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Iteration: Initial Manuscript Evaluation (Major comments included + partial Minor comments this at this 
review stage) 

 

REMARKS TO THE AUTHORS 

OVERALL SUMMARY 

Dear authors, 

The manuscript focus is two-fold: On one hand, it tackles application of low-distortion filters 
(particularly, the Savitzky-Golay (SG), the Gaussian, and basic cascaded and/or windowed 
realizations of them) to the problem of smoothing and derivation of lidar signals. On the other hand, 
and subsidiary to this first objective, an empirical parametric study on the spatial resolution achievable 
with these filter realizations is presented. 

The main added value of the manuscript lies on the nice transferability, application and extension of 
well-known concepts carried out by the authors from the signal-processing arena (e.g., the SG dates 
back to 1960’s) to the physical/lidar one (greenish in the sig-pro field). The authors have 
demonstrated hard-work in the simulation/studies presented and hence, the manuscript represents a 
good contribution to AMT. Consistent with this, I must say that the originality of this manuscript is 
somehow limited to applied-remote sensing journals of the like, as is the case of AMT.  

In its present form the WRITTEN part of the manuscript is too draft. It is my feeling that -for some 
unknown reason- the authors are submitting a manuscript still requiring several levels of edition 
concerning e.g., use of English and a better structuration of paragraphs/ideas. Definitely, the 
manuscript is TOO LONG. The authors must do an effort towards more succinct redaction, some 
parts are discursive). NOTATION is un-rigorous or provisional all over the manuscript and must be 
cross-examined against modern standard signal processing conventions (see attached SG paper). 
Technical major comments are given next. 

All considered, I recommend major revision along the lines suggested and an in-depth writing 
revision.  

Level of revision: 

With the present level of editing exhaustive DETAILED COMMENTS are NOT possible. The authors 
will find help tips from this reviewer in file annotated_manuscript.pdf.  

Circled line-numbers indicate conflictive, incorrect or vaguely explained concepts that require further 
revision from the authors’ side. Some of them are covered in the detailed comments below. 

 

ATTACHMENTS 

(1) annotated_manuscript.pdf 

An annotated manuscript is attached with in-depth spelling/use-of-English correction for pp.1-5 just to 
help the authors on this issue. 
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MAJOR COMMENTS  

(1) The first part of the manuscript (whole Sect. 2) and, more intensively until Eq. (7), is just a review –
in summary “book” fashion – of well-known concepts on digital signal processing, which conveys no 
original material. Suggestions are given next to improve it in terms of notation, terminology and 
clearer structuration of ideas.  

Sect. 2/introduction. Please consider slight reorganization Sect. 2, pp. 4-7 along this layout: 

1. Response of linear-time-invariant (LTI) systems to arbitrary inputs: convolution sum, 

     





k

knxkhny , Eq. (R1). 

2. Causality,  

     





0k

knxkhny , Eq. (R2). 

3. Finite Impulse Response (FIR),  

     



N

k

knxkhny
0

, Eq. (R3). 

4. Highlight the importance of linear-phase FIR filters, which is what you use all over the 
paper. For linear-phase filters, 

    1,...,1,0,1  MnnMhnh , Eq. (R4). 

To see 4, resort to important properties of the Fourier transform (FT), Eq. (R5a,b,c): 

 A delay in time, x(t-t0) (equivalently, x(n-n0)) appears as a linear phase in the 
frequency domain, X(omega)e^-j*omega*t0. 

    0
0

tjeXttx   (analog formulation), Eq. (R5a)  

    0
0

njeXnnx    (discrete formulation), Eq. (R5b) 

 Real signals 

       *XXrealnx , Eq. (R5c). 

5. Fourier Transform (FT) of a discrete-time aperiodic signal (your Eq.(2)). 

Introduce the concept of “frequency for discrete-time signals” as  















s
rad
s

rad

s

 ,    Eq. (R6) 

where   is the analog frequency (continuous-time signal in [rad/s], i.e., prior to sampling) and s  is 

the sampling frequency (in [rad/s]). Or  

f (lower case) =F/F_sub_s, 
sF

F
f  ,  Eq. (R7) 

Note than the highest frequency of oscillation in a discrete-time sinusoid is attained when omega=+-pi 
(i.e., f=+-1/2). Say that for convenience (and for practical compliance with modern signal processing 

tools like Matlab) the normalised frequency, f , is used all over the paper (“nu” is not so 

common). 
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All frequency equations such as Eq.(5) in p.8 of the manuscript must always be formulated using   
(irrespective of the fact that your plotting variable is  , f (bounded to +-1/2 or 0-to-0.5), or f_prime 
(bounded to +-1, or 0-to-1). Thus, the ideal digital differentiator is always j . 

6. Fig. 1 Why the negative part of the spectrum is not represented? Explain that only positive 
frequencies need be represented, because if x(n) is REAL - as is the case here- then 

X(omega) has Hermitian symmetry,      XX * . 

(2) FIGURES. Please consider plotting  H10log20  all over most of (not all) the spectral figures of 

the paper instead of plain  H . The standard representation in signal processing is  H10log20  

and   Harg  [deg]. This will help identifying sidelobes in the STOPBAND. 

The correct notation for decibel is [dB] (not db). 

 

(3) NOTATION (not exhaustive) 

“n” for sample index as x(n), not as subindex 

f  or f  as normalised frequency 

j  as the ideal differentiator, 

j  as the imaginary unit 

Do always write “n” (time domain) or “omega” (frequency domain) in your Eqs (revise Eq. (9)). 

Suggestions: effR , 
Ray

SG
effR 4,2 , 

NRR

SG
effR 4,2 , dBH 3  (usual notation) 

R.W. Schafer, “What is a SG filter?, IEEE Trans. Signal Proc. Mag., 28, 111-117 (2011). Please 
consider this notation (“n” for sample index as x(n), not as subindex), frequency response in log 
magnitude (20log10(modulus(H), Figs. 3, 5 therein).  

 

(2) Equivalent SG filter. The author propose cascaded SG filter combinations of the type SG2(L1) & 
SG4(L2). How does a single filter, for example SG2(L1+L2), compare with the cascaded 
solution? More generally, the authors should discuss on an equivalent SGx(y), i.e., a suitable pair 
of order “x” and length “y” based on nice parametric studies carried out. This is better oriented to 
the focus of the paper. 

(3) How lidar signals are processed under a variable spatial-resolution approach? Using the same 
SG filter over the full range of the lidar sensor (or other remote-sensing sensor) means 
processing the lidar signal with the same spatial resolution (i.e., constant all over the inversion 
range). However, when faced with data records several km long, the rhythm of decrease of SNR 
forces to use much longer spatial resolutions at further ranges, where the SNR is getting lower 
and lower. It is difficult to believe that the same SG filter can solve the problem for the full 
inversion range (say 0-8 km). I advise the authors to expand/discuss this part in detriment of 
others.  

(4) Conclusion. Just a preliminar review: Important is that –from what you have in hands- the scope 
of the paper at least covers: 1) an in-depth parametric study on SG and Gaussian filters and 2) 
Effective resolutions studies/methodologies. Both are equally important and nice to contribute, 
not only the second! The paper title could also be better adapter to reflect this. 
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DETAILED COMMENTS  

p.4, lin. 8. Clarify that according to SG (1964) paper there are two big families of SG filters: “smoothers” 
and “n-th order differentiators” and that derivation always implies a certain level of smoothing because of 
the inherent construction of the SG filter. 

p.4, lin. 13. Notation. Unclear indexes.  

In the convolution equation, it is standard to say that the impulse response has “M” samples, the signal 
(x(n)), N samples, and the output (y(n)) N+M-1 samples. Please consider to include a figure sketch to 
help the reader (otherwise lins 21-23 becomes cumbersome…). 

p.5, lin. 12. Remove “aliasing”. 

“Sampling of a continuous-time aperiodic signal (e.g., the lidar signal) causes the spectrum of the 

discrete-time signal (i.e.,  H ) to be a continuous and periodic function of variable omega (with period 

2*pi (-pi<=omega<=pi)).”  

“Aliasing” usually refers to the unwanted effect of multiple spectrum folding on the frequency axis due to a 
too low sampling rate. 

p.5, lin. 15. Normalised frequency. Please see major comments. 

p.6, lins 3-5.  A negative value of H… results in artifacts. 

This assertion is FALSE. What causes “artifacts” of unwanted effects is the frequency content in the 
transient+stop-band of the spectrum, be it positive, negative, or with a given phase (in the case of a 
complex-valued spectrum, not your case). This part of the spectrum conveys “unwanted” leakage 
frequencies. 

The fact that an unwanted frequency has   1arg H  = 0 or 180 deg (i.e., H(omega_sub_1)=+1 or -1, 

respectively) means that this high-frequency will show up in the grey zone of Fig. 2 without or with a sign 
reversal in the oscillatory behaviour of the Chirp signal. 

KEY is to have low sidelobes and no discontinuities in the time domain. 

p.6, lin. 8, Eq. (3). Revise/wrong. See Eq. (R8b) next. 

A linear chirp is defined as   ktftf  0 , where f_sub_0 is the start frequency and k is the chirp rate 

parameter. Therefore, the chrip signal becomes, 

  














   2

0 2
2cos t

k
tftx , Eq. (R8a). 

Sampling at 
sf

n
nTt  , with T the sampling period (equivalently, 

T
fs

1
 , the sampling frequency) 

the discrete signal takes the form, 
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f
nx , Eq. (R8b). 

 

p.8, lin. 4, Eq. (5). See annotated ms. 

p.8, lins. 8 and 17. Clearly expose that the goal is to implement a low-pass-limited differentiator with the 

“j*omega” slope reset to zero between c  and   ,  c  the low-pass cut-off frequency.  



 5

p.8, lins 8-12. Slang, magazine oriented (in my opinion). 

p.9. Eq. (7). Revise/wrong. 

Assuming anti-symmetric unit-sample response for the desired filter,       00,  ddd hnhnh , 

gives 

     



N

n
dd nnhjH

1

sin2  , Eq. (R9). 

p.9, lins 18-20. Somehow slang and difficult to follow.  

Suggestion: The SG-derivative filter can be understood as a cascaded system of two filters, the first one 
being a low-pass filter (LPF) acting on the raw input signal and the second one being the ideal 

differentiator (    jH  ) and acting on the LPF signal. Prefix “d” stands for the low-pass filter 

prototype associated to this first stage of the SG differentiator (inherently, low pass). 

 p.13, lin. 3 This is just a valid approximation. In fact there are hundred of alternative low-pass filter design 
approaches. 

p.13, lins. 13-14. How does a SG2(L1+L2) compares with the cascaded SG2(L1)-SG4(L2)? What about 
SGx(y), i.e., a suitable pair of order “x” and length “y”?  

p. 14, lins 13-25. This part can be moved to a discussion sub-section in Sect. 3 or simply removed. Your 
paper is too long. 

p. 15. Unclear writing/structuration for Sect. 2.2.2. 

