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REMARKS TO THE AUTHORS

OVERALL SUMMARY
Dear authors,

The manuscript focus is two-fold: On one hand, it tackles application of low-distortion filters
(particularly, the Savitzky-Golay (SG), the Gaussian, and basic cascaded and/or windowed
realizations of them) to the problem of smoothing and derivation of lidar signals. On the other hand,
and subsidiary to this first objective, an empirical parametric study on the spatial resolution achievable
with these filter realizations is presented.

The main added value of the manuscript lies on the nice transferability, application and extension of
well-known concepts carried out by the authors from the signal-processing arena (e.g., the SG dates
back to 1960's) to the physical/lidar one (greenish in the sig-pro field). The authors have
demonstrated hard-work in the simulation/studies presented and hence, the manuscript represents a
good contribution to AMT. Consistent with this, | must say that the originality of this manuscript is
somehow limited to applied-remote sensing journals of the like, as is the case of AMT.

In its present form the WRITTEN part of the manuscript is too draft. It is my feeling that -for some
unknown reason- the authors are submitting a manuscript still requiring several levels of edition
concerning e.g., use of English and a better structuration of paragraphs/ideas. Definitely, the
manuscript is TOO LONG. The authors must do an effort towards more succinct redaction, some
parts are discursive). NOTATION is un-rigorous or provisional all over the manuscript and must be
cross-examined against modern standard signal processing conventions (see attached SG paper).
Technical major comments are given next.

All considered, | recommend major revision along the lines suggested and an in-depth writing
revision.

Level of revision:

With the present level of editing exhaustive DETAILED COMMENTS are NOT possible. The authors
will find help tips from this reviewer in file annotated_manuscript.pdf.

Circled line-numbers indicate conflictive, incorrect or vaguely explained concepts that require further
revision from the authors’ side. Some of them are covered in the detailed comments below.

ATTACHMENTS
(1) annotated_manuscript.pdf

An annotated manuscript is attached with in-depth spelling/use-of-English correction for pp.1-5 just to
help the authors on this issue.



MAJOR COMMENTS

(1) The first part of the manuscript (whole Sect. 2) and, more intensively until Eq. (7), is just a review —
in summary “book” fashion — of well-known concepts on digital signal processing, which conveys no
original material. Suggestions are given next to improve it in terms of notation, terminology and
clearer structuration of ideas.

Sect. 2/introduction. Please consider slight reorganization Sect. 2, pp. 4-7 along this layout:

1. Response of linear-time-invariant (LTI) systems to arbitrary inputs: convolution sum,

0

y(n)= > h(k)x(n—k). Eq. (R1).

k=—0

2. Causality,

y(n)= 3 h(k)x(n —k). Eq. (R2).

=0

=~

3. Finite Impulse Response (FIR),

y(n)=

4. Highlight the importance of linear-phase FIR filters, which is what you use all over the
paper. For linear-phase filters,

h(n)=+h(M -1-n),n=01,..,M —1, Eq. (R4).

h(k)x(n —k), Eq. (R3).

Mz

=
I
o

To see 4, resort to important properties of the Fourier transform (FT), Eqg. (R5a,b,c):

e A delay in time, x(t-t0) (equivalently, x(n-n0)) appears as a linear phase in the
frequency domain, X(omega)e”™-j*omega*t0.

X(t —to)—> X (Q)e_j“’t" (analog formulation), Eg. (R5a)
x(n - no)—> X (a))e_j”’“‘) (discrete formulation), Eq. (R5b)
e Real signals

x(n)real — X(w)= X"(- o), Eq. (R5¢).

5. Fourier Transform (FT) of a discrete-time aperiodic signal (your Eq.(2)).

Introduce the concept of “frequency for discrete-time signals” as
rad
(@) il
w=—LS 1
rad |’
QS
S

where Q is the analog frequency (continuous-time signal in [rad/s], i.e., prior to sampling) and €2 is
the sampling frequency (in [rad/s]). Or

Eq. (R6)

F
f (lower case) =F/F_sub_s, f = = Eq. (R7)
S
Note than the highest frequency of oscillation in a discrete-time sinusoid is attained when omega=+-pi
(i.e., f=+-1/2). Say that for convenience (and for practical compliance with modern signal processing
tools like Matlab) the normalised frequency, f'= a)/ﬂ is used all over the paper (“nu” is not so
common).



All frequency equations such as Eq.(5) in p.8 of the manuscript must always be formulated using @
(irrespective of the fact that your plotting variable is @, f (bounded to +-1/2 or 0-t0-0.5), or f_prime
(bounded to +-1, or 0-to-1). Thus, the ideal digital differentiator is always j@ .

6. Fig. 1 Why the negative part of the spectrum is not represented? Explain that only positive
frequencies need be represented, because if x(n) is REAL - as is the case here- then

X(omega) has Hermitian symmetry, X *(a)) =X (— a))
(2) FIGURES. Please consider plotting 20loglo|H (a)) all over most of (not all) the spectral figures of
the paper instead of plain H (a)) The standard representation in signal processing is 20loglO|H (a))|
and arg[H (@)] [deg]. This will help identifying sidelobes in the STOPBAND.

The correct notation for decibel is [dB] (not db).

(3) NOTATION (not exhaustive)

“n” for sample index as x(n), not as subindex

f or f'=w/x as normalised frequency

Jo as the ideal differentiator,

] as the imaginary unit

Do always write “n” (time domain) or “omega” (frequency domain) in your Eqgs (revise Eq. (9)).

Suggestions: AR, ARS>* ey AR H .4 (usual notation)

NRR ’

R.W. Schafer, “What is a SG filter?, IEEE Trans. Signal Proc. Mag., 28, 111-117 (2011). Please
consider this notation (“n” for sample index as x(n), not as subindex), frequency response in log
magnitude (20log10(modulus(H), Figs. 3, 5 therein).

(2) Equivalent SG filter. The author propose cascaded SG filter combinations of the type SG2(L1) &
SG4(L2). How does a single filter, for example SG2(L1+L2), compare with the cascaded
solution? More generally, the authors should discuss on an equivalent SGx(y), i.e., a suitable pair
of order “x” and length “y” based on nice parametric studies carried out. This is better oriented to
the focus of the paper.

(3) How lidar signals are processed under a variable spatial-resolution approach? Using the same
SG filter over the full range of the lidar sensor (or other remote-sensing sensor) means
processing the lidar signal with the same spatial resolution (i.e., constant all over the inversion
range). However, when faced with data records several km long, the rhythm of decrease of SNR
forces to use much longer spatial resolutions at further ranges, where the SNR is getting lower
and lower. It is difficult to believe that the same SG filter can solve the problem for the full
inversion range (say 0-8 km). | advise the authors to expand/discuss this part in detriment of
others.

(4) Conclusion. Just a preliminar review: Important is that —from what you have in hands- the scope
of the paper at least covers: 1) an in-depth parametric study on SG and Gaussian filters and 2)
Effective resolutions studies/methodologies. Both are equally important and nice to contribute,
not only the second! The paper title could also be better adapter to reflect this.



DETAILED COMMENTS

p.4, lin. 8. Clarify that according to SG (1964) paper there are two big families of SG filters: “smoothers”
and “n-th order differentiators” and that derivation always implies a certain level of smoothing because of
the inherent construction of the SG filter.

p.4, lin. 13. Notation. Unclear indexes.

In the convolution equation, it is standard to say that the impulse response has “M” samples, the signal
(x(n)), N samples, and the output (y(n)) N+M-1 samples. Please consider to include a figure sketch to
help the reader (otherwise lins 21-23 becomes cumbersome...).

p.5, lin. 12. Remove “aliasing”.

“Sampling of a continuous-time aperiodic signal (e.g., the lidar signal) causes the spectrum of the
discrete-time signal (i.e., H (a))) to be a continuous and periodic function of variable omega (with period
2*pi (-pi<=omega<=pi)).”

“Aliasing” usually refers to the unwanted effect of multiple spectrum folding on the frequency axis due to a
too low sampling rate.

p.5, lin. 15. Normalised frequency. Please see major comments.
p.6, lins 3-5. A negative value of H... results in artifacts.

This assertion is FALSE. What causes “artifacts” of unwanted effects is the frequency content in the
transient+stop-band of the spectrum, be it positive, negative, or with a given phase (in the case of a
complex-valued spectrum, not your case). This part of the spectrum conveys “unwanted” leakage
frequencies.

The fact that an unwanted frequency has arg[H (a)l)] =0 or 180 deg (i.e., H(omega_sub_1)=+1 or -1,

respectively) means that this high-frequency will show up in the grey zone of Fig. 2 without or with a sign
reversal in the oscillatory behaviour of the Chirp signal.

KEY is to have low sidelobes and no discontinuities in the time domain.
p.6, lin. 8, Eq. (3). Revise/wrong. See Eq. (R8b) next.

A linear chirp is defined as f (t)= f0 + Kkt , where f_sub_0 is the start frequency and k is the chirp rate

parameter. Therefore, the chrip signal becomes,

x(t)= 005[27{ fit+ gtzj + 4 , Eq. (R8a).

n 1
Sampling at t=nT = f_ with T the sampling period (equivalently, fS = ? , the sampling frequency)
S

the discrete signal takes the form,

s f

S

2
x(n)=cos Zy{%jnmk(lj +¢ |, Eq. (R8b).

p.8, lin. 4, Eq. (5). See annotated ms.

p.8, lins. 8 and 17. Clearly expose that the goal is to implement a low-pass-limited differentiator with the
“‘f*omega” slope reset to zero between @, and @ =7, @, the low-pass cut-off frequency.



p.8, lins 8-12. Slang, magazine oriented (in my opinion).

p.9. Eq. (7). Revise/wrong.

Assuming anti-symmetric unit-sample response for the desired fiter, h,(n)=-h,(~n),h,(0)=0,

gives
N

H,(0)= -2 hy(n)sin(en), Eq. (R9).
=1

p.9, lins 18-20. Somehow slang and difficult to follow.

