice-rich meteorological clouds that are observed15

to lead to significant ash overestimation are present in Fig. 3. In addition to water vapor
adjusting the amounts of ash detected, SO2 can also mask a volcanic ash signal, as
mentioned in the previous section. In the event that SO2 and ash are collocated, or
when SO2 is located above ash, it is helpful to use visible images (MODIS bands 1, 4,
3) to determine if an ash signal is present in the visible image in the same location as20

the SO2 signal in the RGB. This method, however, cannot be used at night. Ash is also
overestimated in the presence of high dust concentrations, as seen in Fig. 4, as dust
over West Australia is incorrectly classified as ash. Overestimations that have not yet
been mentioned are located on the edges of the MODIS swath, which occur likely due
to unfavorable satellite observation angles. This overestimation has not been corrected25

in this particular network, but will be addressed in the next trained network.
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In order to train the network, HYSPLIT was treated to be representative of reality.
This may not always be accurate, especially for eruptions characterized by multiple
eruptive pulses. One of the limitations of HYSPLIT is that it can only be used with one
eruptive pulse or one continuous ash release. Chaitén, which was characterized by two
significant eruptive pulses four days apart, was one case where HYSPLIT and MODIS5

were not well aligned. The second pulse was analyzed in this study, but low-level ash
was still present in the atmosphere from the previous eruption. HYSPLIT had no way of
knowing this, which could lead to missed ash within the training of the neural network.
Another limitation of this study is the lack of knowledge about erupted ash quantity
from some events. When unknown, USGS parameters were used, which could lead to10

significant errors within HYSPLIT and thus the training of the neural network.
The location of volcanic ash in the atmosphere is crucial information for the aviation

industry, as volcanic ash can heavily damage jet engines and other parts of aircraft, as
discussed in Sect. 2.6. This particular study can be used to automatically detect ash
in MODIS observations, providing critical information to the aviation industry. However,15

this study does not yet provide information about the concentration of ash in each
pixel or the altitude of the ash. Currently, this study only provides confirmation of the
presence of ash and/or SO2-rich ash within a 30 km vertical column.

Future work will include determining the accuracy of training an additional neural
network to detect not only whether or not ash is present, but also ash concentration20

and ash cloud altitude.

Appendix: Volcanoes

Located in the Aleutian Islands, the basaltic shield volcano Okmok, erupted at
19:43 UTC on 12 July 2008 (Fee et al., 2010), with a plume height near 15 km (GVP).
This phreatomagmatic eruption, or one characterized by high water content (Fee et al.,25

2010), released 0.1 Tg of SO2 (Prata et al., 2010).
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Chaitén, a rhyolitic caldera in southern Chile, began erupting on 2 May 2008 (Lara,
2009). This eruptive event continued for months, but on 6 May 2008, 12:32 UTC, pro-
duced the second Plinian column of the event with a plume height of over 20 km (Lara,
2009; GVP). This eruption is especially interesting as it was the first rhyolitic eruption
during the satellite era (Lara, 2009). This eruption was not associated with high SO25

emissions (Lara, 2009; Carn et al., 2009b).
On 13 February 2014, 15:50 UTC, Kelut, a stratovolcano located in Java, began

erupting. This eruption sent volcanic ash to altitudes of 17 km, continued for 3–4 days,
and resulted in 40 canceled flights and multiple rerouted flights (GVP; Kristiansen et al.,
2015). Kelut is estimated to have injected a total of 0.74 Tg of ash into the atmosphere,10

and 0.38 Tg of that ash into the stratosphere (Kristiansen et al., 2015).
Sangeang Api, a volcanic complex in the Lesser Sunda Islands (Sigurdsson,

2000), began erupting on 30 May 2014, 08:55 UTC (GVP). This trachybasaltic-to-
trachyandesitic complex emitted ash up to 15.2 km and resulted in canceled flights
from the Darwin International Airport (GVP).15

The Supplement related to this article is available online at
doi:10.5194/amtd-8-8753-2015-supplement.
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Table 1. Seven volcanic eruptions and their corresponding time, location, plume height (km)
and explosivity.

Volcano Date of Eruption Location Plume Height VEI
(km)

Kasatochi 7 Aug 2008 52.177◦ N, 175.508◦ W ∼ 19 4
Okmok 12 Jul 2008 53.43◦ N, 168.13◦ W ∼ 15 4
Grímsvötn 21 May 2011 64.42◦ N, 17.33◦ W ∼ 20 4
Chaitén 6 May 2008 42.833◦ S, 72.646◦ W ∼ 30 4
Puyehue-Cordón Caulle 4 Jun 2011 40.59◦ S, 72.117◦ W ∼ 12 3
Kelut 13 Apr 2014 7.93◦ S, 112.31◦ E ∼ 17 4
Sangeang Api 30 May 2014 8.20◦ S, 119.07◦ E ∼ 15 3
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Table 2. (Top) Ash-detection neural network output was compared to the test dataset output
to measure success; (Bottom) SO2-rich-ash-detection neural network output was compared to
the test dataset to measure success.

Ash Observed Ash Predicted
No Yes

No 87.7 % 12.3 %
Yes 6.8 % 93.2 %

SO2-rich Ash SO2-rich Ash Predicted
Observed No Yes

No 98.4 % 1.6 %
Yes 0.03 % 99.97 %
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Chaitén:  05/06/2008 1505 UTC 

Figure 1. (Top left) RGB created using MODIS bands 32-31, 31–29, and 31 for the eruption of
Chaiteìn, 6 May 2008, 1505Z; (bottom left) visible image created using MODIS bands 1, 4, and
3 for the same eruption and time; (top right) ash-detection neural network output for the same
eruption and time; (bottom right) SO2-rich-ash-detection neural network output for the same
eruption and time.
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Okmok: 07/12/2008 2330 UTC 

Figure 2. (Top left) RGB created using MODIS bands 32-31, 31–29, and 31 for the eruption of
Okmok, 12 July 2008, 2330Z; (bottom left) visible image created using MODIS bands 1, 4, and
3 for the same eruption and time; (top right) ash-detection neural network output for the same
eruption and time; (bottom right) SO2-rich-ash-detection neural network output for the same
eruption and time.
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Kelut: 02/14/2014 0335 UTC 

Figure 3. (Top left) RGB created using MODIS bands 32-31, 31–29, and 31 for the eruption
of Kelut, 14 February, 0335Z; (bottom left) visible image created using MODIS bands 1, 4, and
3 for the same eruption and time; (top right) ash-detection neural network output for the same
eruption and time; (bottom right) SO2-rich-ash-detection neural network output for the same
eruption and time.
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Sangeang Api: 05/31/2014 0235 UTC 

Figure 4. (Top left) RGB created using MODIS bands 32-31, 31–29, and 31 for the eruption of
Sangeang Api, 31 May 2014, 0235Z; (bottom left) visible image created using MODIS bands 1,
4, and 3 for the same eruption and time; (top right) ash-detection neural network output for the
same eruption and time; (bottom right) SO2-rich-ash-detection neural network output for the
same eruption and time.
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HSS to Determine Optimal Threshold
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Figure 5. Optimal threshold for ash retrieval determined to be 0.48 with Heidke skill score of
0.81.
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HSS to Determine Optimal Threshold
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Figure 6. Optimal threshold for SO2-rich ash retrieval determined to be 0.47 with Heidke skill
score of 0.98.
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