Please distinguish between time windowing and spectral windowing.   

Windowing in the time domain means multiplying x(n) by a window w(n) as indicated by Eq. (11) + 
handwritten block diagram. According to FT properties, multiplication in the time domain equals 
convolution in the frequency domain. However in Fig. 7 frequency response it is not clear if the SG-
Blackman window is the result of multiplication in the time domain (correct) or the result of multiplication 
of a Blackman window in the frequency domain by the SG spectral response (incorrect). Please clarify. 

Most readers will not understand what is “leakage”: Better introduce the problem by saying that 
“truncating” x(n) in the time domain is equivalent to multiplying by a rectangular window, w(n), which 
causes sinc=sin(x)/x (the FT of the rectangular window) to convolve in the frequency domain, i.e., many 
unwanted secondary lobes in the frequency response! 

p.15, Eq. (12) Revise/wrong. 

 
1

4
cos08.0

1

2
cos5.042.0







M

n

M

n
nw


,   10,  Mnnw , Eq. (R10). 

Rest of detailed comments (non exhaustive): Please consider annotated manuscript. 

Good luck! 
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9 Abstract 

10 Since its first establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has 

11 been devoted to providing, through its database, exclusively quantitative aerosol properties, such as 

12 aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it 

13 independently (from Raman or High Spectral Resolution Lidars). As these coefficients are provided 

14 in terms of vertical profiles, EARLIl\JET database must also include the details on the range 

15 resolution of the submitted data. In fact, the algorithms used in the lidar data analysis ofien alter the 

16 spectral content of the data, mainly working as low pass filters with the purpose of noise damping. 

17 Low-pass filters are mathematically described by the Digital Signal Processing (DSP) theory as a 

18 convolution sum{ As a consequence, this implies that each filter' s output, at a given range (or time) 

19 in our case, will be the result of a linear combination of several lidar input data relative to different 

20 ranges (times) before and afier the given range (time): a first hint ofloss ofresolution ofthe output 

21 Signaj Tbe application of filtering processes will also a1ways ~ lbe underlying true profiJe 

22 whose relevant features, like aerosol layers, will then be affected both in magnitude and in spatial 

1 




1 extensionf Thus, both the removal of noise and the spatial distortion of the true profile produce a 

2 reduction of the range resolutionJ 

3 This paper provides the determination of the effective resolution (ERes) of the vertical profiles of 

4 aerosol properties retrieved starting from lidar data. Large attention has been addressed to provide 

5 an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval 

~ 6 procedure. 
a\

XlW) -> JW~(W) 
7 1 Introduction 

~ twfl rlU 

8 Smoothing and numerical derivative are typically used in the retrieval of aerosol optical properties 

r 
from lidar data ryttro!lLma)'-'lctasi~f¡tteWndee~tbing is a lo paasflitef,-while 

10 r the nu ·c 1 derivative as-a--kr SS-filteTiñher€ntl}UlSSoclate-d-fsee-S-e~. For t . reas.Qn, 

11 J n what follows , the terms "smoothing filter" and "low pass filter" should be considered as 

12 synonymous. In particular, fu~ smoothing is one ofthe operations most frequently carried out and it 

13 can be applied on the raw lidar signals as well as on final products, like the aerosol backscatter 

14 coefficient (~a) or the aerosol extinction co~fficient (ua) (Klett, 1981 ; Fernald, 1984; Ansmann et 

15 al., 1992) to reduce the random noise. On the other hand, to retrieve the aerosol extinction 

16 coefficient from a Raman signal (Ansmann et al. , 1992), the PBL height estimation from a Rayleigh 

17 signal (Matthias et al. , 2004), ozone profiles and water vapor profiles with the DIfferential­

18 Absorption Lidar (DIAL) technique (Wulfmeyer and Bosenberg, 1998; McGee et al. , 1995), a 

19 numerical derivative is typically included in the retrieval algorithm. The application of low-pass 

20 filtering will also generate a reduction in the vertical or time resolution with respect to the unfiltered 

21 products. Moreover, there is frequently the need of comparing or combining different atmospheric 

22 variables and this requires that they are fully consistent in time and in space, which means that they 
~lt: '- t;~ 

23 must be co-located,V simultaneous and with the same resolution. This latter category includes, for 

24 example, ~ retrieval of lidar ratio (S) pro file or ~ comparison between the same quantity 

2 



1 obtained by different instruments with different resolutions, like balloon-borne ozone data versus 

2 ozone lidar profiles, as pointed out by previous studies (e.g 'l Masci, 1999). In those cases, 

3 inconsistencies could arise if data are not compared with the same resolution. For example, to 
. ~~r 

4 obtain a S profile, a high-resolution aerosol-backscatter coefficient profile s~ well--resolved 

5 layersJ could be combined with an heavily- smoothed, low- resolution simultaneous extinction 

6 profile, where the same layers are not well resolved. his would result in a biased estimation of the 

7 actual values ofthe lidar ratio (see Sect 3 and Sect 3.1). 

8 The aim of this paper is to extend the results presented in the literature (Godin at al., 1999; Beyerle 

9 and McDermid, 1999; Trickl, 2010; Leblanc et al. 2012) dealing with effective resolution (ERes) 

10 estimation for lidar products. 

11 Although it is more common to consider the vertical range resolution for lidar profiles, the effective 

12 resolulion concept can be easily generalized and extended lo lhe lime resolulion. Ihis is lhe case Ir 
t, 

13 time ser'es 6f lidar products. The application of smoothingjfl time series ,0fJidar profiles also 

14 ~~s the effective time resolution of the retrieved products. ~ 
11MS ~J~:o'\l • vV 

15 'ftre paper is organized as followS; In Section 2 ta€eret-i ea-l-ooa:eepts-abG.ut smoothing and numerical 
(fW b l'fo'.t(()"W~ ~~OJI'w 

16 derivative are summarize ptesenting dttferent hflcls-ef low-pass filter~ that-coutd--ee-foralready 

17 -are) ~y = .e-yed in lidar studies, ~g their advantag~ and drawbacks. Section 3 is 

18 devoted to the ERes operative estimation based both on tftS application of the welHmown Rayleigh 

~ 
19 criterion (Born and Wolf, 1999) and on the quantitative analysis -ofthe frequency spectru remBved 

20 ~y--s-meetht~ by calculating the sÜ"'Called Noise Reduction Ratio (NRR) (Orfanidis, 

21 2009). An ER..es-operáñ~itionis also-pro-Yided,emRl o.yi-ng-a-cut(fff1'r~ a 
A.M.I/ tI f(~~' 

22 rl~ss 1 er-tóC':' Finall~eseBted. a first' promising ERes estimation approach~based on t he 

• tI 
23 ~e-4f the s(}-Called smoothing kernel s, which are commonly adopted within the passive remo te 

24 sensing scientific community (Haefele et al. , 2009). Conc1usions summarize the outcome of the 
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10 

11 

12 

14 

r---..... ~. 
paper and include recommendations for th: Üdar data ~is as well ~'SiOle future dirootfons 

j 

\)V 

2 Smoothing and Derivative of a Lidar profile: the Digital Filter approach 

As pointed out in previous work (Pappalardo et al. 2004; Matthias et al. 2004), the most ofien used 

algorithms to smooth or differentiate the data within the EARLINET community are those 

involving sorne kind of sliding least -SqUares P01ynOmiaI21tti~ ~ It has been demonstrated that 

(Savitzky and Golay, 1964; Madden. 1978; Scha:fur.,.2illlY he use ofthese algorithms is equivalent 

to applying a digital filter for both smoothing and derivative operation~. These kinds of filters are 

widely known as Savitzky - Golay (SG) filters and will be discussed in sorne detail. Anyhow, the 

employment of digital filters for the above-mentioned operations is feasible also with other filter 

types. Without entering into details, largely discussed in several books and papers on Digital Signal 

Processing (DSP) (e.g. Hamrning, 1989; Orfanidis, 2009), in what follows digital filters are defined 
/ 

by the convolution su, 

N 

Yn = ¿hkxn_k , 

k=- N 

n = N + l, ... ,nmax - N + l. 

'w ~ ~:: l .. fl1f!Ji ~H.. fk:J 

(1) 

15 where X¡I is the value of the 1jl-th point of the input signal x E-f~ample,J.iclafraw a or another 

17 

18 

19 

20 

21 

22 

23 

Iv 
..kind H idar::dcrilte-d-.pr.o les ce@sting~ax-fJo1Irts. . Yn is the corresponding filtered value 

~ SWl-f'/u (I~ X.{~ 
obtained from .tire linear combination of M=2N+ 1 todd) ' ~es centered in Xn through the 

coefficients h. Unless otherwise specified, the word "signal" refers to a generic input/output of ~ 
filter. The Eq. (1) is a representation of the so-called Linear Time¡ Invariant (L TI) Finite Impulse 

Response (FIR) digital filter ( rfanidis, 2009). The bounds fof~~ ~~ i~Jú)<aLa 
u.J ~I 1}rl-¡4~ ()~ - ~ 

transient effect wiH-eme~-eattSe-an-i-nformati-en--Iess--i-ft the smoothed signal b.y-r-e ving-2N 
J • ~ 

~ata-t>f»n . . t In fact, this transient will norrnally affect the output signal remo~ N v 

r i ~ 
oints at the beginninlj, and N points at .tlte en A hough there are techniques (Gorry, 1990; 

,¡. I Y--X 4 {¡}jk.wíJc; lk. Il.'k.j II.,..,¡r u.<Ii> 11'"1 lJ 
~" tk. +k ""¡lf) 4~1Lu:r-l"'ill __ k. +po}J ~ 11ü, .. t; ~..J ~ """-
'\'~~h~ (~) 



1 Khan, 1987; Leach et al. 1984; Orfanidis, 2009) that are able to deal with this problem. In the study 

2 of atmospheric processes in the troposphere, which are the primary objective of EARLINET, thek... 