Suggestion: The SG-derivative filter can be understood as a cascaded system of two filters, the first one
being a low-pass filter (LPF) acting on the raw input signal and the second one being the ideal
differentiator (H(a))= jow) and acting on the LPF signal. Prefix “d” stands for the low-pass filter
prototype associated to this first stage of the SG differentiator (inherently, low pass).

p.13, lin. 3 This is just a valid approximation. In fact there are hundred of alternative low-pass filter design
approaches.

p.13, lins. 13-14. How does a SG2(L1+L2) compares with the cascaded SG2(L1)-SG4(L2)? What about
SGx(y), i.e., a suitable pair of order “x” and length “y"?

p. 14, lins 13-25. This part can be moved to a discussion sub-section in Sect. 3 or simply removed. Your
paper is too long.

p. 15. Unclear writing/structuration for Sect. 2.2.2.
Please distinguish between time windowing and spectral windowing.

Windowing in the time domain means multiplying x(n) by a window w(n) as indicated by Eq. (11) +
handwritten block diagram. According to FT properties, multiplication in the time domain equals
convolution in the frequency domain. However in Fig. 7 frequency response it is not clear if the SG-
Blackman window is the result of multiplication in the time domain (correct) or the result of multiplication
of a Blackman window in the frequency domain by the SG spectral response (incorrect). Please clarify.

Most readers will not understand what is “leakage”: Better introduce the problem by saying that
“truncating” x(n) in the time domain is equivalent to multiplying by a rectangular window, w(n), which
causes sinc=sin(x)/x (the FT of the rectangular window) to convolve in the frequency domain, i.e., many
unwanted secondary lobes in the frequency response!

p.15, Eq. (12) Revise/wrong.

w(n)=0.42 - 0.5cos 27 0.08c0s—2™

,w(n), 0<n<M -1, Eq. (R10).

Rest of detailed comments (non exhaustive): Please consider annotated manuscript.

Good luck!
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Abstract

Since its first establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has
been devoted to providing, through its database, exclusively quantitative aerosol properties, such as
aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it
independently (from Raman or High Spectral Resolution Lidars). As these coefficients are provided
in terms of vertical profiles, EARLINET database must also include the details on the range
resolution of the submitted data. In fact, the algorithms used in the lidar data analysis often alter the
spectral content of the data, mainly working as low pass filters with the purpose of noise damping.
Low-pass filters are mathematically described by the Digital Signal Processing (DSP) theory as a
convolution sum.{—As a consequence, this implies that each filter’s output, at a given range (or time)
n our case, will k;e the result of a linear combination of several lidar input data relative to different
ranges (times) before and after the given range (time): a first hint of !QSEO_f resolution of the output

signalL The application of filtering processes will also always distort the underlying true profile
-

whose relevant features, like aerosol layers, will then be affected both in magnitude and in spatial
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extension.i'rThus, both the removal of noise and the spatial distortion of the true profile produce a
reduction of the range resolution.?

This paper provides the determination of the effective resolution (ERes) of the vertical profiles of
aerosol properties retrieved starting from lidar data. Large attention has been addressed to provide

an assessment of the impact of low-pass filtering on the effective range resolution in the retrieval

procedure. [

{
vl
a-

at I |
1 Introduction “ STTY e
Smoothing and numerical derivative are typically used in the retrieval of aerosol optical properties

from lidar data %nd'bo’eh\ma,)uact‘as“low~pa5«5’ﬁ1t'ef.-vlndeed7the‘,‘srrpqorthjngf is a low pass filter-while

- the numerical derivative has alew pass filter iriherently associated-¢see-Sect. 2.1). For thisTeason,

_in what follows, the terms “smoothing filter” and “low pass filter” should be considered as

synonymous. In particular,“the smoothing is one of the operations most frequently carried out and it
can be applied on the raw lidar signals as well as on final products, like the aerosol backscatter
coefficient (B4) or the aerosol extinction coefficient (at,) (Klett, 1981; Fernald, 1984; Ansmann et
al., 1992) to reduce the random noise. On the other hand, to retrieve the aerosol extinction
coefficient from a Raman signal (Ansmann et al., 1992), the PBL height estimation from a Rayleigh
signal (Matthias et al., 2004), ozone profiles and water vapor profiles with the Dlfferential-
Absorption Lidar (DIAL) technique (Wulfmeyer and Bosenberg, 1998; McGee et al., 1995), a
numerical derivative is typically included in the retrieval algorithm. The application of low-pass
filtering will also generate a reduction in the vertical or time resolution with respect to the unfiltered
products. Moreover, there is frequently the need of comparing or combining different atmospheric
variables ?nd this .requires that they are fully consistent in time and in space, which m;ans that they
must gg.;:g;lc;be{tig,;:;§.imultaneous and with the same resolution. This latter category includes, for

example, the retrieval of lidar ratio (S) profile or th€ comparison between the same quantity
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obtained by different instruments with different resolutions, like balloon-borne ozone data versus
ozone lidar profiles, as pointed out by previous studies (e.g., Masci, 1999). In those cases,

inconsistencies could arise if data are not compared with the same resolution For example, to

l
11’

obtain a S profile, an high-resolution aerosol-backscatter coefficient profile showm-g wellkresolved

A ' =
AN

layers; could be combined with an heavily—smoothed, low-resolution simultaneous extinction

profile, where the same layers are not well resolveds ﬁhis would result in a biased estimation of the
actual values of the lidar ratio (see Sect 3 and Sect 3.1).

The aim of this paper is to extend the results presented in the literature (Godin at al., 1999; Beyerle
and McDermid, 1999; Trickl, 2010; Leblanc et al. 2012) dealing with effective resolution (ERes)
estimation for lidar products.

Although it is more common to consider the vertical range resolution for lidar profiles, the effective

resolution concept can be easily generalized and extended to the time resolution. This is the case ﬂir

time serres of lidar products The application of smoothmg in t1me series of lldar profiles also

I \

modrhes the effective time resolution of the retrreved products

”l .
pa—

The paper is organized as follows; In Section 2 theoreﬁealﬂceneep’cs about smoothing and numerical

Y »
‘-.v‘ im LDt !']""' i‘ lt(‘\ i'

derrvatlve are summarlzed,- presenting dlfferent kinds-of low-pass filters that co*u}d -be-(or-already

(
AU Ny At (

-are) cﬂ:eetrvel'y employed in lidar studies, highlighting their advantage and drawbacks. Section 3 is

devoted to the ERes operative estimation based both on the application of the well-known Rayleigh
¢ 7

criterion (Born and Wolf, 1999) and on the quanﬁ{afrve analy51s ofthe frequency spectrurg,removed

-by-smeeothing-eperations,1.e. by calculating the so-called Noise Reductlon Ratlo (NRR) (Orfanidis,

2009). An ERes operative definitton 1s a{soprovided«empLo,yirrg acutoff frequency- deﬁmtlorrfo“r a

L8] 6‘: h ’ 'E" I'
¥

~low=pass filter-too: Fmally_li_ls presented a first! promising ERes estimation approach based on* Lhe

] T

-use-of the so-called smoothing kernels, which are commonly adopted within the passive remote

sensing scientific community (Haefele et al., 2009). Conclusions summarize the outcome of the
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1 paper and include recommendations for the lidar data analy is as well aspossible future direetions

.\,1:
_2—to-deepen the presented study. o

on/

3 2 Smoothing and Derivative of a Lidar profile: the Digital Filter approach

4  As pointed out in previous work (Pappalardo et al. 2004; Matthias et al. 2004), the most often used
{5 algorithms to smooth or differentiate the data within the EARLINET community are those

6 involving some kind of sliding least-squares polynomial ﬁttihjgﬂljlt has been demonstrated that

7 (Savitzky and Golay. 1964; Madden, 1978; Schafer, 2011) the use of these algorithms is equivalent

8 to applymg a digital filter for both smoothing and derivative operations. These kinds of filters are

9  widely known as Savitzky — Golay (SG) filters and will be discussed in some detail. Anyhow, the
10  employment of digital filters for the above-mentioned operations is feasible also with other filter
11 types. Without entering into details, largely discussed in several books and papers on Digital Signal

12 Processing (DSP) (e.g. Hamming, 1989; Orfanidis, 2009), in what follows digital filters are defined

M3 by the convolution sums,

N
14 yn=thx,,_k, n=N+1,.,n, ~N+1. | (1)
k=—-N
), W r max ‘y (e k)
15 where xy is the value of the u-th point of the input signal x (for-example, lidar raw-data or another
’7
d6) kind of lidar-derived profiles), consisting_of #mx—points. y, is the corresponding filtered value

o gl u ok X(w.)
17  obtained from the linear combination of M=2N+1 (odd)’ x«—-vh}&eb centered in x, through the

18 coefficients 4. Unless otherwise specified, the word “signal” refers to a generic input/output of & i

19  filter. The Eq. (1) is a representation of the so-called Linear Tlme Invarlant (LTT) Finite Impulse

Sl fle Tndg X o~
20 Response (FIR) d1g1tal filter (Orfamdls 2009) The bounds for the-rrva-}ues in Eq ( %) lmply that a
ud Mma, Juilsrriew ¢ )
21  transient effect W1H—emergerahd—cause—arr nformation less-in the smoothed signal byfemewng 2N ’
\ l'\ £ S d_ F‘B‘*___,:E.
22 |data pemis fronrthe-output. In fact, this tran51ent will normally affect the output signal removmg N

] e ,,.

23 pomts at the begmnmg and N points at .the end-—of At although there are techniques (Gorry, 1990

.’
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( 15) \Y C&Hedenheueduced -or normallzed frecLuency v will be used as an mdependLeﬁt\\Lamabie in all the |

—

, l(' 11y/ay &./’ -
1 Khan, 1987; Leach et al. 1984; Orfanidis, 2009) that are able to deal with this problem. In the study

2 of atmospheric processes in the troposphere, which are the prlmary objective of EARLINET, thels .