3 transient effects could limit the ability of retrievinÍnformation ,in t~L, which is already limited 


4 by the problem of .tlIe incomplete overIap between of the lidar transmitted beam and the receiver 


5 field of view, if not properIy corrected (Wandinger and Ansmann, 2002). Indeed, if the spatial 


6 extension of the region of incomplete overIap is not well known, the smoothing of a profile 


t~ //(j"~ ~ ·(V 
7 inel uding this region might bias a. retrieval !of ~e U a profile, f~e) aulle lower ranges! JFhe- ) 

~, ..~.~ / 
8 coefficients hk are the impulse response of a LTI FIR filter .a.nd tbe eQUatiGR (Karam et al., 1999; 

ir :Dlfu.J ~Jn't-r Tr~rfhvY\ 
9 Hamming, 1989; Smith, 2007, 

vk., ~:: 2.-f ? /J./~~r\'IV"~ \. 
N 


10 H({))) = Ih
k
e- i

6)k 


k--N , J I 

- o~tk AA ~J~ ~ d", 1'iw ~ rt ('i' 


a-{v/t¡ / 
11 Ui.s- the frequency respons~ , a real function that can~SblfRe both positive and negative values (Smith, 

"fLKe.. 
2007; Mitra, 2001; Oppenheim and Schafer 2009; Orfanidis, 2009). Because of aliasing, when I 

13 working from the frequency point of view, the attention is limited to the freque~y int~ 0< : J","pYtP{e..-. . 
14 ro =2nf ~ n (Hamming, 1989). The latter condition could also be written as O<v = ro/n ~ 1, with 

J.,4. r)J.J.,l ~ "biflHt ,. ~ ,
c§ v CftH.eEl-e: :..rooHGga-e-r norrn lized freguency: v will be used as an independen . in all the 

t~v«-- ..I:+rUre.'''+ I 

16 frequency response plots presented in this work. As an example~ a....fuw H(v) curves are showed:tt¡ 

17 Fig. l for an SO filter obtained using a 2,d degree polynomial (S02) for different valu~:{N~ 

lSP 


I 18 Equation (1) cannot be used in DSE-applicati.o.Jl.....that-requi.r-€8 --real-time{J*6eessinpnce -tRe future 
: J¡:.S("{t~...(/~S~~ ro ~ U,wWW) I~ "!PI(~ ~ 
, 19 f inpttt-data--ar-e~Jy-FlG-~ available • ..ffi:N: because the analysis of\j. l{aar ¡signal is typicall'y" I 
\ Ol\ce.- +k kU ~ LJ.~VI\(J (11. ~IJ 11 ~tJ-¡L~r~ t] k:~ ¡LVtJ,; /J.-VLI4I.I 

¡20 \t:t~~t 1+~i~/ t~t.:~ whole pretile ~ieved): ~ :,1: #i~.......wo 
21 <ka] a!ways wi~e n,on-causal Eer-mi~ filters (Orfanidis, 2009) , As-the name suggests, H is a 

L 

22 direct representation of how a filter alters the frequency content of a signal. In lidar studies, the 
~o~/l.J 


23 ~l relevant feature~ are generally confined in the lower frequency portion of the signal 


5 
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1 spectrum. For those frequencies that correspond to an H equal or close to the unity, no or slight 

2 alterations are made to an input signal (pass-band region), while those frequencies that correspond 

4 

to H=O are completely removed from it (stop-band region). A negative value of H corresponds to a 

~ 
phase shift of 7t in the signal output res»cect to the input (Beyerle and McDermid, 1999), which 

~ 
results in artifacts in the output signal (caBed o ringing or side-lobe effect). 

6 To clarify all the aboye effects from the frequency point of view, let' s see what happens when a low 

7 pass filter is applied to an oscillating input signal described by the following equation: 

(3) 


9 The Eq. (3) is a representation of the so called chirp-like signal , which is useful for our scope 

10 because its spectrurn contains several frequencies, starting from the DC (v=O) toward the higher 

11 ones, as can be seen in Fig. 2. The low frequency part could be thought as the signal to preserve, 

12 while the higher frequency part represents the noise to eliminate. Ihe result of the application of a 

13 low pass digital filter is summarized in Fig. 2. In particular, artifacts are present, showed up as 

14 waves, both poorly attenuated and inverted in sign respect to the input signal, and located where the 

15 abscissa in the smoothed signal plot is between - 3.3 and -5.5 (~rresponding to the first side lobe in 

1 the stop-band of the frequenc res onse lot. A SO filter has been selected for this example 

17 because it is one of the most employed smoothing filter and also because it will exhibit all the aboye 

18 mentioned effects resulting from the smoothing process. 

19 Both the frequency and the impulse responses ofthe filter contain alone a complete information and 

20 if only one of them is known the other can be retrieved exploiting the properties of the Fourier 

21 transformo This latter characteristic is useful, for example to obtain a reliable lidar-ratio estimation 

22 independently on the actual definition of ERes, as reported in Sect. 3.1. Due to the large dynamic 

23 range of a lidar profile, digital filters with a different frequency response (i.e. for example with 

24 different N value for SO filters of fixed polynomial order) could be applied at different altitude 

6 
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1 ranges, In order to deal properly with local values of the signal-to-noise ratio (SNR). In the 
.s& . 


2 following sectíons, sorne details will be given about few digital filter types that could be employed 


~ ~ ~ fltt. 
3 in lidar data processing. They have been selected among others because already employed in hdar 

o ~'f\l.. C1tI rcc/ ~ 
4 studies (and in several other scientífic fields) and/or they are different enough to highlight sorne 

5 relevant features useful for the purposes of this work. Anyhow, there are many other recipes to 

6 design efficient low pass filters (e.g. Eisele, 1998; Trickl, 2010). Therefore, the study presented in 

7 this paper could be not considered as omnicomprehensive. 
r 

8 The digital filter approach, as long as error propagation is concerned, enables us to estimate the 

9 random error associated to the output in a relative easy manner. In fact, the error propagation 

10 equation for the summation reported in Eq. (1) is simple, or at least rather straightforward, if 

11 compared with the covariant matrix calculatíons that are needed when the standard sliding least 

12 squares polynomial fitting is applied to smooth or to derive a signal. From Eq. (1), the following 

13 equation for the Yn variance could be written (Gans, 1992): 

(4) 

15 The aboye equation is strictly correct if no correlation exists between errors, i.e. if the covariant 

16 error matrix is diagonal for the input signal (Gans, 1992), which is a hypothesis frequently assumed 

17 in lidar studies and in many other scientific fields. That covariant error matrix should not be 

18 confused with the one that is obtained when least square calculatíons are concerned. The latter one 

19 is instead associated with the polynomial coefficients (Bevington and Robinson, 2003) and it is 

20 needed to assess properly the error evaluation when the standard least square approach is adopted in 

21 the smoothinglderivative process. Anyhow, if further operations are performed on a signal afier the 

22 smoothing process, the error estimation must be carried out with particular attention. In fact, even if 

23 the errors of the initial input signal are uncorrelated, because of the convolution, the data or 

24 parameter errors that be long to the smoothed signal will be instead correlated (Gans, 1992). 

14 
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1 2.1 Low pass filter and first derivative 

2 Besides direct smoothing, the first derivative is the other operation frequently used in lidar data 

3 analysis. The frequency response ofthe ideal first derivative filter is (Mollova, ] 999): 

-t\~w~tr 

_1 < ~ < ~ 
(5) 

"L ... - ~ 

5 Indeed, the Eq. (5) shows a significant difference from a low pass filter: smce its frequency 

6 response grows linearly with v, the ideal derivative can be seen as a noise adding process because it 

7 amplifies high frequencies, an unwanted feature for our purposes. Therefore, to calculate the first 
M,IOW1IJíf\ -LI M tlllj OI~¡;:'ltCtJf,.~'j1lL tt f :() 

derivative of a signal, the ideal filter could !10t be direcdy employed otherwise the output will result 

9 useless because of the embedded noise amplification. It is worth to mention that the Info World' s 

10 "Epic failures: ]] infamous software bugs" (Lake, 20] O) reports as the most likely reason of the 

11 Mariner ] space mission failure was caused by a not smoothed time derivative of a radius: 

2 " ... Without the smoothing function, even minor variations of the speed would trigger the corrective 

13 boosters to kick in. The automobile driving equivalent would be to yank the steering wheel in the 

14 opposite direction of every obstacle in the driver's field of vision ... ". In Fig. 3 the chirp function of 

15 Eq. (3) is plotted along with its analytical first derivative; it helps to figure out why this 

16 amplification happens. In the same fashion of the previq~s tXf~l e r po¡ted in Fig. 2, the "good" m 
l-' ~/I~~-uwe) . ~~ 

portion of the derivate signal is the low frequency one (for exam ·le the part corresponding to t~e 

18 O-:-} interval of the Time axis), but now the high frequencies (the noisy portion) are strongly 

19 amplified respect those original1y included in Eq. (3) and the higher are the frequency the higher is 

20 the amplification, as described by Eq. (5). 

21 For this reason, to obtain a low noise first-derivative profile, a proper tradeoff has to be considered 

22 between a strictly correct derivative procedure for the whole signal and the necessary cut of high 

23 frequencies. This means that sorne kind of low pass filter should be applied. In other words a low 

24 pass differentiator is wanted, i.e. one whose overall frequency response can be written as ¡fl)L and 

8 



1 that can be thought as a cascade of a low pass filter HL and the ideal derivative ¡fJ ) (Luo et al., 2005 

2 Zuo etal. , 2013): 

3 (6) 
4 

5 The impulse response coefficients of this generic first-derivative smoothing filter can be written as 
~1· 1"'~t"tc.. lJ'Ml~ ~ l ~P"fl re. 

6 h
k 

(I)L . This kind of impulse response has an sdci syrnmetry (h
k 

(l)L = -h_k ( I)L , hü ( l )L = O) (Hamming, 

7 1989; Smith, 2007) and a frequency response that, from the Eq. (2) and using the Euler formulas, 

8 can be written as (Yunlong, 2012): 

N 

( I )L
H( I)L = i h sin(nvk) . 

-k 

10 where the cosine terms vanished. It is worth to recall that for low-pass filters , the terms that 

Ulltow' 
11 disappear in Eq. (2) are the ~e terms, because of the even syrnmetry (h" = h_k ) of their impulse 

flJlJ al 
12 responses. Thus, from the Eqs. (5), (6) and (7), the low pass filter frequency response for a generic 

13 derivative smoothing filter can be written as: 

N (I )L 

( I)L I h_k sin(JrIk) 

H L =~ = -"--k=_-N ____
'-'----­14 (8) 

iJíV JíV 

15 This latter equation will be useful for the determination ofthe effective resolution discussed in Sect. 

16 3 (Masci, 1999; Godin, 1987). In Fig. 4, results from the Eq. (5) and from both the Eq. (7) and Eq. 

17 (8) are plotted, the latter two evaluated for af SG2 low-pass derivative filter. Hereafter, the 

18 H L of a low...pass derivative filter (yl )L) frequency response will be indicated 

19 efore the parent low pass (i.e. dSG2 for those in Fig. 4) . In summary, the low 

' O pass filter in Eq. (8) could be considered as the measure of "how well we did" in the approximation 

21 of the first derivative of a signal (Hamming, 1989) because this equation is the ratio between the 

22 actual employed filter frequency response in Eq. (7) and the ideal one. 

23 ~ 
J¡ qJ~ +W¡ ," L""ry 
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:,:~~ ;7;~-,7:.:;t t+ (PJ4~fw) 12N~1 rrt~t::jrL 
1 2.2 The Savitzky - Golay ilter ~;: ¡-\ 
2 The SG approach allows to gain computational speed and it is relatively easier to it~~lement than 

3 the standard least-squares calculations though, according to the theory, they woulJ produce the 

® same results (Savitzky and Golay, 1964). Referring to Eq. (1), the coefficients hk J:¡( have to be 

5 ca1culated just once for fixed both N and polynomial degree (P), while using the standard least­

6 squares smoothing a new and complete calculation of polynomial coefficients has to be done for 

7 each point of a signal, even if N and Pare fixed (Press et al. , 2007). It is important to note that the 

8 minimum N required to perforrn a meaningful smoothing is related to the chosen polynomial degree 

9 through the relation 2N>P (Schafer, 2011), and for 2N=P there is no difference between the input 

10 and the output signals (no smoothing). ith SG filters, in principIe, a different and variable number 

11 of points could be used when smoothing or derivin& , a profile as wel~fs a different polynomial 
_¡J) is '+l. g~ L.,. ~ N({~.tWJI-F1-;típl,.,.J +I~(ih",-

degree if required (Barak, 1995), and witliOut a trong increasr~fthe computation time. This' speed 

13 enhancement, cornmon also to the other low pass filters, is quite important especially with the 

14 introduction of the Single Calculus Chain (SCC) (D' Amico et al., 2015), a centralized calculus tool 

15 developed to perforrn a near real-time and fully automatic aerosol lidar data analysis within 

16 EARLINET. 

17 The SG filters are popular in many scientific fields because they preserve ot only the position and 

~hl p
18 the area of the main signal peaks, but P~ffiillY also the hJ# er moments. This property is 

19 connected to the flat frequency response in the pass-band as reported in Fig. 2. This feature enables 

20 a quite faithful preservation of the low frequency component of a signal, i.eJ the portion of the 

21 signal to keep (Karam et al. 1999). For example, the moving/sliding average (also called box-ca:~ 
22 which is the zero-th polynomial-order SG filter (SGO), does preserve the area (its zero-th moment) 

23 underlined by a feature in the profile (e.gJ an aerosol layer). Using the SGO, the mean position (the 

24 first moment) of a symmetric layer is also preserved after the smoothing though this is not true for 

25 the standard deviation (the second moment), which could be seen as a measure ofwidth ofthe layer 

10 
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1 j fl'l')/bd~

- t.,v1letr ' r' , 
1 (Ziegler, 1981). In order to preserve the higher moments (Bromba and Ziegler, 1981), a profile can 

2 be smoothed by means of a SG filter with a higher-degree polynomial P. In fact, all the moments up 

3 toQtill be preserved (P= 0, 2, 4 ... , i.e. Pevep because for fixed N, the smoothed signal will notv::y "L ' 


4 change if either Peven or P odd =Peven+1 is used). oreover, ~ higher P generally corresponds to an 


5 increase of the filter pass-band, but this tr ates in worse performances in terms of noise remo val : 

6 this again suggests that a tradeoff has to lSe considered between a better pass-band behavior (i.el less 

7 signal distortion) and a better noise emoval (Orfanidis,2009; Savitzky and Golay, 1964; Press et 

8 al., 2007; Turton, 1992). As poi ed out (see Fig. 1 and Fig. 4), also the filter radius (N) contributes 

9 to altering the frequency ¡ líaracteristics of a SG filter. For this reason, the SG filter pass-ban 

depends on two paramJfers: the polynomial degree P and the filter radius N, as can be seen al so 

11 f:om Eq. (1 oFsesiae flatness of pass-band, an SG filter haffiransition b:d which is generally \\ 

12 smaller than other filters with similar pass-band (see Fig. 7 and Fig. 8). This is a valuable 

13 characteristic, because this means a sharp separation between pass-band and stop-band (Schafer, 

14 2011 ). 

15 The main problem with the SG filters is represented by the presence o side lo bes in the stop-band 
.;::zz ....... 


16 that in principie contaminate the output signal with the high frequency artifacts already seen in Fig. 

17 2. Moreover, the magnitude ofthese side lobes is quite high respect to other low pass filters, as can 

18 be clearly observed by comparing Fig. 1, Fig. 4 and Fig. 8. In fact, if in those figures the frequency 

19 responses are examined in the stop-band regions, for SG2 filters the observed magnitude for the 

20 peak of the first si de lobe is about -0.25, which implies a signal suppression of only 75%. Coupled 

to this poor attenuation, there is also the drawback ofthe negative sign¡ which brings to the artifacts, 

22 so SG fihers do not offer a great performance in Ihe stop-band regi0o) t should be noted that the 

23 aboye attenuation value for the first side lobe will not significant change for the SG filters we 

24 examined, anyhow it became slight worse when P increase (Schafer, 2011). Another useful property 

25 of the Savitzy - Golay recipe is that for a given P and N, also ~impuIse response for the 
) 
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1 corresponding SO low-pass derivative filter can be directIy calculated (Savitzky and Oolay, 1964). 
~ .~==~========~ 

2 The SO low pass derivative filter will produce the same result for Podd and the next even degree 

3 Podcr+ 1 (e.g. for P= 1 and P=2, for P=3 and P=4 etc.) for fixed N, and the degree of flatness in the 

4 pass-band, associated to the corresponding low pass dSO filter, has to be assessed accordingly (Luo 

5 et al., 2005). 

# 6 2.2.1 Cascarle filters 
(o. ~«.H'-

7 There are efficient recipes, that allow eliminating the si de lobes (or reduce their size) in the 

8 frequency response of a low pass filters: the cascad e technique is one of those. Taking advantage of 

9 the properties of the convolution in the frequency domain, two (or more) low pass filters in cascade 

10 can be easily applied to a signal. In fact, since this operation is linear in the frequency domain, the 

11 behavior of filters in a cascade can be simply expressed by the product of the single transfer 

12 functions (Das and Chakraborty, 2012), a property already used in Eq. (6). Thus, for a cascade 

13 filters the resulting impulse/frequency response can be written as: 

14 (9) 

15 The first equation in Eq. (9) indicates how to calculate the impulse response of a cascade filter 

16 (D'Antona and Ferrero, 2006). Cascading multiple identicallow pass filters together will effectively 

17 damp the side lobes amplitude. However, a drawback of c~scading identical filter consists in the 

18 reduction of the pass-band extension. In what follows , we wiU study how to avoid this effect and 

19 how to have more control on the cascading process when only two filters are involved. If the pass­

20 band has to be preserved when two successive low pass filters are applied, it is use fui to use a 

21 relationship among P, N and the pass-band extension. This latter parameter could be given by the 

22 location ofthe cutofffrequency ve taken at -3db level (or Hf:::!0.7) and for SO filters can be written as 

23 (Schafer,2011): 

12 




1 Ve ~ P+ I ,P ~ 0,2,4.... ¡/~zr"J P</Í j("l (10) 

3.2N -4.6 a"",f 4Wilf/~~~~ 

2 Operatively for an efficient cascad e of two smoothing filters (U,U), in Eq. (9) L2 have to beJ 

chosen with a Ve large enough to cover the frequency response of L1 up to the start of its stop-bando 

4 In this respect, when SG filters are involved in the cascade, good results are obtained using two SG 

5 filters with the sarne N and M=2. As a consequence, in the resulting cascade filter, the stop-band is 

6 much less affected by the presence of side lobe, while its pass-band will be nearly the same of the 

7 SG filter with the lower polynomial order, as can be seen in Fig. 5, and for this reason it will cause a 

8 quite similar effect on a signal for frequencies located in this latter region. In Fig. 5, the chirp 

9 function is smoothed with an SG2 and an SG4 in cascade having the same N and the results can be 

10 directly compared with those in Fig. 2, too. It can also be noted that in the cascade filter the pass­

11 band is very similar to the one associated to the SG2 while the stop-band shows much le~ y' 

!...t LZ.12 pronounced side lobes. 1,;:2 l: 5bLf ; L'-\ l,)', -; L 1) ure. 
I 

13 However, as a drawback, the transier t zOIle at the start and at the end of the output signal increases 

14 and in our case they are equal to N(L1)+N(L2) at each end. This means that if N does not vary for 
------------------------~~ 

15 the two considered smoothing filters, the loss of information at the start and at the end of the output 

16 signal is doubled compared to the case with a single filter apPlicatiot fficient results are obtained 

also for the cascade between an SGP(N) fi ter with the corresponding dSGP(N), as showed in Fig. 

#- 'VJ I '1 # K.J2}¡"­
18 6. In this case for the cascade filter, the maximum absolute value of the side lobes magnitude is 

19 about 0.02, i.e. almost negligible for practical purposes, while the pass-band of the dSG2 results 

20 almost unchanged, though the difference is slíght1y more pronounced than in the previous case. This 

21 outcome is not so surprising because this kind of cascade also fulfills the rule of thumb for an 

22 efficient SG cascade combination, only perhaps a líttle relaxed. In fact, derivation implies losing a 

23 degree in the polynomial order. Therefore the dSG4 could be considered similar to an SG low pass 

24 filter based on a 3rd order polynomial and SG3=SG2. Because the aboye considerations, the dSGP 
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filter and the corresponding SGP could be considered having 1 <11P<2, which happens to be still 

good enough for our purposes. Moreover, this type of filter cascade is al so computationally efficient 

because both the needed impulse and frequency responses are calculated simultaneously in the SG 

algorithm. It is worth to point out that the cascade method is useful also to design effectively high 

order derivative filters of a signal (Gans and Gill, 1983): for example, two consecutive stages of a 

first-derivative filter willlead to the second derivative of the input signal. 

To surnmarize, operating with such cascade filters retains all the advantages of the SG filters with 

an added value in terrns of efficiency for the high frequency damping without introducing artifacts, 

though the transient zone growth could be a potential problem for lidar applications. In what 

follows, if not otherwise stated, the value of N associated to a cascade of two smoothing filters 

indicates the value of N used in both the filters of the cascade and not to the overall filter radius, i.e. 

for a dSG4(9)'SG4(9); Nfor the ca cade is 9, although the overall filter radius is 18. 
L.pt L·\ n~J ~~ bAdL- ~k/ 

A possible application of ascad~ fiiíá\ing (lo- liCIar data /o uld be the improvement of the SNR of a 

lidar signal for achieving a more accurate calibration of Raman/Elastic signal ratio, because of the 

benefit of the possible reduction in the width of the selected calibration range (Ansmann et al., 

1992). This is particularly relevant for calculus routines that make use of an automatic range-finder 

algorithm for the normalization of the signal ratio: this requires a good SNR in order to reduce the 

range extension where the normalization is performed. The reduction in the width of the calibration 

range also reduces the normalization uncertainty and its impact on the total uncertainty budget. For 

this purpose a viable solution is represented by the application of the smoothing also on the signal 

r #'7~~ 
ratio, befo re the retrieval of Pa. Then, afier the processing phase another smoothing filter generally 

'--'" 
would be applied, to obtain the Pa profile with an acceptable noise level. To this end the recipe 

given in this section for the construction of cascade filters could be used to be sure that the second 

smoothing does not eliminate in the profile the details that are spatially larger than those already 
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1 2.2.2 Windowed filters ~ ¡'yo. ~\(W) ~l"'fwl,W\\IJ¡) ( \AjA. l 1
/ \ (/ n )( \t. ..w~ IZ. A2P'r4.. U w WI'-...c'v]J • 

2 In filter design, the necessity to deal with finite length impulse response, gives rise to the so called 

3 spectral leakage (Harris, 1978) that could lead to significant undesired oscillations in the frequency 

4 response, including side lobes. In order to reduce this latter effect, tapered window functions are 

5 generally applied to suppress efficiently the oscillations in H. The simplicity of the design process 

6 has made this method very POPUlar} ach window function is a kind of the usual compromise 

7 between the requirements of higher selectivity, i.e. the narrowest the transition region and the 

8 highest suppression of undesirable spectrum, i.e. the highest stop-band attenuation (Mitra, 2001). 