,

3 transient effects could limit the ability of retrlevmg information \m—the P]__%L, which is already limited
4 by the problem of the incomplete overlap between of the lidar transmitted beam and the receiver
5 field of view, if not properly corrected (Wandinger and Ansmann, 2002). Indeed, if the spatial

6  extension of the region of mcomplete overlap is not well known, the smoothing of a profile

TR Al - y
.! he . / ~-l|"* e (L)

7  including this region m1ght blas a retrieval {of the a, profile, for exargple) at the lower ranges, 'Phe‘

-}J 20 ‘4'.»‘! ‘\ a8 /1
8  coefficients A, are the impulse response of a LTI FIR : ﬁlter and.the,equanoa (Karam et al 1999;

_s- ey =~ )

dTc Difec T Tovrer Tronptn
9 Hamming, 1989; Smith, 2007) L
) e <
! s Why vie. 0224 7 haTid4 gavwnl i
N » U 4’ : _ » :
10  H((w)= the"“’ ) ' [ 1. w ) (2)
k=—N 4 { | I v o,

I
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1 kgthe frequency response a real function that can-assume both positive and negative values (Smith,

NG ~,‘\r

12 ‘"‘\l 2007; Mitra, 2001; Oppenheim and Schafer 2009; Orfan1d1s, 2009). Because of aliasing, when/

N_/

13 working from the frequency point of view, the attention is limited to the frequency interva}"‘0<

Y -_;\v.\‘;',.' r
-

14 o=2nf<n (Hammmg, 1989). The latter condition could also be written as 0<v o/1 < 1 w1th :

"0/

\ . /
Wer

\

/ L‘
Jh A l‘ w !“-‘4" '..;nL- INE *t"“ {
1
|

S 1] |
"'[nff "'+ir A :‘?_:
16  frequency response plots presented in this work. As an example, a-few H(v) curves are showed in ;
[mwﬁ Y /)
17 Fig. | for an SG filter obtained using a 2" degree polynomial (SG2) for different values of N.//
/
JsP
' 18  Equation (1) gannot be used in DSP application that requires-real-time/ pfeeessmg since -the future
: l\.l.cwé( g Saun Uy o W U;) NI 247 1+ rw 1‘,‘3:9- A
.19 ' input-data-are-obvieusly-net-yet available,-but because the analy51s of 8 hdar 51gnal is typlcally :
onee ‘.L“‘* w R el tn B % . "’ t"*‘-’ Jleg biomt avdl LI 2wyl

[ 20 camed out offline (1 e. aﬁe-r—that'a whole proﬁle is-fully- retrreved) m—wh&t follows is-assumed-to
r t leve 7t l I3 foegi L:v‘\ ( we -

121 cl_,al.aLways_\m&Hhese non-causal (er-mixed) filters (Orfanidis, 2009) As t!he name suggests, H is a
I

22 direct representatlon of how a filter alters the frequency content of a signal. In lidar studies, the

%of’c
23 31gnél relevant features are generally confined in the lower frequency portion of the signal
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spectrum. For those frequencies that correspond to an H equal or close to the unity, no or slight
alterations are made to an input signal (pass-band region), while those frequencies that correspond

to H=0 are completely removed from it (stop-band region). A negative value of H corresponds to a
N el oA
phase shift of min the signal output resixct to the input (Beyerle and McDermid, 1999), which

N\
results in artifacts in the output signal (called\also ringing or side-lobe effect).

To clarify all the above effects from the frequency point of view, let’s see what happens when a low

pass filter is applied to an oscillating input signal described by the following equation:

2
xn=c05(2t,,2); [,,z{[—nn]; n=012,..,L. (3)

The Eq. (3) is a representation of the so called chirp-like signal, which is useful for our scope
because its spectrum contains several frequencies, starting from the DC (v=0) toward the higher

ones, as can be seen in Fig. 2. The low frequency part could be thought as the signal to preserve,

while the higher frequency part represents the noise to eliminate. The result of the application of a
low pass digital filter is summarized in Fig. 2. In particular, artifacts are present, showed up as
waves, both poorly attenuated and inverted in sign respect to the input signal, and located where the

abscissa in the smoothed signal plot is between ~3.3 and ~5.5 (corresponding to the first side lobe in

the stop-band of the frequency response plot). A SG filter has been selected for this example
because it is one of the most employed smoothing filter and also because it will exhibit all the above
mentioned effects resulting from the smoothing process.

Both the frequency and the impulse responses of the filter contain alone a complete information and
if only one of them is known the other can be retrieved exploiting the properties of the Fourier
transform. This latter characteristic is useful, for example to obtain a reliable lidar-ratio estimation
independently on the actual definition of ERes, as reported in Sect. 3.1. Due to the large dynamic
range of a lidar profile, digital filters with a different frequency response (i.e. for example with

different N value for SG filters of fixed polynomial order) could be applied at different altitude
6
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ranges, in order to deal properly with local values of the signal-to-noise ratio (SNR). In t};e‘; ST

following sections, some details will be given about few digital filter types that could be employed

= WY
in lidar data processing. They have been selected among others because already employed in lidar

' F4Yan

g

studies (and in several other scientific fields) and/or they are different enough to highligh'!t some e

relevant features useful for the purposes of this work. Anyhow, there are many other recipes to
design efficient low pass filters (e.g. Eisele, 1998; Trickl, 2010). Therefore, the study presented in
this paper could be not considered as omnicomprehensive.

The digital filter approach, as long as error propagation is concerned, enables us to estimate the
random error associated to the output in a relative easy manner. In fact, the error propagation
equation for the summation reported in Eq. (1) is simple, or at least rather straightforward, if
compared with the covariant matrix calculations that are needed when the standard sliding least
squares polynomial fitting is applied to smooth or to derive a signal. From Eq. (1), the following
equation for the y, variance could be written (Gans, 1992):

2 S oy 2 2 I |
0y, = Z {ax—"] Oy = th O s 4)
k=—N n—k k=—N

The above equation is strictly correct if no correlation exists between errors, i.e. if the covariant
error matrix is diagonal for the input signal (Gans, 1992), which is a hypothesis frequently assumed
in lidar studies and in many other scientific fields. That covariant error matrix should not be
confused with the one that is obtained when least square calculat.ions are concerned. The latter one
is instead associated with the polynomial coefficients (Bevington and Robinson, 2003) and it is
needed to assess properly the error evaluation when the standard least square approach is adopted in
the smoothing/derivative process. Anyhow, if further operations are performed on a signal after the
smoothing process, the error estimation must be carried out with particular attention. In fact, even if

the errors of the initial input signal are uncorrelated, because of the convolution, the data or

parameter errors that belong to the smoothed signal will be instead correlated (Gans, 1992).

7

/¢, v‘ -



14

15

16

)

18

19

20

21

22

23

24

2.1 Low pass filter and first derivative
Besides direct smoothing, the first derivative is the other operation frequently used in lidar data

analysis. The frequency response of the ideal first derivative filter is (Mollova, 1999):

HY =igv=rnve™ U] W) = jw -

‘H(l)|=7ﬂ/ ' ‘ A 4

(5)

Indeed, the Eq. (5) shows a significant difference from a low pass filter: since its frequency
response grows linearly with v, the ideal derivative can be seen as a noise adding process because it
amplifies hlgh frequencies, an unwanted feature for our purposes. Therefore, to calculate the first

s ia . y :",, I-
BANDW 1 .-v.'f.". " f*p.:.’. ’l," b (& [

derivative of a 31gna1 the ideal filter could n not be > directly employed otherwise the output will result

useless because of the embedded noise amplification. It is worth to mention that the InfoWorld’s
“Epic failures: 11 infamous software bugs” (Lake, 2010) reports as the most likely reason of the
Mariner 1 space mission failure was caused by a not smoothed time derivative of a radius:
“...Without the smoothing function, even minor variations of the speed would trigger the corrective
boosters to kick in. The automobile driving equivalent would be to yank the steering wheel in the
opposite direction of every obstacle in the driver's field of vision...”. In Fig. 3 the chirp function of
Eq. (3) is plotted along with its analytical first derivative; it helps to figure out why this

amplification happens. In the same fashion of the prev10us example reported in Fig. 2, the “good”

A -_,—: = l.\f",./‘i A TN P ,‘-.:"
" W A v V' ) N

portion of the derlvate 51gnal is the low frequency one (for examy)le the part corresponding to the

l-

0+1 mterval of the Time ax1s) but now the high frequencies (the noisy portion) are strongly

amplified respect those originally included in Eq. (3) and the higher are the frequency the higher is
the amplification, as described by Eq. (5).

For this reason, to obtain a low noise first-derivative profile, a proper tradeoff has to be considered
between a strictly correct derivative procedure for the whole signal and the necessary cut of high
frequencies. This means that some kind of low pass filter should be applied. In other words a low

pass differentiator is wanted, i.e. one whose overall frequency response can be written as H"* and
8
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that can be thought as a cascade of a low pass filter H* and the ideal derivative H" (Luo et al., 2005

Zuo et al., 2013):
HY' =AY, (6)

The impulse response coefficients of this generic first-derivative smoothing filter can be written as

s 470 U Sanatl, O )4 A
| SYymaymg {1\ > { {4

SR BT r= P
hk(l)L. This kind of impulse response has an odd symmetry (hk“)L =—h_k(l)L,ho(1)L

=0) (Hamming,

1989; Smith, 2007) and a frequency response that, from the Eq. (2) and using the Euler formulas,

can be written as (Yunlong, 2012):

.‘}"\'v = (AW-
ML _ AINT (L 5 f oy [er . ! | nOA s £
H _”\.Z h_ = sin(vk). Keylee P PR SN 7

' 4l o
k=N A

where the cosine terms vanished. It is worth to recall that for low-pass filters, the terms that
disappear in Eq. (2) are the siffe terms, because of the even symmetry (/, =4, ) of their impulse

Y
4 4

responses. Thus, from the Eqgs. (5), (6) and (7), the low pass filter frequency response for a generic

derivative smoothing filter can be written as:

H' = = &= : (8)