9 Therefore, windows can be seen as weighting functions applied to data in order to reduce the 

10 spectral leakage associated with finite observation intervals, i.e. high frequency noise. If Wk is a 

tapered window function, the minimization of the ringing for a low pass filter can be obtained 

12 applying wkto the impulse response, thus Eq. (1) could be written as: 

13 y" ~ ,tN"!X,,-, ~ ,tN~X,~. y[..) -~r-7¡ I.t.) 1) ylM) (11) 

~uY\du.y W(IA} r(~}~ [ X(",) W(k) 1<t. ~LV.) 
14 where hZ are the impulse response coefficients of a generic low pass filter. Several listed window 

15 functions are reported in literature (Harris, 1978) to design a specific filter. If hZ are samples of a 

16 

17 


18 


proper optimized sine function, Eisele has introduced a efficient window function of the Blackman­

19 The filter constructed with this window (Eisele, 1998; Trickl, 2010) does not exhibit ringing. The 

20 removal of the ringing due the window application can be observed in Fig. 7 where a Blackman­

21 type window is applied to an SG2 filter. The side lobe disappears also in this case and the pass-band 

22 is nearly conserved, if the same N is used. On the other side, as can be seen from the right plot in 

15 




1 Fig. 7, the transition band in the SG2 filter with the Blackman-type window applied, becomes quite 

2 large causing both (see the left plot in Fig. 7) a less efficient damping of those frequencies over the 

3 pass-band and before the first side lobe ofthe (not windowed) SG? (i.e. for 0.2 <v<0.3) and a slight 

4 worst preservation offrequencies in the pass-band (v<0.2). 

(.QM.,I-Ex U~faNII/'I. rl""-IJ~ ~ ~~'v t'r't¡ p~ ~'N/l.16fL T(!¡),.,f f/Pt . 
5 2.3 The Gaussian Filler (' 17 Ir xlt) --'!> J""' Xlw) ~ 
6 The Gaussian filter (G) is another option widely adopted to smooth signals especially in image 

7 processing (Romeny, 2003). This filter is characterized by a single parameter (o', the standard 


8 deviation), and its impulse response (a zero mean Gaussian) has tQe advantage that can be written 


A~i<>cc fí Jyr\~¿~i~
9 analytically for both the smoothing and for the l~rst (and, if needed, also higher orders) 

10 derivative: w~ 1"", -r,,. .7.--1 I _J (~)1. 
e l-v L",-):: t -¿. ~ _ c6 t: ¡... L. 04 

hk (a) =gk (a) = (27ru
2 r l/2 

e-2a' ; IJ'" {;; ó I (13 ]
11 

h;" ' (o") ~ g;"(O") ~ - ;, g, (0") l. M" _;. lv((~) ; [kll.l ~i:l.';)
'r 

12 To be used as a digital filter, the Gaussian curve and its derivatives have to be sampled, as already 

13 done in writing the Eq. (13). The Fourier transform of a Gaussian function (which is Gaussian too) 

14 is everywhere non-zero and, therefore, cannot be sampled without sorne aliasing. The aliasing will 

15 result negligible if 0'~1 (Hale, 2011), although even a slight lower value is allowed by sorne authors 

16 (Romeny, 2003). Moreover, to get a usable impulse response, it must be truncated somehow. 

17 Luckily, the Gaussian curve has a quick approach to zero and for this reason it can be truncate~ 

18 without a strong approximation. In fact, Eq. (13) provides a value less than 0.0004 for Ikl~4.0'. This 

19 latter condition implies that, to proper truncate the impulse response, it is sufficient to employ a 

20 value of N equal to 40' (actually the nearest integer to 40') in Eq. (1) with no needs to go beyond this 

21 value. Because of the properties of the Gaussian function, if the aboye condition for o' is respected 

16 
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1 and being I-PO" the frequency response of a Gaussian filter with paremeter cr, H L could be obtained 

2 from Eq. (8), Eq. (2) and Eq. (13) (Hale, 2011): 

(14)- . 3 

4 The Eq. (14) implies that the low pass filter (that can be indicated with dG in analogy with the 

5 denomination adopted for SG filters) embedded in a Gaussian first derivative smoothing filter with 

parameter cr, is indeed a Gaussian low pass filter with the same parameter. Of course, this will 

simplify somehow our duties when operations like the lidar ratio profile determination are 

performed, as will be showed in Sect. 3.1. When cr increases, the pass-band reduces its extension 

9 and provides a stronger smoothing effect, although a Gaussian filter has a transition band qtttte 

10 wider than a SG filter with a similar pass-bando A Gaussian filter is also less flat in the pass-band 

11 (van Vliet et al., 1998) than a SG filter (for P?:.. 2), but it has alsot the advanta~e of being almost 
¡" fJ- " i[ s(~IVy- r, ik., ~/.J.Jk,",~ wlJ,.y 

_ _ 12_ _w_ ith_out side lobes (i.e. no artifacts in the stop-band). ",\- r, '62.t 6!AL-WW M.2 
13 Figure 8 summarizes the performances of the low-pass fi ters described in this Section: filters with 

14 similar pass-bands are reported to show their differences . n the whole frequency domain. It can be 

15 seen that the Gaussian filter exhibits a behavior quite si ilar to the SG2 with a Blackman-t e 

16 window and both have no evident side lobes. Fig. 8 also clearly shows that SG2, as well as all other 

17 plain SG fi\ters (i.e. the SG2, S I 4 etc., therefore those not modified by cascading, windowing etc.), 
'YV'-v(.,~ 


18 has a ~t better behavior in 
the pass-band (v<0.1) than Gaussian/SG2 windowed filters, i.e. a 

19 more faithful signal preservati n, but are heavily affected by side lobes. From the point of view of 

! ...,;tk 11wW­
20 lidar stupies, an application o filters without side lobes corresponds to obtaining a well-smoothed 

21 profile L ithout the presence o any high frequency residual (or artifacts). Both the Gaussian and the 

22 SG2 ~ndowed filters also eJ hibit a much slower transition to the stop-band respect to the others, 

23 i.e/ j ess sharp separalion b tween pass and stop-bando Final]y the cascade filler is ab]e lo get al] 

L r~ ~,,(&I vJ ~1 .' 17 1)J ~1 ,t-l(rv)/ oJr" w,.!1 ~ .. . 
¡/UJ JA,r, ... ~II"" VIr''1' O ' 
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the attractive characteristics of the others, but it also has the described drawback of an enlarged 1 

transient (i.e. a more pronounced loss of information in the output signal, see Fig. 5). 2 

~rJt~ \\.1 ''t(.. ,..JJ.'?'\ ('Jv-;,c) L.u.k 
3 3.-l1ieBff.cti.-e ResoJulion . "'f 'ti: 

CIJ 

The investigation of the synthetic lidar data inversion (Pappalardo et al., 2004) in Fig. 9, h ps to ~ 
5 recognize the effectiv(lr~~l!on as relevant in lidar data analysis. It highlights that the effective 

6 resolution plays an important role to assess properly the problems that could arise when data 

7 different resolution are combined. In this latter figure, the aerosollayer inserted in the true profi e at 
(1 I w~tAv +ypt.- ()~ t(llw? 80,)(Coil. .7 

9 
8 1.4-1.6 km results heavily smoothed by the low pass filter used in the retrieval. If the is 


smoothed, the resulting lidar ratio profile is consistent with true one (se e Fig. 9, central and right 


panel), both in value and in behavior. On the contrary, if ~a is not smoothed, the lidar-ratio profile 

11 in the layer results quite different from the synthetic one. Outside the layer the differences between 

12 the retrieved lidar-ratio profiles are less relevant because the aerosol field is nearly constant and for 

13 this reason less sensitive to the distortion effect of smoothing filter (Ziegler, 1981). 

~Two approaches will be considered for the quantitative assessment of the ERes~V4 
• 15 related to the distortion induced by the smoothing process on any non-trivial input signal (Enke and 
~ 

~ 17 
l 16 Nieman, 1976; Ziegler, 1981). In fact, the area preservation property (common to all the considered 

smoothing filters, see Sect. 2.1) implies that if the peak of a layer is reduced, its spatial width will 

~'- 18 increase and potentially could overlap with another feature present in a profile. The final result will "" j 

~ '" 19 be that it is no longer possible to distinguish one peak from another, i.e. they are no longer resolved: 
1) 

~ 20 this means that a low pass filter reduces the vertical resolution. This latter statement naturally leads 
~ 

21 to the use of the Rayleigh criterio n (Bom and Wolf, 1999) for the determination the effective 

22 reS01Utionf¡ he second approach is based on the removal of high frequency noise due to the 

23 smoothing operation (Gans and Gill, 1983; Orfanidis, 2009). Since high frequencies in space 

24 domain correspond to small scale details in the lidar profiles, if they are lost in a certain amount this 

18 




1 will imply a reduction ofthe resolution in the output profile respect to the input one. Incidentally, it 

2 should be noted that since a smoothing filter damps effectively only high frequencies and since it is 

3 common to deal with white noise, the low frequency portion of the noise is still present in the 

4 smoothed signal, for example in the form of long wave ripples (Gans, 1992). Moreover, a link is 

5 established between the ERes estimated with each of those two approaches and the ERes evaluated 

6 via the proper cutoff frequency definition, in analogy to previous works (Godin, 1999; Masci, 1999; 

7 Beyerle and McDermid, 1999; Leblanc et al., 2012). Before discussing the two aboye mentioned 

8 methods, using the results of Sect. 2.1 an answer will be provided to the question about how to 

9 obtain a lidar-ratio profile that comes from aerosol extinction and backscatter profiles with the same 

10 effective resolution. 