This latter equation will be useful for the determination of the effective resolution discussed in Sect.
3 (Masci, 1999; Godin, 1987). In Fig. 4, results from the Eq. (5) and from both the Eq. (7) and Eq.
(8) are plotted, the latter two evaluated for an SG2 low—pass derivative filter. Hereafter, the

smoothing portion (H L,) of a low-pass derivative filter (H(I)L)A frequency response will be indicated

with the letter ":d” b‘éfore the parent low pass (i.e. dSG2 for those in Fig. 4). In summary, the low
pass filter in Eq. (8) could be considered as the measure of “how well we did” in the approximation

of the first derivative of a signal (Hamming, 1989) because this equation is the ratio between the
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2.2 The Savitzky — Golay iﬁlter ‘S“"‘"i;?"l; \

The SG approach allows to gain computational speed and it is relatively easier to inﬁ)lement than
the standard least-squares calculations though, according to theq theory, they woulcj produce the
same results (Savitzky and Golay, 1964). Referring to Eq. (1), the coefficients /; i have to be
calculated just once for fixed both N and polynomial degree (P), while using the standard least-
squares smoothing a new and complete calculation of polynomial coefficients has to be done for
each point of a signal, even if N and P are fixed (Press et al., 2007). It is important to note that the
minimum N required to perform a meaningful smoothing is related to the chosen polynomial degree
through the relation 2N¥>P (Schafer, 20} 1), and for 2N=P there is no difference between the input

and the output signals (no smoothing).‘,/%\"?sfith SG filters, in principle, a different and variable number

l

of points could be used when smoothmg or der1v1ng a proﬂle as well as a different polynom1al

\ . .-"‘.)m { H.

R e I { J >
a4 13 'x‘,-'\ ,‘,v..'r-' ,-»F‘.\ o L\J;"’ ( l'f, ,_, T

degree if required (Barak, 1995), and w1thout a étrong increase ¢ of the computdtlon tlme Thls speed

—

enhancement, common also to the other low pass filters, is quite important especially with the
introduction of the Single Calculus Chain (SCC) (D’ Amico et al., 2015), a centralized calculus tool
developed to perform a near real-time and fully automatic aerosol lidar data analysis within

EARLINET.
l' )
The SG filters are popular in many scientific fields because they preserve‘not only the position and
bt of £
the area of the main signal peaks, but potentfally also the hlgher moments This property is

r’

connected to the flat frequency response in the pass-band as reported in Fig. 2. This feature enables

a quite faithful preservation of the low frequency component of a signal, i.e.,the portion of the

gz

signal to keep (Karam et al. 1999). For example, the moving/sliding average (also called box-car),
which is the zero-th polynomial-order SG filter (SGO), does preserve the area (its zero-th moment)
underlined by a feature in the profile (e.g;an aerosol layer). Using the SGO, the mean position (the
first moment) of a symmetric layer is also preserved after the smoothing though this is not true for

the standard deviation (the second moment), which could be seen as a measure of width of the layer

10
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(Ziegler, 1981). In order to preserve the higher moments (Bromba and Ziegler, 1981), a profile can
be smoothed by means of a SG filter with a higher-degree polynomial P. In fact, all the moments up
to{!’+{,}\§vill be preserved (P=0, 2, 4..., i.e. Peve"n,,because for fixed N, the smoothed signal will not

change if either Py, O Poyg =Peyent] 1S used)’.;fﬁ/'foreover, a‘m higher P generally corresponds to an

increase of the filter pass-band, but this tranglates in worse performances in terms of noise removal:

this again suggests that a tradeoff has to Be considered between a better pass-band behavior (i.e. less

/

signal distortion) and a better noise/-'f/emoval (Orfanidis,2009; Savitzky and Golay, 1964; Press et

al., 2007; Turton, 1992). As poiméd out (see Fig. 1 and Fig. 4), also the filter radius (V) contributes

to altering the frequency characteristics of a SG filter. For this reason, the SG filter pass-band,

from Eq. (10). Beside flatness of pass-band, an SG filter has4 .trqusition_bgp»d which is generally

smaller than other filters with similar pass-band (see Fig. 7 and Fig. 8). This is a valuable
characteristic, because this means a sharp separation between pass-band and stop-band (Schafer,
2011). 1A
The main problem with the SG filters is represented by the presence 6fjsji@e_lgb\e_§ in the stop-band
that in principle contaminate the output signal with the high frequency artifacts already seen in Fig.
2. Moreover, the magnitude of these side lobes is quite high respect to other low pass filters, as can
be clearly observed by comparing Fig. 1, Fig. 4 and Fig. 8. In fact, if in those figures the frequency
responses are examined in the stop-band regions, for SG2 filters the observed magnitude for the

peak of the first side lobe is about -0.25, which implies a signal suppression of only 75%. Coupled

to this poor attenuation, there is also the drawback of the negative sign, which brings to the artifacts,

so SG filters do not offer a great performance in the stop-band regioqzﬂt should be noted that the
above attenuation value for the first side lobe will not significant change for the SG filters we

examined, anyhow it became slight worse when P increase (Schafer, 2011). Another useful property

(S )
of the Savitzy — Golay recipe is that for a given P and N, also the impulse response for the

11

fvn

depends on two pa&n@iers: the polynomial degree P and the filter radius N, as can be seen also

t
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corresponding SG low pass derivative filter can be directly calculated (Savitzky and Golay, 1! 964).

The SG low pass derivative filter will produce the same result for P,z and the next even degree
Poaat1 (e.g. for P=1 and P=2, for P=3 and P=4 etc.) for fixed ]\{, and the degree of flatness in the
pass-band, associated to the corresponding low pass dSG filter, has to be assessed accordingly (Luo
et al., 2005).

2.2.1 Cascade filters

There are efficient recipes, that allow eliminating the side lobes (or reduce their size) in the

frequency response of a low pass filters: the cascade technique is one of those. Taking advantage of
the properties of the convolution in the frequency domain, two (or more) low pass filters in cascade
can be easily applied to a signal. In fact, since this operation is linear in the frequency domain, the
behavior of filters in a cascade can be simply expressed by the product of the single transfer
functions (Das and Chakraborty, 2012), a property already used in Eq. (6). Thus, for a cascade

filters the resulting impulse/frequency response can be written as:

hie = p 2 %t

H=H"H" H" )

The first equation in Eq. (9) indicates how to calculate the impulse response of a cascade filter
(D’ Antona and Ferrero, 2006). Cascading multiple identical low pass filters together will effectively

damp the side lobes amplitude. However, a drawback of cascading identical filter consists in the

reduction of the pass-band extension. In what follows, we will study how to avoid this effect and

how to have more control on the cascading process when only two filters are involved. If the pass-
band has to be preserved when two successive low pass filters are applied, it is useful to use a
relationship among P, N and the pass-band extension. This latter parameter could be given by the
location of the cutoff frequency v, taken at -3db level (or H~0.7) and for SG filters can be written as

(Schafer, 2011):
12 g
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Operatively for an efficient cascade of two smoothing filters (L/,L2), in Eq. (9) L2 have to be ‘
chosen with a v, large enough to cover the frequency response of L/ up to the start of its stop-band. :
In this respect, when SG filters are involved in the cascade, good results are obtained using two SG
filters with the same N and AP=2. As a consequence, in the resulting cascade filter, the stop-band is
much less affected by the presence of side lobe, while its pass-band will be nearly the same of the
SG filter with the lower polynomial order, as can be seen in Fig. 5, and for this reason it will cause a
quite similar effect on a signal for frequencies located in this latter region. In Fig. 5, the chirp

function is smoothed with an SG2 and an SG4 in cascade having the same N and the results can be

directly compared with those in Fig. 2, too. It can also be noted that in the cascade filter the pass-

{ A
18 = By

band is very similar to the one associated to the SG2 while the stop-band shows much less ], 

pronounced side lobes. oL 1 kil S L LZ |

duhinisatiots ) NCTA n 5l ¢
3 Loa S | : J

However, as a drawback, the Ergnsiehtggg;ng at the start and at the end of the output signal increases

and in our case they are equal to N(L1)+N(L2) at each jng._ This means that if N does not vary for

the two considered smoothing filters, the loss of information at the start and at the end of the output
signal is doubled compared to the case with a single filter application//Efficient results are obtained

also for the cascade between an %CLP_(N) fu;§r with the correspondirjlf(;jI dSG}i(]}?, as showed in Fig.
6. In this case for the cascade glterr:tﬁe: ﬁ%éximum absolute value gf théek ;1:ie lobes magnitude is
about 0.02, i.e. almost negligible for practical purposes, while the pass-band of the dSG2 results
almost unchanged, though the difference is slightly more pronounced than in the previous case. This
outcome is not so surprising because this kind of cascade alsq fulfills the rule of thumb for an
efficient SG cascade combination, only perhaps a little relaxed. In fact, derivation implies losing a

degree in the polynomial order. Therefore the dSG4 could be considered similar to an SG low pass

filter based on a 3 order polynomial and SG3=SG2. Because the above considerations, the dSGP
13
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filter and the corresponding SGP could be considered having 1<AP<2, which happens to be still
good enough for our purposes. Moreover, this type of filter cascade is also computationally efficient
because both the needed impulse and frequency responses are calculated simultaneously in the SG
algorithm. It is worth to point out that the cascade method is useful also to design effectively high
order derivative filters of a signal (Gans and Gill, 1983): for example, two consecutive stages of a
first-derivative filter will lead to the second derivative of the input signal.

To summarize, operating with such cascade filters retains all the advantages of the SG filters with
an added value in terms of efficiency for the high frequency damping without introducing artifacts,
though the transient zone growth could be a potential problem for lidar applications. In what
follows, if not otherwise stated, the value of N associated to a cascade of two smoothing filters
indicates the value of N used in both the filters of the cascade and not to the overall filter radius, i.e.

for a dSG4(9)-SG4(9); N for the cascade is 9, although the overall filter radius is 18.

'd Yad 4 \ A I7'4."] 91/
A\ v SCRATK \RA4

A possible application of %sc#aQefiltérglgto lidar data/oould be the improvement of the SNR of a
lidar signal for achieving a more accurate calibration of Raman/Elastic signal ratio, because of the
benefit of the possible reduction in the width of the selected calibration range (Ansmann et al.,
1992). This is particularly relevant for calculus routines that make use of an automatic range-finder
algorithm for the normalization of the signal ratio: this requires a good SNR in order to reduce the
range extension where the normalization is performed. The reduction in the width of the calibration
range also reduces the normalization uncertainty and its impact on the total uncertainty budget. For

this purpose a viable solution is represented by the application of the smoothing also on the signal
Il 757 'jifﬁ!j‘-’“l'-.; )
13 ] -

ratio, before the retrieval of Ba. Then, after the processing phase another smoothing filter generally
"

-_/}

would be applied, to obtain the B, profile with an acceptable noise level. To this end the recipe

given in this section for the construction of cascade filters could be used to be sure that the second

' smoothing does not eliminate in the profile the details that are spatially larger than those already

damped with the application of the first filter.

e Yad
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In filter design, the necessity to deal with finite length impulse response, gives rlse to the so called

spectral leakage (Harris, 1978) that could lead to significant undesired oscillations in the frequency ‘[

response, including side lobes. In order to reduce this latter effect, tapered window functions are ‘

|
generally applied to suppress efﬁmently the oscillations in A. The simplicity of the design process 1

has made this method very popular. uEach window function is a kind of the usual compromise
Vi
between the requirements of higher selectivity, i.e. the narrowest the transition region and the

highest suppression of undesirable spectrum, i.e. the highest stop-band attenuation (Mitra, 2001).
Therefore, windows can be seen as weighting functions applied to data in order to reduce the
spectral leakage associated with finite observation intervals, i.e. high frequency noise. If wy is a
tapered window function, the minimization of the ringing for a low pass filter can be obtained

applying wy to the impulse response, thus Eq. (1) could be written as:

E hx, , = E wkh,(x,7 i - SN T (11)
N k=—N"—7— 1 - [
7. ! ) / /
‘\.~‘I-, — | }»‘l!, K [ / / . '.
A AT Wi '} / ‘1 ‘l Al “‘A" Wi ] lr dl‘ ‘\'{ i,

/o

where 4] are the 1mpulse response coefficients of a generic low pass filter. Several listed window

functions are reported in literature (Harris, 1978) to design a specific filter. If 7, are samples of a

proper optimized sinc function, Eisele has introduced a efficient window function of the Blackman—

1 ‘\ ‘ "> ‘ “'-. ) |' | ey :}u“
type to lidar work: L Wy sine fnelions rlf;[lw n o b “‘ v e 40| Sf"jv“ vie] Wy «
1 "-4" o f"'
( V ! .W‘,"N ’I'] /{ 'i’@‘-'-‘x"'Q"'\ \/ 1 }\l\ -‘P:'%Z‘.T e~/
k / 0y
,=0. 4240, 5cos(7r—)+0 08cos(2r — o begimnty of B 272 w0, (12)
‘\ H» l ‘q n ( Il % - (- 2 ;U_‘;g{‘-"_;r‘.l
a' /
: Y ,Ulh N v . /

The filter constructed with this window (Eisele, 1998; Trickl, 2010) does not exhibit ringing. The
removal of the ringing due the window application can be observed in Fig. 7 where a Blackman—
type window is applied to an SG2 filter. The side lobe disappears also in this case and the pass-band
is nearly conserved, if the same N is used. On the other side, as can be seen from the right plot in

15
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Fig. 7, the transition band in the SG2 filter with the Blackman-type window applied, becomes quite

large causing both (see the left plot in Fig. 7) a less efficient damping of those frequencies over the

pass-band and before the first side lobe of the (not windowed) SG2 (i.e. for 0.2<v<0.3) and a slight

worst preservation of frequencies in the pass-band (v<0.2).

23 The Gaussian Filter <~ [ [ 01
d - =/ 7 ‘;:"
The Gaussian filter (G) is another option widely adopted to smooth signals especially in image

processing (Romeny, 2003). This filter is characterized by a single parameter (o, the standard
deviation), and its impulse response (a zero mean Gaussian) has the advantage that can be written
analytically for both the smoothing and for the l‘oiz‘gg;frilp_asi ﬁrst";('érid, if heeded, also higher orders)

derivative: mw

Wk VAN —[Q £s . _— ) ,..‘ [ W)
I 2.\ &/
X l, [} &2 —== Bk 2 4

h(0) = g,(0) = (2no*) e N Sy

{

k
W (0) =gl ()=~ 8,(0). L fa)z =2 hele) 1| W2 T

To be used as a digital filter, the Gaussian curve and its derivatives have to be sampled, as already
done in writing the Eq. (13). The Fourier transform of a Gaussian function (which is Gaussian too)
is everywhere non-zero and, therefore, cannot be sampled without some aliasing. The aliasing will
result negligible if 6>1 (Hale, 2011), although even a slight lower value is allowed by some authors

(Romeny, 2003). Moreover, to get a usable impulse response, it must be truncated somehow.

—

Luckily, the Gaussian curve has a quick approach to zero and for this reason it can be truncated
without a strong approximation. In fact, Eq. (13) provides a value less than 0.0004 for |k>4c. This
latter condition implies that, to proper truncate the impulse response, it is sufficient to employ a
value of N equal to 4 (actually the nearest integer to 45) in Eq. (1) with no needs to go beyond this

value. Because of the properties of the Gaussian function, if the above condition for o is respected

16
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{ 1 and being H%? the frequency response of a Gaussian filter with paremeter o, H” could be obtained

2 from Eq. (8), Eq. (2) and Eq. (13) (Hale, 2011);

ML . G,o
L:H :l7Z'lH ZHG’U. (14)
irv inv

—. 3 H

| 4 The Eq. (14) implies that the low pass filter (that can be indicated with dG in analogy with the

{0150 r1—.’s&:~i

| 5 denomination adopted for SG filters) embedded in a Gaussian first derivative smoothing filter with

Tu*":-e“e parameter G, is indeed a Gaussian low pass filter with the same parameter. Of course, this will

simplify somehow our duties when operations like the lidar ratio profile determination are
} 8 performed, as will be showed in Sect. 3.1. When ¢ increases, the pass-band reduces its extension

9 and provides a stronger smoothing effect, although a Gaussian filter has a transition band quite
10  wider than a SG filter with a similar pass-band. A Gaussian filter is also less flat in the pass-band

11 (van Vliet et al., 1998) than a SG filter (for P> 2), but it has also the advantage of being almost
' A F L simllia- £, &l /1 '

» SimAA WA g ) A b
W v L B iAW Ll

12 without side lobes (i.e. no artifacts in the stop-band). b 562+ BLAUKIR/ e
B _ |— Jek. 1
13 Figure 8 summarizes the performances of the low-pass filters described in this Section: filters with

14  similar pass-bands are reported to show their differences “iln the whole frequency domain. It can be
15  seen that the Gaussian filter exhibits a behavior quite siinilar to the SG2 with a Blackman-type
16  window and both have no evident side lobes. Fig. 8 also clearly shows that SG2, as well as all other

17  plain SG filters (i.e. the SG2, SG4 etc., therefore those not modified by cascading, windowing etc.),

18  has a slight better behavior in I'the pass-band (v<0.1) than Gaussian/SG2 windowed filters, i.e. a

19  more faithful signal preservati(_)"n, but are heavily affected by side lobes. From the point of view of
f | | | > 'F i

ls. o | with [awW i -
20  lidar studies, an application of filters without side lobes corresponds to obtaining a well-smoothed

21  profile without the presence ot any high frequency residual (or artifacts). Both the Gaussian and the
i
22 SG2 windowed filters also ex‘hibit a much slower transition to the stop-band respect to the others,

|
/

23 le.a iess sharp separation beétween pass and stop-band. Finally the cascade filter is able to get all

-
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the attractive characteristics of the others, but it also has the described drawback of an enlarged

transient (i.e. a more pronounced loss of information in the output signal, see Fig. 5).
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3. iFﬁe-Effcctive Resolution
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The investigation of the synthetic lidar data inversion (Pappalardo et al., 2004) in Fig. 9, he"lps to
Y 8 |

t

recognize the effective resolution as relevant in lidar data analysis. It highlights that the effective

resolution plays an important role to assess properly the problems that could arise when data '\wvith
\

different resolution are combined. In this latter figure, the aerosol layer inserted in the true profile at
N, . E Lt 7 Boxcal \

1.4-1.6 km results heavily smoothed by the low pass filter used in the retrieval. If the B,)is

smoothed, the resulting lidar ratio profile is consistent with true one (see Fig. 9, central and right
panel), both in value and in behavior. On the contrary, if B, is not smoothed, the lidar-ratio profile
in the layer results quite different from the synthetic one. Outside the layer the differences between
the retrieved lidar-ratio profiles are less relevant because the aerosol field is nearly constant and for
this reason less sensitive to the distortion effect of smoothing filter (Ziegler, 1981).

Two approaches will be considered for the quantitative assessment of the ERes:_,f"F'he first one is
related to the_gi_sto_r'tivo:r_luinduced by the smoothing process on any non-trivial input ;ignaj (Enke and
Nieman, 1976; Ziegler, 1981). In fact, the area preservation property (common to all the considered
smoothing filters, see Sect. 2.1) implies that if the peak of a layer is reduced, its spatial width will
increase and potentially could overlap with another feature present in a profile. The final result will
be that it is no longer possible to distinguish one peak from another, i.e. they are no longer resolved:
this means that a low pass filter reduces the vertical resolution. This latter statement naturally leads
to the use of the Rayleigh criterion (Born and Wolf, 1999) for the determination the effective

resolution.//The second approach is based on the removal of high frequency noise due to the

-

smoothing operation (Gans and Gill, 1983; Orfanidis, 2009). Since high frequencies in space

domain correspond to small scale details in the lidar profiles, if they are lost in a certain amount this
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will imply a reduction of the resolution in the output profile respect to the input one. Incidentally, it
should be noted that since a smoothing filter damps effectively only high frequencies and since it is
common to deal with white noise, the low frequency portion of the noise is still present in the
smoothed signal, for example in the form of long wave ripples (Gans, 1992). Moreover, a link is
established between the ERes estimated with each of those two approaches and the ERes evaluated

via the proper cutoff frequency definition, in analogy to previous works (Godin, 1999; Masci, 1999;

Beyerle and McDermid, 1999; Leblanc et al., 2012). Before discussing the two above mentioned
methods, using the results of Sect. 2.1 an answer will be provided to the question about how to
obtain a lidar-ratio profile that comes from aerosol extinction and backscatter profiles with the same

effective resolution.