11 3.1 Obtaining profiles with the same effective resolution: the lidar ratio case 

12 To retrieve the U a profile (Ansmann, 1992) a first-derivative smoothing filter is applied. The 

13 frequency response ofthe embedded low-pass filter (HL 
) can be found from Eq. (8), or directly with 

14 Eq. (14) if a Gaussian derivative filter is employed. The possibility to retrieve H L 
, gives the solution 

15 to the problem of retrieve a consistent lidar ratio and without hypothesis or assessment about the 

16 effective resolution itself of the profiles involved: it is only needed that they share the same 

17 resolution. In fact, once H L is known it is possible to smooth the corresponding ~a with this filter 

18 and as a result obtain both the profiles with the same effective resolution. The impulse response h; 
19 of this low pass filter can be retrieved by means of what is generally called Filter Desig'n by 

20 Frequency SaIl)pling (Rabiner et al., 1970; ¿ and Gold, 1975' urrus, 2012~h this 
, / 

21 m?6er,t ./ is sampled at a set of equal~paced freque./.ies. Thus, by using 

22 ~e Inverse Discrete Fourier Transform (IDFT), the desired filter impulse response can be 

23 determined: 

24 (15) 

19 




1 The resulting filter with an impulse response like Eq. (15) will have a frequency response that is 
P.e.. 

H L
2 exactly the same as at each Vil' s6 better the original frequency response is approximated 

.\-4­
3 ., smaller the interpolation error between them ~ (Johnson, 19-89). The impulse response h;, 
4 retrieved by Eq. (15), can now be used in Eq. (1) with the aerosol backscatter profile at raw 

5 resolution as the input signal. In this way ~a is smoothed with the same low-pass filter H L applied to 

6 get the u a profile. Even more directly the same result can be obtained by means ofthe IDFT only: 

7 (16) 

8 Both operations written in Eq. (15) and Eq. (16) could be computed with a proper use of FFT 

9 algorithms. In Eq. (16), X is the Discrete Fourier Transform (DFT) of a generic signal which, for 

10 our purposes, will be the aerosol backscatter profile at raw resolution. Since the frequency spectrum 

11 of both the profiles has been changed by the same low pass filter, then both share the same effective 

12 resolution. To illustrate better the aboye concepts, in Fig. 10, a retrieval of the optical parameters 

13 are performed starting from simulated elastic/Raman lidar data (Ansmann, 1992; Pappalardo et al., 

14 2004) with an aerosol layer 1000 m thick. The signals have been simulated for the Rayleigh signal 

15 at 351 nm and for the corresponding nitrogen Raman signal at 382 nm, without adding noise or 

16 background. Both the low pass derivative SG2 and the low pass derivative Gaussian filters are 

17 employed to retrieve the aerosol extinction profile. Then the embedded low pass filter (i.e. the dSG2 

18 and dG) impulse response, retrieved by Eq. (13) and Eq. (15) respective))', is used to smooth the 
4hv~t:"'o"" M't'1 ~¡.¿k t;IJ,#:!, 

19 raw resolution aerosol backscatter profile. Both' #te profiles with the same ERes are combined to get 

20 an estimation of the lidar ratio. Figure 10 shows that bes id e the good results for the retrieval of the 

21 lidar ratio inside the actual simulated layer, an accurate result is also obtained in the zone 

22 immediately outside the layer, i.e. where the filter distorts the profile with respect to the true layer. 

23 If the correct H L is used to smooth the backscatter profile, this makes the information about the 

20 



1 lidar ratio correct even at those ranges where the aerosol presence in the retrieval is only due to the 

2 distortion action of the filter. In Fig. 10, it is also shown that wrong lidar-ratio values are obtained 

3 in almost all the aerosol layers ifthe ~a profile is smoothed with a low-pass filter (indicated with H 

4 in Fig. 10) that is different from H L. 

5 3.2 The effective resolution: the Rayleigh criterion 

6 The Rayleigh criterion is generally accepted in spectroscopy for the determination of the minimum 

7 resolvable detail (Born and Wolf, 1999). It is an empirical criterion, and states that two peaks are 

8 considered fully resolved if the drop in intensity between them is lower than 74% of the peak 

9 intensity. This is a result of the diffraction forrnulation that says that the imaging process is named 

10 diffraction-limited when the first diffraction minimum of the image of one source point coincides 

11 with the maximum of another. The application of Rayleigh criterion for the determination of the 

12 effective resolution could be done by analyzing the behavior of a couple of unitary pulses under the 

13 action of a low-pass filter. Operatively, two unitary pulses at fixed distance are smoothed by a low 
~ w~l~: w\""'.Ic.- f.w-~k....s ( fltJ~J7 'oy¡!..1- ~r ~.I'~IJ./ 

14 pass filter whose paramete are changed to achieve a increasing signal distortion. Increasing N for ~ 0­

15 SG filters with fixed P, or cr for Gaussian filters, it is possible to find the maximum value of the 

16 filter parameter that allows to still resolve the two smoothed pulses according to the Rayleigh 

17 criterion. Then the effective resolution to be associated to that particular smoothing filter is exactly 

18 this distance. Moreover, this procedure, also known as "step function" method, has been already 

19 tested in the frame of the first EARLINET algoritlun intercomparison (Pappalardo et al. 2004). An 

20 alternative approach, used in the lidar community, is based on the analysis of the full-width at half­

21 maximum (FWHM) of a finite impulse after a srnoothing procedure is applied (Leblanc et al., 2012) 

22 or to the response to a Heaviside step function (VDI(Verein Deutscher Ingenieure), 1999; Eisele 

23 and Trickl, 2005; Vogelrnann and Trickl, 2008). However, with SG filters, apparently the step 

24 function procedure shows sorne arnbiguous results as can be seen in the examples reported in Fig. 

21 




1 11 . In fact with plain SG filters (with P 2:2) it could be difficult to properly define when the 

2 Rayleigh criterion is satisfied (or not) because the occurrence of artifact~ like bumps between the 

3 
~1 ' lJ~) ~7 .tic. ) 

two peak~ ~dlor the displacement of the smoothed peaks from their original position. In those 

4 cases, the ratio used for the application of the Rayleigh criterion is evaluated between the intensity 

5 at the peak and the intensity at the midpoint between the peaks. Because of the artifacts , the 

6 intensity at the midpoint is not always the absolute minimum: therefore this ratio brings to a more 

7 conservative ERes estimation. Those drawbacks in the application of the Rayleigh criterion could 

8 represent a further problem caused by the presence of side lobes with i nificant ma nitude. 

9 Instead, for filters like the Gaussian one or any filter with less important side lobes (like dSG2 and 

10 the properly built cascade filters no major problem is observed applying the ~aYleigh criterion. 
b~,(o.lY {)~ \.J{1~\J M. 

11 However, the step function method used in the case of th SGO filter leads t a first operative 

12 definition for the ERes. In fact, from Fig. 12, it should be clear that the effective resolution in this 

13 case is simply reduced by a factor of M=2N+ 1, because under the action ofthe SGO all the involved 

14 data points will be equally weighted. So the ERes (MEff) associated to the boxcar filter can be 

15 explicitly written as: 

16 I1R Ray,SGO = (2N + 1)11R .
Ejj raw (17) 

17 It is worth to mention that for the SGO the effective resolution is also equal to the inverse of its 

18 impulse response coefficient (multiplied by the raw resolution M raw), which in this case, for any 

19 given N, is a constant independent of k: 

20 hS GO 

k 

= 1 
p N +1t 

(18) 

21 To try to resolve the observed ambiguity in the application of the Rayleigh criterion to plain SG 

22 filters (with P 2:2), the considerations done in Sect. 2.2.1 about the cascade filters can be exploited. 

22 
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1 In fact, since the features of the cascade filter~ constructed with our rule of thumb, it is plausible 

2 that L1 filter shares almost the ~al1jl;,e ERes with the cascade L1 -12. For example, the ERes estimated 
1f(411.'~ 

3 for S02 'S04 could be also used for the S02. Figure 13 shows the kind of effect that the cascade 

4 will produce on the central bump, making more straightforward the application of the Rayleigh 

5 criterion. In Fig. 14 there are sorne results of the application of the Rayleigh criterion to plain SO 

6 and the corresponding cascade filters (iD.... e @s~inécr1d:50 e) that show how the ERes of an 

7 SOP exhibits a behavior quite similar to the corresponding cascade filter. Therefore, the occurrence 

8 of artifacts seems to have a limited effect in the ERes determination «5-10%). 

9 Exploiting the quite evident linear relationship between the ERes and N that results from Fig. 14, 

10 the following equations are obtained: 

A DI:uy,SG 2SG4 =(1 17N - O09) A D ~ M lluy ,SG2 =(1 24N - O24)M
tiII.Eff . • L.V\raw Eff . • raw 

11 A DRay,SG 4SG 6 =(O 80N _ O 65) A D ~ A DRay,SG4 =(O 74N ­ O 48) A D tiIl. Eff . . L.V\raw tiIl. Eff . . tiIl.raw . (19) 

M ;;,SG6SG8 =(0 .60 N ­ 0.78)Mraw ~ M ;;,SG6 = (0 .62 N ­ .86)M
raw

¡""v.....L fJ,,,,,) oI~6L, m..!lIuk.¡ V 
12 For the other filters under investigatiod, the application of the Rayleigh criterion does not give 

13 particular probleml)the results are reported in Fig. 15. 

14 Of course also for the filters in Fig. 15 the ERes could be written by linear fit : 

M ;;·dSG2 =(l .55 N + 0.83)Mraw 

15 M ;;·SG2+Blk = (0.80N + 0.20)Mraw . (20) 

M ;;·G =(2 .790- -1.04)Mraw 

16 For example, if an aerosol extinction profile is retrieved from a nitrogen Raman lidar signal with a 

17 raw resolution of M raw =15 m and by means of an S02 derivative low pass filter (i .e. the 10w pass 

18 filter to consider is the dS02) with N=30, its estimated ERes will be about 700 m. Because of the 

19 constraints on N and cr discussed in Sect 2.2 and Sect 2.3, the ERes given by Eq. (19) and Eq. (20), 

20 will be always positive and larger than the raw reso1ution f-Gf all--the-lew-pass-fi±tersiand less than 

23 ) /J~w/ 
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1 (2N +1)tiRrm{ the-upper limit gi¡ en by SGO). For example the linear fit in Eq. (19) for plain SG 

2 filters is performed with the cons aint that these filters for N=PI2 do not smooth, therefore they do 

3 not change the vertical resolution (tiRE.u=tiRraw) .[1t sh ti(d be no!edthat regardless of whether (or 

4 how) the linear fit is constrained or not, the slo do es not significantly change and the intercept 

5 values will have always a low impact on tRes determination (max ±1·tiRraw , a value that could 

6 be taken as the estimation ofthe ER indeterminatiOn)j As the filter's parameter grows in Eq. (20) 

7 and Eq. (21), i.e. N for SG based filter and <J for Gaussian filters, the intercept values does not 

8 matter anymore in the detennination of the ERe~ Among lhe SG based fi!ters examined, for the 

9 SG2 this is true for any N and the worst case is the SG6, where the difference in the ERes calculated 

10 with or without the intercept, beco mes < 1 0% for N> IS , while with the Gaussian filter the same is 

11 obtained with <J>4.s·-lu"J 
<-6(" 

12 It was a natural to adopt an operative ERes definition based on the Rayleigh criterion because of its 

13 direct relationship with the concept of resolution. Although the use of this criterion led to simple 

14 and ready-to-use linear relationships for the calculation of the ERes, no unique equation was found 

15 suitable for any given low-pass filter. In fact with the method outlined in this section, for any 

16 selected smoothing filter, the whole procedure to retrieve a relation for the ERes has to be done 

17 from scratch. 