3.1 Obtaining profiles with the same effective resolution: the lidar ratio case

To retrieve the o, profile (Ansmann, 1992) a first-derivative smoothing filter is applied. The
frequency response of the embedded low-pass filter (H") can be found from Eq. (8), or directly with
Eq. (14) if a Gaussian derivative filter is employed. The possibility to retrieve H*, gives the solution
to the problem of retrieve a consistent lidar ratio and without hypothesis or assessment about the
effective resolution itself of the profiles involved: it is only needed that they share the same

resolution. In fact, once H* is known it is possible to smooth the corresponding B, with this filter
and as a result obtain both the profiles with the same effective resolution. The impulse response A/

of this low pass filter can be retrieved by means of what is generally called Filter Design by

Frequency Sampling (Rabine/r,-/é"t al., 1970; Rabiner and Gold, 1975; ‘Burrus, 2012) With this

method; the frequency response Hi"'iﬁsﬂs\émpled at a set of equally spaced frequenc,_ie“s/.‘ Thus, by using

‘the Inverse Discrete Fourier Transform (IDFT), the desired filter impulse response can be

determined:

W' = IDFTIH" (v,)]. (15)
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The resulting filter with an impulse response like Eq. (15) will have a frequency response that is

el
i

exactly the same as H' at each v, so better the original frequency response is approximated

' hs‘ma]ler the interpolation error between them™is (Johnson, 1989). The impulse response B,

retrieved by Eq. (15), can now be used in Eq. (1) with the aerosol backscatter profile at raw
resolution as the input signal. In this way B, is smoothed with the same low-pass filter H* applied to

get the o, profile. Even more directly the same result can be obtained by means of the IDFT only:
y=IDFT(XH"). (16)

Both operations written in Eq. (15) and Eq. (16) could be computed with a proper use of FFT
algorithms. In Eq. (16), X is the Discrete Fourier Transform (DFT) of a generic signal which, for
our purposes, will be the aerosol backscatter profile at raw resolution. Since the frequency spectrum
of both the profiles has been changed by the same low pass filter, then both share the same effective
resolution. To illustrate better the above concepts, in Fig. 10, a retrieval of the optical parameters
are performed starting from simulated elastic/Raman lidar data (Ansmann, 1992; Pappalardo et al.,
2004) with an aerosol layer 1000 m thick. The signals have been simulated for the Rayleigh signal
at 351 nm and for the corresponding nitrogen Raman signal at 382 nm, without adding noise or
background. Both the low pass derivative SG2 and the low pass derivative Gaussian filters are
employed to retrieve the aerosol extinction profile. Then the embedded low pass filter (i.e. the dSG2

and dG) impulse response, retrieved by Eq. (13) and Eq. (15) respectlvely is used to smooth the

= 1
;4‘:41:- AQv /s

raw resolution aerosol backscatter profile. Both the proﬁles w1th the ;ame ERes are combined to get
an estimation of the lidar ratio. Figure 10 shows that beside the good results for the retrieval of the
lidar ratio inside the actual simulated layer, an accurate result is also obtained in the zone
immediately outside the layer, i.e. where the filter distorts the profile with respect to the true layer.

If the correct H’ is used to smooth the backscatter profile, this makes the information about the

20
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lidar ratio correct even at those ranges where the aerosol presence in the retrieval is only due to the
distortion action of the filter. In Fig. 10, it is also shown that wrong lidar-ratio values are obtained
in almost all the aerosol layers if the (3, profile is smoothed with a low-pass filter (indicated with H

in Fig. 10) that is different from H*.

3.2 The effective resolution: the Rayleigh criterion

The Rayleigh criterion is generally accepted in spectroscopy for the determination of the minimum
resolvable detail (Born and Wolf, 1999). It is an empirical criterion, and states that two peaks are
considered fully resolved if the drop in intensity between them is lower than 74% of the peak
intensity. This is a result of the diffraction formulation that says that the imaging process is named
diffraction-limited when the first diffraction minimum of the image of one source point coincides
with the maximum of another. The application of Rayleigh criterion for the determination of the
effective resolution could be done by analyzing the behavior of a couple of unitary pulses under the

action of a low-pass filter. Operatively, two unitary pulses at fixed distance are smoothed by a low

y Whik, 2 L [ AV e { PPy
WU - " / 3 ) e 2 N Wit L W 124 244

pass filter whose p_;g@rge_t;c_'r' ;fe ‘-ch'a‘nged t(g aéhiei}e‘;.ﬁal .i'riéir-egalsir-lg si‘:g'na;l“distor:[ion. IncreasmgN for
SG filters with fixed P, or ¢ for Gaussian filters, it is possible to find the maximum value of the
filter parameter that allows to still resolve the two smoothed pulses according to the Rayleigh
criterion. Then the effective resolution to be associated to that particular smoothing filter is exactly
this distance. Moreover, this procedure, also known as “step function” method, has been already
tested in the frame of the first EARLINET algorithm intercomparison (Pappalardo et al. 2004). An
alternative approach, used in the lidar community, is based on the analysis of the full-width at half-
maximum (FWHM) of a finite impulse after a smoothing procedure is applied (Leblanc et al., 2012)
or to the response to a Heaviside step function (VDI(Verein Deutscher Ingenieure), 1999; Eisele

and Trickl, 2005; Vogelmann and Trickl, 2008). However, with SG filters, apparently the step

function procedure shows some ambiguous results as can be seen in the examples reported in Fig.

21
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11. In fact with plain SG filters (with P >2) it could be difficult to properly define when the

Rayleigh criterion is satisfied (or not) because the occurrence of artifacts like bumps between the

- i) (. &

Nl fall (3 '.: e ,"
two peaks and/or the displacement of the smoothed peaks from their original position. In those
cases, the ratio used for the application of the Rayleigh criterion is evaluated between the intensity
at the peak and the intensity at the midpoint between the peaks. Because of the artifacts, the

intensity at the midpoint is not always the absolute minimum: therefore this ratio brings to a more

conservative ERes estimation. Those drawbacks in the application of the Rayleigh criterion could

represent a further problem caused by the presence of side lobes with significant magnitude.

Instead, for filters like the Gaussian one or any filter with less important side lobes (like dSG2 and
—_—

the properly built cascade ﬁflﬁteg)"no major problem is observed applying the Rayleigh criterion.
NI \| bk M

1FY,) . . r
] JATE

However, the step function method used in the case of theSGOﬁlter lééds tlo" a first operative
definition for the ERes. In fact, from Fig. 12, it should be clear that the effective. resolution in this
case is simply reduced by a factor of M=2N+1, because under the action of the SGO all the involved
data points will be equally weighted. So the ERes (ARgy ) associated to the boxcar filter can be

explicitly written as:
AR =(2N +1AR,,, . (17)

It is worth to mention that for the SGO the effective resolution is also equal to the inverse of its
impulse response coefficient (multiplied by the raw resolution AR,4,), which in this case, for any
given N, is a constant independent of &:

hSGO _ 1

A —m (18)

To try to resolve the observed ambiguity in the application of the Rayleigh criterion to plain SG

filters (with P >2), the considerations done in Sect. 2.2.1 about the cascade filters can be exploited.
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In fact, since the features of the cascade filters constructed with our rule of thumb, it is plausible

that L/ filter shares almost the same; ERes with the cascade L/-L2. For example, the ERes estimated

?JJ A 2 A “ — S
for SG2-SG4 could be also used for the SG2 Figure 13 shows the kind of effect that the cascade

will produce on the central bump, making more straightforward the application of the Rayleigh
criterion. In Fig. 14 there are some results of the application of the Rayleigh criterion to plain SG
and the corresponding cascade filters (in-the sense explained above) that show how the ERes of an
SGP exhibits a behavior quite similar to thé corresponding cascade filter. Therefore, the occurrence
of artifacts seems to have a limited effect in the ERes determination (<5-10%).

Exploiting the quite evident linear relationship between the ERes and N that results from Fig. 14,

the following equations are obtained:

ARZSF = (117N =0.09)AR,,, ~ AR *°* = (124N —0.24)AR

ARE 9459 = (0.80N = 0.65)AR,,, ~ AR = (0.74N — 0.48)AR,,. (19)
ARg‘f”’SG("SGs =(0.60N —0.78)AR,, ARRU) SG6 _ (O.62N—Q.86)Ame

ccivitdi b
I wdne e [ N4 Vol L, NSV L B2
NV A { i IZ L

For the other filters under investigation, the application of the Rayleigh criterion does not give
particular problemS;:‘the results are reported in Fig. 15.