18 3.3 The effective resolution: the NRR criterion and the SNR Matching Criterion 

19 h,.Jtmoval of the noise embedded in a signal is the main purpose in the application of a low-pass 

20 filter. The amount of white noise removed by a generic filter has been already explicitly assessed 

21 (Gans and Gill , 1983; Brown, 2000). In fact , in this case, the ratio between input (a}N) and the 

""~l(.;...¡~\~ 
22 output ((}~UT) ~uare neise values can be taken as a measure of the noise removed from an 

23 input signal after the smoothing. This quantity is also caBed Noise Reduction Ratio (NRR) and 

~ 




1 depends only on the impulse response of the filter under examination (see Chapter 8.3 and 

2 Appendix A.2 in Orfanidis, 2009; Mitra, 2001) : 

2 IV 

3 (J"()~T = ¿h; = NRR. (21) 
(J" ¡ IV k=-IV 

4 Using the explicit formula for the ERes associated to the SGO filter and the Eqs. (17), (18) and Eq. 

5 (21), led to write: 

6 

NRR SGO IV 1 
= ¿ (h;GO )2 = ; 

k=- IV ~2N + l} (22) 

M SGO 
Eif 

(2N l)M= + raw 
M raw 

= NRR SGo · 

7 From the nOlse reduction point of view, the Eq. (22) makes possible to infer that the ERes 

8 associated to the application of a generic low pass filter L on a signal could be written by means of 

9 

10 (23) 

11 Adopting a slight different point of view, a proof or at least a solid hint of the validity of Eq. (23) 

12 could be provided. Given that a low pass filter alters the SNR, it is reasonable to as sume that if a 

13 given signal will emerge with the same SNR after the smoothing with different low pass filters, then 

14 those filters act on the signal in a similar fashion noise-wise. Than it could be also inferred that the 

15 filters, although different, will also have caused the same alteration of the resolution on that signal 

16 and for this re aso n the output profiles will have the same ERes. Operatively, the SGO filter for 

17 different values of N is applied on a generic signal, and then the corresponding SNR of the 

18 smoothed signal is calculated. Applying on the same signal a generic low pass filter L, which will 

19 be characterized by thu arameter.uzarams (i.e. N, P for SG based filters or (J for Gaussian filters), 

1
~( ,,/f.'t.~ r¡.vJ.Y.J~ 25f . ( ~, P) f.r 5(, - W f;/i.y '( 

') 
~ ~ 

r )
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2 

an optimization process can be performed to find the [No, paramso] couple that makes the average 

differences between the two SNRs as close as possible to zero (SNR matching criterion): 

~ 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

MNR N ,params = SNR ~GO ­ SNR ~arams 

=> [No, params o] : MNR No ,paramso ~ O 
(24) 

Then, given the Eq. (22), finally, it can be assumed that the ERes of a generic L smoothing filter is: 

/~RL ,pGrGIIISo = (2N + l)M . 
Eif o rGw (25) 

In Fig. 16, there is an example ofthe similarity ofthe SNRs achievable using two different low pass 

filters. The results of the ERes obtained using the Eqs. (23), (24) and (25) for various low-pass 

filters can be seen in Fig. 17. The analysis of this latter figure provides a quite clear confirmation of 

the equivalence of the NRR and the SNR matching críterion. For this reason the Eq. (23) can be 

used to easily estimate the ERes for any smoothing filter, instead of the les s general, and more time 

consuming SNR matching procedure. In fact, with the NRR criterion, the estimate of the effective 

resolution is based only on the impulse response of the smoothing filter employed, which ís 

generally known or it can be anyhow calculated vía Eq. (8), when necessary, as for dSGP low-pass 

filters. Figure 17 also shows that the ERes with the NRR criterion could be expressed by linear 

relationships, as happened with the application of Rayleigh criterion. 

For this re aso n and according to the previous discussions, the results ofthe linear regression for the 

same type of smoothing filters can be explicitly written as: 

M,:;,SG2 SG 4 = (0.98N + 0.30)Mraw;M~;/ ,SG2 = (0.89N + O.ll)MrGlV 

M,:; ,dSG2 = (1.61N + 1.25)Mraw ; M:.uIR ,SG4 = (0.57 N ­ 0.15)Mraw 

A DNRR,SG2+ 8Ik = (O 96N + O04)M . M NRJ/,SG6 = (O 42N ­ O 27) A D 
Ll.l\ EJJ • • raw ' Eff • • Ll.l\ raw 

(26) 

/lR;~/R ,G = (3.530- + 0.02)/lRraw 
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1 Clearly, as can be seen from Eq. (19), (20) and Eq. (26), sorne differences and similarities are 

2 evident from the comparison of the ERes estimated using the Rayleigh and NRR criterion. 

3 L) A convenient way to summarize the results for both criteri~ and to understand their mam 

differences, is to study the behavior of the frequency responses plotted in Fig. 18. From those 

curves, it looks that with the Rayleigh criterion, a common value of the ERes is obtained when the 

6 corresponding frequency responses of considered low pass ters ~hare almost the same stop-band 

7 extension, while they can exhibit significant differences in the pass-bando The. ~~ and is easily 

8 defined by the frequencies aboye the value corresponding to the first zero in1ifor the filters with 

9 side lobes, (Schafer, 2011). For the Gaussian filter and the SG2 windowed filter (i.e. in case of 

10 frequency response with both a significant wider transition band and without side lobes of relevant 

11 magnitude), the stop-band starts could be taken at v(H=O.l), like in the classical definition of the 

12 end of the transition band already used in Fig. 7. With the aboye definitions all the stop-band start 

13 values in the bottom plot of Fig. 18 are close each other, being compris between about 7'10-2 and 

On the contrary, the same ERes using the NRR criterion is found when the frequency responses 

16 have nearly the same pass-band (i.e. for v<4'1O-2 in the upper pIot of Fig. 18), taken as the region 

17 between the DC and the canonical definition of the cutoff frequency i.e. the frequency 

18 corresponding to -3db level, or vc=v(H=0.7) . For this reason, NRR criterion tends to provide the 

19 same ERes for those smoothing filters sharing a common behavior at the lower frequencies. 

20 As aIready evidenced, the distortion action of a smoothing filter is always present and its proper 

21 quantification is an outreach that should be assessed. In fact for a given amount of noise in a signal, 

22 the NRR tell us that there is a kind of saturation effect that is achieved when almost aH the noise is 

23 removed. As a consequence the smoothing of a signal could not always leads to significant 

24 improvement: for example in Fig. 9 the layer structure is lost by the distortion action of the applied 

25 low pass filter. For this reason in a smoothing operation seems important to find the limit over 
27 



1 which the (undesirable) distortion of an underlying input signal could become more relevant than 

2 the coupled (desirable) decrease of its noise level predicted by Eq. (21). Previous papers related to 

3 spectroscopic studies actually found this limit analyzing SG filters (Enke and Nieman, 1976; 

4 Ziegler, 1981; Gans and Gill, 1983; Rzhevskii and Mardilovich, 1994), and it would be interesting 

5 to apply their methods with the aim to optimize the effective resolution retrieval and more generally 

6 the whole lidar signal processing. 

7 3.4 The Effective Resolution: the cutoff frequency 

8 The considerations emerging from the ana1ysis of Fig. 18 allow us to link both the approaches 

9 provided for the ERes estimation, to the cutoff frequency. The cutoff frequency associated to the 

10 frequency response of a smoothing filter can be used to estimate the effective resolution (Godin, 

11 1987,1999; Masci, 1999; Beyerle and McDermid, 1999; Leblanc et al., 2012). For this reason the 

12 following equation can be written: 

13 M~ff = M raw (27) 
ve 

w~ 0" (¡ ~ .. 

14 Of course, the definition of effective resolution in Eq. (27) depends on the value chosen for Ve and 

15 so on the actual pass-band (or bandwidth) definition. The Fig. 18 suggests that the proper Ve value 

16 depends on the chosen criterion for the ERes evaluation. In order to try to find that proper value for 

17 the cutoff to be used it is useful write: 

18 (28) 

19 In this way, once the MEff is evaluated for a given low pass filter, Eq. (28) allows estimating the 

20 value of its frequency response at v= ve. For example, with the NRR criterion, the cascade SG2 ·SG4 

21 with N=25 will produce an MEff~,::,25 a.u. (Mra\V=I, from Eq. (23) or Eq. (26)), which implies a 

22 vr O.04 : thus, once estimated at that cutoff value, the frequency response re1ative to the aboye filter 

28 



1 gives H(ve=0.04}::::0.72 (see Fig. 19, right panel). Indeed from Fig. 19, as far as the NRR criterion is 

2 concerned, it seems that for any given MEff and for any smoothing filter (or at least within those 

3 analyzed), the values of the frequency responses at V=Ve given by the Eq. (28) are quite constant 

4 and range on average between 0.65-0.72. For this reason, with the NRR criterion, if the ERes 

5 should be estimated via Eq. (27), the cutoff frequency defined as v:rm = v(H@-3db) appears the I 
6 value to be chosen in this case. 


7 Instead, for the Rayleigh approach, the ERes via Eq. (27) are close to those estimated via Eq. (19) 


8 and Eq. (20) if the cutoff frequency definition is taken as the half of frequency extension o,f the 


9 main lobe of the fre uenc res};!onse (Orfanidis, 2009), i.e. if Ve is taken as the h 
 of the lower 

10 frequency ofthe stop-band Vsb (as defined in Sect. 3.3) or v:ay = vsb /2. This latter fa t is in Fig. 20, 

14 

11 where the values of (2/V sb), plotted against ERes estimated with the Rayleigh criteri , are near the 

12 identity line for all the investigated low-pass filters. To summarize, the Eq. (27) can e rewritten for 

13 the NRR and the Rayleigh criterion as: .r ~/1k1 Gtr ~ L 
¡¿f.(~~ FJ' 7/J 11 (JtJS 

tk l-A -2«0 o ...J,J;1)¡ 1 t\~ru#1 . 

15 These latter equations gives a general breath to the consideration done for the Fig. 18. Furthermore, 

16 the second formula in Eq. (29) provides a kind of general equation, or at least a rule of thumb, also 

17 for the ERes retrieval based on the Rayleigh criterion. Instead (operatively) the first one is not really 

18 needed because a general expression is already given by Eq. (23) for the ERes with the NRR 

19 criterion. It is good to precise that Eq. (29) has been obtained only using low pass filters studied in 

20 this work, and a further generalization to other filter types needs an additional analysis. 

21 

29 
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3.5 Smoothing kemels lvr t.... ~ f' I~\-) 1PLCu I..~¡'yt. . 
2 Another approach to determine ERes, ofien used in the cornrnunities dealing with inverse problems 

3 applied to passive remote sensors, is based on the use of the retrieval kernels. Kernels account for 

4 the limited vertical resolution and for the sensitivity of the retrieval (in OUT case the smoothing is 

5 assumed as the applied retrieval) th'kt decreases toward hi~her and lower altitudes depending on 
Q.. • ¡~ ~Lv ~ ot ""~""O\ooil-y'v ~l..l.~ (J\\~) 

6 nadir or zenith po'· ting (Haefele et al., 2009). The peak of each kernel, at their associated range 

7 gate, provides the altitude of maximum sensitivity. Its full width at half maximum is typically 

8 interpreted as the value of ERes of the retrieval. A recent paper in literature (Illingworth et al., 

9 2011) refers to the half width at half maximum as to the value of ERes of the retrieval. The 

10 calculation shown in this section agrees with the second formulation. The resolution derived from 

11 the kernel is similar in vertical shape to the resolution derived from error covariance matrices 

12 (Backus and Oilbert, 1968; Conrath, 1972). 

13 As mentioned aboye, we apply the smoothing as a retrieval technigue, leading to the eguation: 

14 y=Ax (30) 

15 where x is the high resolution profile, y is the smoothed profile and A is the matrix identified by the 

16 smoothing filter. As described in Eg. (1), each smoothing procedure can be also seen as the 

17 convolution of the high resolution profile and a kernel, that, for example, in the case of a 

18 polynomial filter, is identified by the coefficients of the polynomial. Therefore the matrix A is 

19 identified by a matrix having as raw elements the coefficients ofthe polynomial. 

20 To provide a guantitative comparison of the criteria mentioned aboye to determine the ERes with 

21 the kernel s, in Fig. 21 the coefficients of the polynomial of a S02 filter are reported for N=9 and 

22 N = 19. If the half width of the two curves is calculated, a value of ERes egual to 7 f1R raw and 14f1Rraw 

23 is obtained. From Eg. (26) the same values of N are corresponding to 8f1Rraw and to 17 f1Rraw . From 

24 this comparison, it seems that the use of kernel s provides an underestimation of the ERes with 

30 




1 respect to that determined using the NRR criterion; the difference is larger with an increasing value 


2 of N. A deeper investigation is needed to learn more about this difference. N evertheless, the use of 


3 kernel s looks a promising choice to obtain a fast and automatic determination of ERes for lidar 


4 profiles, known the kernel of the applied smoothing filter. To the best of our knowledge, this is the 


5 first time this method is applied for determining the effective vertical resolution of lidar vertical 


6 profiles. i . ({\ JI j / PJ)fUJlA6Tlll p())fr ¡ 

r MJ.j~) s"",,Ik/. J4 lhlJt fJr' ~..~ ~~ 
J ~ J~1l.. JI. 

7 Summary and Conclus~ons Afl. tLt., J ÁIIIL f4 /'111' ~11fo I 

J f\W.rIJv ~ I~p~v) I .J rkv~ 
8 ~mEWal of noise fFem li ar products via low-pass filters "corresponds to suppress a certa' n 

9 amount of details in them. The s oothing operation also distorts both the magnitude and the spat~ I ff<"'Y 
10 extension of the features containe in a profile. Moreover, the likely presence of several separated NI Lb ! 

,/,\AlÜ~6~ 

11 layers (of aerosol, ozone etc.) in a lidar profil p~t~ the question if they are well resolved or not 


12 afier the application of sorne kin of smoothing. Therefore, it is important to introduce the 

13 definition an effective resolution (ER s) associated to a lidar profile where a smoothing process is 

14 applied. The digital filter approach to the smoothing gives advantages respect the standard least­

15 squares approach like: ~bl.k I: 1}rll J.s ~qAlt 56 1~f JJ 
.u.. ., " G../(¡l .... ~;/~ 1 l 

16 A faster algorithms that are able to deal properly with the large dynamic range of a lidar • 

17 signal, an interesting feature especially for the SCC algorithms (D' Amico et al. , 2015). 

18 • An easier statistical error analysis . 

19 • Ready-to-use effective resolution definitions by an analysis of the impulse/frequency 

20 response . 

21 • The many recipes to design efficient low pass filters in principIe allow us to use the most 

22 suitable solution for any specific needs in lidar signal processing. 
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1 Concerning the latter point, several kinds of smoothing filters have been analyzed to also evidence 

2 the characteristics that could be useful to perform a choice among them. In fact the ERes estimation 

3 alone could not give a general guideline about why to choose a filter rather than another. Indeed, the 

4 effective resolution can be regarded as a kind of average parameter. For this reason, it that cannot 

5 take into account all the details, like the peculiar differences in the behavior in the whole frequency 

6 domain of the various filters: the analysis of other parameters is needed. If properly designed, the 

7 smoothing filters resulting from the cascade method applied to the Savitzky - Golay family seem a 

8 good choice when a lidar profile has to be smoothed. In fact it retains all the advantages of the SG 

9 smoothers while it reduces their main drawback i. e..-the-.S.trQng side lobe presens,e. Nevertheless, the 

10 cascade filters also show an enlargement ofthe transient zone. Other smoothing filters in our study, 

11 i.e. the Gaussian one and the SG2 with Blackman-type window, produce an even betler suppression 

12 of the high frequency noise, but have a less accurate signal preservation at low frequencies and a 

13 more extended transition bando Before eventually enter in the estimation of the ERes, the 

14 possibilities given by the DSP are utilized both to further underline how relevant are the knowledge 

15 of impulse/frequency response and to solve a practical problem in lidar studies, i.e. how to calculate 

16 the lidar ratio being sure that both the required aerosol extinction and backscatler profiles have the 

17 same resolution. Then, an operative ERes estimation was determined by taking into account: 

18 • The Rayleigh criterion, which highlights our ability to resolve (or not) close layers. 

19 • The NRR criterion, which highlights the amount of (hi~~:W...noise reduction of low 

20 pass filters, and that can be seen as a measure of the spatial scales removed from a signa!. 

21 The NRR criterion underlines that with smoothing filters only the high frequency noise is efficiently 

22 removed. In fact the presence of low frequency noise will remain almost unchanged and then will 

23 still affect lidar products. The application of both the criteria, brings to a simple linear relationship 

24 between the effective resolution and the filters parameters. Different results with different criteria 
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1 for the same filter have been found. Anyhow the discrepancies are limited to a maximwn of ~30% 

2 in case of plain SG or Gaussian filter, while for other filters they are less pronounced «20%) or 

3 practically not particularly relevant «5% for dSG2 case). The investigation of the differences 

4 between the two criteria is evidenced by the analysis of the frequency responses that corresponds to 

5 a common ERes value for various smoothing filters. This latter approach permits to underline that: 

flw;lV : rld SJLt I\\~ IJ-f tgl/t!, ....J ~J:/o.rTiq!<}---'" 
6 • The effective resolutions obtained with the Ray!eigh are similar for those filters that share 

7 comparable stop-band, while in the pass-band they could behave differently. 

8 • The effective resolutions estimated with the NRR criterion are similar for different filter 

9 that share a similar behavior in pass-band, whose extension results also comparable. 

10 Though feasible for any given filter, the ERes estimation based on the Rayleigh criterion shows 

11 sorne drawbacks and appears more elaborated respect the application of the NRR criterion. In fact 

12 for the NRR criterion, a ready-to-, oSe equation to estimate the effective resolution was found which 

13 is directly applicable to any given 'Sm~ filter. In this case the only needed input is the impulse . 
14 response of the employed filter, which is always available (or determinable). For this reason the 

15 NRR approach to the ERes estimation would appears more suitable to be used as a standard for a 

generalized application. Moreover, the NRR criterion implies the higher uniformity in the pass-band 

17 for different filters with a common ERes, and generally the signal to preserve has interesting 

18 features that lay mainly in that portion of the frequency axis. Nevertheless, the results about the 

~oIb 
19 calculation of the ERes by the analysis of the iCutoff frequency , allow one to obtain al so for the 

20 Rayleigh criterion a specific general equation which is based only on the knowledge of the 

21 frequency response of the applied smoothing filter. Furthermore, the Rayleigh criterion measures 

22 the ability (or not) to resolve close layers, which could be a valuable feature in lidar studies. 

23 Additionally, the ERes estimated with this criterion is significantly more conservative respect the 

I 
24 NRR criterion, at least for plain SG smoothers. egarding the derivative process, it is fairly 

''''­
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1 common the use of the SG2 low-pass first-derivative filter within EARLINET community 

2 (Pappalardo et al., 2004), whose embedded low pass is denoted with dSG2. This latter filter allows 

3 one to obtain nearly the same ERes estimation regardless the criterion chosen and, additionally, the 

4 obtained results are consistent with those given in Pappalardo et al. about the same filter. The dSG2 

exhibits a quite similar behavior of a Gaussian filter with similar ERes (from the NRR point of 

6 view) in almost al! the pass/transition bando '1. oreover, the Gaussian filters have quite better stop­

7 band features (the absence of significant side lobes) and provide an easier way to perform correct 

8 lidar ratio calculations. Those considerations bring to the conclusion that it seems recommendable 

9 the employment of the Gaussian low- pass derivative filter to retrieve the extinction profile (and 

more general!y anytime the first derivative of a signal is required) as long as the choice is between 

11 this filter and the widely used SG2 low pass first derivative filter. An alternative approach to the 

12 ERes assessment has also been proposed, i.e. the one based to the smoothing kernels, which 

13 produce results that are consistent with the NRR criterion although further insights are required. 

14 Anyhow, it appears a promising method that could be further developed to look at the ERes 

problem from a new point of view. Moreover within the lidar community, there are other 

16 approaches on the numerical derivative problem that have be en proven to be effective and also 

17 other methods able to pro vide alternative and reasonable ERes definitions: however, the scope of 

this paper is not o compare all the smoothing filters applied in literature to deal with lidar profiles, -
19 but instead to pro vide a methodology to assess the ERes. Nevertheless, a more exhaustive 

r" JVcl '" . . . (?JT 1./ rI~) 
comparison with other approachd for the evaluation of the ERes and smoothing filters will be 

21 likely done in future in the frame ofEARLINET activities. Other promising directions for the future 

22 developments of this study could be try to obtain a more general and possibly unique rule for the 

23 effective resolution estimation and also to pursue the objective of an improvement of the lidar 

24 signal analysis. The latter objective could be achieved by means of both a deeper exploitation of 

DSP theory and the application and development of the smoothing optimization methods already 



1 underlined by chemical spectroscopy papers mentioned in the text (for example, Gans and Gills, 

2 1983). 
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