Of course also for the filters in Fig. 15 the ERes could be written by linear fit:

AR % = (1.55N +0.83)AR,,,
AR = (0.80N +0.20)AR,,, . (20)
AR =(2.790 —1.04)AR,

For example, if an aerosol extinction profile is retrieved from a nitrogen Raman lidar signal with a
raw resolution of AR,,,=15 m and by means of an SG2 derivative low pass filter (i.e. the low pass
filter to consider is the dSG2) with N=30, its estimated ERes will be about 700 m. Because of the
constraints on N and & discussed in Sect 2.2 and Sect 2.3, the ERes given by Eq. (19) and Eq. (20),
will be always positive and larger than the raw resolution for-all-the-low-pass-filters-tand less than

" {i”:' - YV
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2N +1)AR, 4} the-upper limit gil'en by SGO). For example the linear fit in Eq. (19) for plain SG
‘ p

filters is performed with the c_onsirginj that these filters for N=P/2 do not smooth, therefore they do
not change the vertical resolution (AREf/:Ame).: It shQ.uI"d be noted that regardless of whether (or'?

how) the linear fit is constrained or not, the slope"does not significantly change and the intercept! et
v ‘j‘ . . ; ‘
values will have always a low impact on the’ERes determination (max £1°AR,,,, a value that could

, 1 1
be taken as the estimation of the ERes indetermination).|As the filter’s parameter grows in Eq. (20) i

and Eq. (21), i.e. N for SG based filter and o for Gaussian filters, the intercept values does not ?

|
matter anymore in the determination of the ERes; Among the SG based filters examined, for the |

SG?2 this is true for any N and the worst case is the SG6, where the difference in the ERes calculated

with or without the intercept, becomes <10% for N>15, while with the Gaussian filter the same is

\

obtained with 6>4.5. e
B UhGACeo

It was a natural to adopt an operative ERes definition based on the Rayleigh criterion because of its
direct relationship with the concept of resolution. Although the use of this criterion led to simple
and ready-to-use linear relationships for the calculation of the ERes, no unique equation was found
suitable for any given low-pass filter. In fact with the method outlined in this section, for any
selected smoothing filter, the whole procedure to retrieve a relation for the ERes has to be done
from scratch.

3.3 The effective resolution: the NRR criterion and the SNR Matching Criterion

--"Tkw(‘}émoval of the noise embedded in a signal is the main purpose in the application of a low-pass

filter. The amount of white noise removed by a generic filter has been already explicitly assessed

(Gans and Gill, 1983; Brown, 2000). In fact, in this case, the ratio between input (&, ) and the

1 Vig A .
VI o Yoy W2

it . .
output (0, ) mean-sgquare-noise values can be taken as a measure of the noise removed from an

input signal after the smoothing. This quantity is also called Noise Reduction Ratio (NRR) and
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depends only on the impulse response of the filter under examination (see Chapter 8.3 and

Appendix A.2 in Orfanidis, 2009; Mitra, 2001):
Zour - 3 2 = NRR '
UL = > b, . 1)

Using the explicit formula for the ERes associated to the SGO filter and the Egs. (17), (18) and Eq.

(21), led to write:

NRRSGO Z (hSGO)

’

oo (2N +1) 22)
AR’ = (2N +DAR,, N?zjjé% :

From the noise reduction point of view, the Eq. (22) makes possible to infer that the ERes

associated to the application of a generic low pass filter L on a signal could be written by means of

the general equation: 0O Ll o wd oo hautie hupeThedis
NIR L aw I
i ARy, | 23
7 NRR* / (&)

Adopting a slight different point of view, a proof or at least a solid hint of the validity of Eq. (23)
could be provided. Given that a low pass filter alters the SNR, it is reasonable to assume that if a
given signal will emerge with the same SNR after the smoothing with different low pass filters, then
those filters act on the signal in a similar fashion noise-wise. Than it could be also inferred that the
filters, although different, will also have caused the same alteration of the resolution on that signal
and for this reason the output profiles will have the same ERes. Operatively, the SGO filter for
different values of N is applied on a generic signal, and then the corresponding SNR of the
smoothed signal is calculated. Applying on the same signal a generic low pass filter L, which will

be characterized by the parameters params (i.e. N, P for SG based filters or ¢ for Gaussian filters),
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an optimization process can be performed to find the [Ny, paramsy) couple that makes the average

1 1(
ot A u
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differences between the two SNRs as close as possible to zero (SNR matching criterion):

ASNR arams SNR v - SNR Larams
e ! ! _ (24)
= [N0> paramso] : ASNRNo,pm'amso ~0

Then, given the Eq. (22), finally, it can be assumed that the ERes of a generic L smoothing filter is:
ARZF™™ e = (2Ny + AR, . (25)

In Fig. 16, there is an example of the similarity of the SNRs achievable using two different low pass
filters. The results of the ERes obtained using the Egs. (23), (24) and (25) for various low-pass
filters can be seen in Fig. 17. The analysis of this latter figure provides a quite clear confirmation of
the e'quivaleinceiqf the NRR and the SNR matching criterion. For this reason the Eq. (23) can be
used to easily estimate the ERes for any smoothing filter, instead of the less general, and more time
consuming SNR matching procedure. In fact, with the NRR criterion, the estimate of the effective
resolution is based only on the impulse response of the smoothing filter employed, which is
generally known or it can be anyhow calculated via Eq. (8), when necessary, as for dSGP low-pass
filters. Figure 17 also shows that the ERes with the NRR criterion could be expressed by linear
relationships, as happened with the application of Rayleigh criterion.

For this reason and according to the previous discussions, the results of the linear regression for the

same type of smoothing filters can be explicitly written as:

Mg}m,scz-sm — (0.98N + 0'30)AR’W;AR2‘}“’SGZ =(0.89N +0.11)AR ,

ARG = (161N +125)AR,,, ;AR =(0.57N - 0.15)AR,,,
AR/E/”RR)SGZ-’-B”C — (096N + 0.04)AR . ARéj];R,SGé — (O42N _ 027)A_R'aw

raw ?

AR =(3.530 +0.02)AR,,

(26)
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Clearly, as can be seen from Eq. (19), (20) and Eq. (26), some differences and similarities are

evident from the comparison of the ERes estimated using the Rayleigh and NRR criterion.

/. JA convenient way to summarize the results for both criteria and to understand their main

differences, is to study the behavior of the frequency responses plotted in Fig. 18. From those
curves, it looks that with the Rayleigh criterion, a common value of the ERes is obtained when the

corresponding frequency responses of considered lowpass filters share almost the same stop-band

extension, while they can exhibit significant differences in the pass-band. The stop'-Band is easily

defined by the frequencies above the value corresponding to the :_E_'{rst zero iﬁ""IfI . for the filters with
side lobes, (Schafer, 2011). For the Gaussian filter and the SG2 windowed filter (i.e. in case of
frequency response with both a significant wider transition band and without side lobes of relevant
magnitude), the stop-band starts could be taken at v(H=0.1), like in the classical definition of the
end of the transition band already used in Fig. 7. With the above definitions all the stop-band start

values in the bottom plot of Fig. 18 are close each other, being comprisé' between about 7:107 and

about 9-1072.

| On the contrary, the same ERes using the NRR criterion is found when the frequency responses

have nearly the same pass-band (i.e. for v<4-107 in the upper plot of Fig. 18), taken as the region
between the DC and the canonical definition of the cutoff frequency i.e. the frequency
corresponding to -3db level, or v.= v(/=0.7). For this reason, NRR criterion tends to provide the
same ERes for those smoothing filters sharing a common behavior at the lower frequencies.

As ;11_r_e—z_1dy evidenced, the distortion action of a smoothing filter is always present and its proper
quantification is an outreach that should be assessed. In fact for a given amount of noise in a signal,
the NRR tell us that there is a kind of saturation effect that is achieved when almost all the noise is
removed. As a consequence the smoothing of a signal could not always leads to significant

improvement: for example in Fig. 9 the layer structure is lost by the distortion action of the applied

low pass filter. For this reason in a smoothing operation seems important to find the limit over
27
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which the (undesirable) distortion of an underlying input signal could become more relevant than
the coupled (desirable) decrease of its noise level predicted by Eq. (21). Previous papers related to
spectroscopic studies actually found this limit analyzing SG f:iltCI‘S (Enke and Nieman, 1976;
Ziegler, 1981; Gans and Gill, 1983; Rzhevskii and Mardilovich, 1994), and it would be interesting
to apply their methods with the aim to optimize the effective resolution retrieval and more generally

the whole lidar signal processing.

3.4 The Effective Resolution: the cutoff frequency

The considerations emerging from the analysis of Fig. 18 allow us to link both the approaches
provided for the ERes estimation, to the cutoff frequency. The cutoff frequency associated to the
frequency response of a smoothing filter can be used to estimate the effective resolution (Godin,
1987, 1999 ; Masci, 1999; Beyerle and McDermid, 1999; Leblanc et al., 2012). For this reason the

following equation can be written:

VC

v, ARraw
ARy = = @7
Of course, the definition of effective resolution in Eq. (27) depends on the value chosen for v, and
so on the actual pass-band (or bandwidth) definition. The Fig. 18 suggests that the proper v, value

depends on the chosen criterion for the ERes evaluation. In order to try to find that proper value for

the cutoff to be used it is useful write:

y, = e (28)
AR,

In this way, once the ARgy is evaluated for a given low pass filter, Eq. (28) allows estimating the
value of its frequency response at v=v,. For example, with the NRR criterion, the cascade SG2-SG4
with N=25 will produce an ARgy=25 a.u. (AR.w=!, from Eq. (23) or Eq. (26)), which implies a

v~0.04: thus, once estimated at that cutoff value, the frequency response relative to the above filter
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gives H(v.=0.04)~0.72 (see Fig. 19, right panel). Indeed from Fig. 19, as far as the NRR criterion is
concerned, it seems that for any given ARgy and for any smoothing filter (or at least within those
analyzed), the values of the frequency responses at v=v, given by the Eq. (28) are quite constant
and range on average between 0.65-0.72. For this reason, with the NRR criterion, if the ERes
should be estimated via Eq. (27), the cutoff frequency defined as v =v(H @-3db) appears the |
value to be chosen in this case.

Instead, for the Rayleigh approach, the ERes via Eq. (27) are close to those estimated via Eq. (19)
and Eq. (20) if the cutoff frequency definition is taken as the half of frequency extension of the

A
main lobe of the frequency response (Orfanidis, 2009), i.e. if v, is taken as the ha?f‘ of the lower

I
frequency of the stop-band vy (as defined in Sect. 3.3) or v =v,, /2. This latter fact is in Fig. 20,

where the values of (2/vy), plotted against ERes estimated with the Rayleigh criterion, are near the
identity line for all the investigated low-pass filters. To summarize, the Eq. (27) can b“e rewritten for

the NRR and the Rayleigh criterion as: ) Ly

AR AR

AR/,YRR ~ raw o~ raw :'4-1;."-7‘:'.
T MR T y(H @—3db) : . , 629)
ARRG,V ~ ARraw ~ 2Ame . 'z:'m-,, .:r. 2o of “i, } :
7 - VcRay - V.s’b

These latter equations gives a general breath to the consideration done for the Fig. 18. Furthermore,
the second formula in Eq. (29) provides a kind of general equation, or at least a rule of thumb, also
for the ERes retrieval based on the Rayleigh criterion. Instead (operatively) the first one is not really
needed because a general expression is already given by Eq. (23) for the ERes with the NRR
criterion. It is good to precise that Eq. (29) has been obtained only using low pass filters studied in

this work, and a further generalization to other filter types needs an additional analysis.
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3.5 Smoothing kernels";‘ "' "JE.' fr a 3 patel) IPET
Another approach to deter;;line ERes, often 'used in the communities dealing with inverse problems
applied to passive remote sensors, is based on the use of the retrieval kernels. Kernels account for
the limited vertical resolution and for the sensitivity of the retrieaval (in our case the smoothing is
assumed as the applied <re§‘rieval.) that deqreases toward higher qnd lower altitudes depending on

L. 4 - jw TR &) 0 Y y WS Lo B, # e "'..\'."’“',
nadir or zenith pointing (Haefele et al., 2009). The peak of each kernel, at their associated range

Me ot Mmidondve Rolew Az
gate, provides the altitude of maximum sensitivity. Its full width at half maximum is typically
interpreted as the value of ERes of the retrieval. A recent paper in literature (Illingworth et al.,
2011) refers to the half width at half maximum as to the value of ERes of the retrieval. The
calculation shown in this section agrees with the second formulation. The resolution derived from
the kernel is similar in vertical shape to the resolution derived from error covariance matrices

(Backus and Gilbert, 1968; Conrath, 1972).

As mentioned above, we apply the smoothing as a retrieval technique, leading to the equation:
y=Ax (30)

where x is the high resolution profile, y is the smoothed profile and A is the matrix identified by the
smoothing filter. As described in Eq. (1), each smoothing procedure can be also seen as the
convolution of the high resolution profile and a kernel, that, for example, in the case of a
polynomial filter, is identified by the coefficients of the polynomial. Therefore the matrix A is
identified by a matrix having as raw elements the coefficients of the polynomial.

To provide a quantitative comparison of the criteria mentioned above to determine the ERes with
the kernels, in Fig. 21 the coefficients of the polynomial of a SG2 filter are reported for N=9 and
N=19. If the half width of the two curves is calculated, a value of ERes equal to 7AR,,,, and 14AR 4,
1s obtained. From Eq. (26) the same values of N are corresponding to 8AR,,,, and to 17AR,,,, . From

this comparison, it seems that the use of kernels provides an underestimation of the ERes with

30
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respect to that determined using the NRR criterion; the difference is larger with an increasing value
of N. A deeper investigation is needed to learn more about this difference. Nevertheless, the use of
kernels looks a promising choice to obtain a fast and automaticz determination of ERes for lidar
profiles, known the kemel of the applied smoothing filter. To the best of our knowledge, this is the

first time this method is applied for determining the effective vertical resolution of lidar vertical
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TFhéremeoval of noise frem lidar products via low-pass filters -correspornds to suppress a certain
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amount of details in them. The smoothing operation also distorts both the magnitude and the spatial "

extension of the features containé‘gl in a profile. Moreover, the likely presence of several separated o
\ y l\ (« oA :_,',‘_{
layers (of aerosol, ozone etc.) in a\lidar profilg puts the question if they are well resolved or not

after the application of some kind, of smoothing. Therefore, it is important to introduce the

definition an effective resolution (ERes) associated to a lidar profile where a smoothing process is

!

applied. The digital filter approach to“‘ the smoothing gives advantages respect the standard least-
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squares approach like:
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A faster algorithms that are able to deal properly with the large dynamic range of a lidar

signal, an interesting feature especially for the SCC algorithms (D’Amico et al., 2015).

e An easier statistical error analysis.

e Ready-to-use effective resolution definitions by an analysis of the impulse/frequency
response.

e The many recipes to design efficient low pass filters in principle allow us to use the most

suitable solution for any specific needs in lidar signal processing.

31

Jd ot [ e~



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Concerning the latter point, several kinds of smoothing filters have been analyzed to also evidence
the characteristics that could be useful to perform a choice among them. In fact the ERes estimation
alone could not give a general guideline about why to choose a filter arather than another. Indeed, the
effective resolution can be regarded as a kind of average parameter. For this reason, it that cannot
take into account all the details, like the peculiar differences in the behavior in the whole frequency
domain of the various filters: the analysis of other parameters is needed. If properly designed, the
smoothing filters resulting from the cascade method applied to the Savitzky — Golay family seem a
good choice when a lidar profile has to be smoothed. In fact it retains all the advantages of the SG
smoothers while it reduces their main drawback i.e.-the strong side lobe presence. Nevertheless, the
cascade filters also show an enlargement of the transient zone. Other smoothing filters in our study,
i.e. the Gaussian one and the SG2 with Blackman—type window, produce an even better suppression
of the high frequency noise, but have a less accurate signal preservation at low frequencies and a
more extended transition band. Before eventually enter in the estimation of the ERes, the
possibilities given by the DSP are utilized both to further underline how relevant are the knowledge
of impulse/frequency response and to solve a practical problem in lidar studies, i.e. how to calculate
the lidar ratio being sure that both the required aerosol extinction and backscatter profiles have the

same resolution. Then, an operative ERes estimation was determined by taking into account:

e The Rayleigh criterion, which highlights our ability to resolve (or not) close layers.
* The NRR criterion, which highlights the amount of (high fréquency) noise reduction of low

pass filters, and that can be seen as a measure of the spatial scales removed from a signal.

The NRR criterion underlines that with smoothing filters only the high frequency noise is efficiently
removed. In fact the presence of low frequency noise will remain almost unchanged and then will
still affect lidar products. The application of both the criteria, brings to a simple linear relationship

between the effective resolution and the filters parameters. Different results with different criteria
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for the same filter have been found. Anyhow the discrepancies are limited to a maximum of ~30%
in case of plain SG or Gaussian filter, while for other filters they are less pronounced (<20%) or
practically not particularly relevant (<5% for dSG2 case). The investigation of the differences
between the two criteria is evidenced by the analysis of the frequency responses that corresponds to

a common ERes value for various smoothing filters. This latter approach permits to underline that:
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e The effective resolutions obtained with the Rayleigh are similar for those filters that share a

comparable stop-band, while in the pass-band they could behave differently.
e The effective resolutions estimated with the NRR criterion are similar for different ﬂlters

that share a similar behavior in pass-band, whose extension results also comparable.

Though feasible for any given filter, the ERes estimation based on the Rayleigh criterion shows
some drawbacks and appears more elaborated respect the application of the NRR criterion. In fact
for the NRR criterion, a ready-to-use equation to estimate the effective resolution was found which
is directly applicable to any given-Smooﬂlji’hg filter. In this case the only needed input is the impulse
response of the employed filter, which is always available (or determinable). For this reason the
NRR approach to the ERes estimation would appears more suitable to be used as a standard for a

generalized application. Moreover, the NRR criterion implies the higher uniformity in the pass-band

-—_—————

for different filters with a common ERes, and generally the signal to preserve has interesting
features that lay mainly in that portion of the frequency axis. Nevertheless, the results about the
calculation of the ERes by the analysis of thé';lgétoff frequency, allow one to obtain also for the
Rayleigh criterion a specific general equation which is based only on the knowledge of the
frequency response of the applied smoothing filter. Furthermore, the Rayleigh criterion measures
the ability (or not) to resolve close layers, which could be a valuable feature in lidar studies.

Additionally, the ERes estimated with this criterion is significantly more conservative respect the

NRR criterion, at least for plain SG smoothers./Regarding the derivative process, it is fairly
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common the use of the SG2 low-pass first-derivative filter within EARLINET community

(Pappalardo et al., 2004), whose embedded low pass is denoted with dSG2. This latter filter allows
one to obtain nearly the same ERes estimation regardless the criterion chosen and, additionally, the
obtained results are consistent with those given in Pappalardo et al. about the same filter. The dSG2
exhibits a quite similar behavior of a Gaussian filter with similar ERes (from the NRR point of
view) in almost all the pass/transition band.ﬁ;T;/Jloreover, the Gaussian filters have quite better stop-
band features (the absence of significant 51c/ie lobes) and provide an easier way to perform correct
lidar ratio calculations. Those considerations bring to the conclusion that it seems recommendable
the employment of the Gaussian low-pass derivative filter to retrieve the extinction profile (and
more generally anytime the first derivative of a signal is required) as long as the choice is between
this filter and the widely used SG2 low pass first derivative filter. An alternative approach to the
ERes assessment has also been proposed, i.e. the one based to the smoothing kernels, which
produce results that are consistent with the NRR criterion althqugh further insights are required.
Anyhow, it appears a promising method that could be further developed to look at the ERes
problem from a new point of view. Moreover within the lidar community, there are other

approaches on the numerical derivative problem that have been proven to be effective and also

other methods able to provide alternative and reasonable ERes definitions: however, the scope of

this paper is ‘r}.ot_;to compare all the smoothing filters applied in literature to deal with lidar profiles,

but instead to provide a methodology to assess the ERes. Nevertheless, a more exhaustive
o guce 2 .. (aJTLivE)

comparison with other approaches for the evaluation of the ERes and smoothing filters will be

likely done in future in the frame of EARLINET activities. Other promising directions for the future

developments of this study could be try to obtain a more general and possibly unique rule for the

effective resolution estimation and also to pursue the objective of an improvement of the lidar

signal analysis. The latter objective could be achieved by means of both a deeper exploitation of

DSP theory and the application and development of the smoothing optimization methods already

’
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underlined by chemical spectroscopy papers mentioned in the text (for example, Gans and Gills,

1983).
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